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Abstract

Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and
involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications.
Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms.
Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization
signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to
stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are
present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar,
suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP
experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and
L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational
modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein
polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various
functions previously reported for these proteins.
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Introduction

Compartmentalization of proteins is a key mechanism for

regulating many cellular processes and/or restricting site activity

of proteins. To find their right place in cells, proteins are generally

endowed with signals that target them to the appropriate

subcellular compartment. This destination can represent either

the final working place of proteins, a transient localization or a

means for certain other proteins to be sequestered. These signals

are recognized and processed by specialized cell machineries.

Another way to localize proteins is to first direct their mRNA prior

to their translation, a mechanism requiring specific nucleotide

signals as well as escort proteins to process these signals.

In this context, we previously characterized two proteins,

Interleukin enhancer binding factor 3 (Ilf3) and Nuclear Factor 90

(NF90), that interact with the axonal targeting element of Tau

mRNA and move with it from the nucleus to the axon hillock [1].

Belonging to the family of proteins containing double-stranded

RNA-binding domain(s) (dsRBM; [2]), these two proteins are

generated by alternative splicing from a single gene [3,4]. This

event provides two proteins with common N-terminal and central

domains and a specific C-terminal domain [3–5].

An heterogeneity of Ilf3 and NF90 was evidenced after

separation by 2-D PAGE [1] with at least 12 and 8 spots,

respectively. This polymorphism is partially due to an alternative

splicing of exon 3 in the 59 region of their premessenger RNA,

which generates long (L) and short (S) isoforms for Ilf3 and NF90

[5]. These isoforms differ by the presence or the absence of a

specific basic N-terminal sequence of 13 residues (ALYHHH-

FITRRRR) localized just downstream the initiation methionine.

The polymorphism of Ilf3 and NF90 arising from alternative

splicing events is also complexified by at least two posttranslational

modifications: arginine-methylation by protein-arginine methyl-

transferase I in the RGG motif [6] and phosphorylation by PKR
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[4,7,8], the DNA protein kinase [9] or the AKT kinase in T-cells

[10].

The existence of several Ilf3 and NF90 isoforms [1,3,5] may

reflect their numerous described functions: transcriptional activa-

tion [11–14], eukaryotic and viral RNA binding [1,15–20],

translational inhibition [21–24] or enzymatic regulation [6,7].

This polymorphism could also explain the various subcellular

localizations described [1,25,26]. Since Ilf3 and NF90 are

recovered in both nuclear and cytoplasmic fractions [1], they

may shuttle between these compartments [27]. Finally, the

interaction of Ilf3 and NF90 with protein and/or RNA partners

may be regulated by posttranscriptional and/or posttranslational

modifications [13,23].

Following our original report of an additional splicing event that

generates multiple Ilf3 and NF90 protein profiles isoforms [5], we

herein investigated the potential influence of Ilf3 and NF90

posttranscriptional and posttranslational heterogeneities on their

subcellular localization. The N-terminal location of the alternative

13-aa segment enriched in basic residues led us to search for a

specific role to this signal-type motif. Accordingly, we fused the N-

terminal sequence of Ilf3/NF90, containing or not the 13 residues,

to GFP or a well-known cytoplasmic protein to follow whether the

chimeric proteins were targeted to a specific cellular compartment.

Since some chimeric proteins were targeted in the nucleolus, we

performed subcellular fractionation to confirm the nucleolar

localization of endogenous proteins. In addition, using deletion

and substitution mutants, we investigated on the role played by

different residues present in this motif. Finally, confocal micros-

copy and FRAP experiments were performed to study the accurate

subnucleolar localization and the dynamics of the proteins.

Results

1. Long Ilf3/NF90 N-terminus fused with GFP
accumulates in nuclear foci

Whereas L- and S-Ilf3/NF90 isoforms exhibit the same ability

to bind Tau mRNA [1], we tested whether the L-isoforms

containing the specific N-terminal sequence exhibited a particular

localization. Plasmids containing the GFP sequence fused in frame

behind the sequences coding for the 54 first aa of the L-Ilf3/NF90

isoforms (Long-GFP) or the 41 aa of the S-Ilf3/NF90 isoforms

(Short-GFP) were transfected into HeLa cells. The intracellular

distribution of GFP was observed by epifluorescence microscopy.

In control cells expressing GFP alone as in cells transfected with

the Short-GFP plasmids, fluorescence was observed in the

cytoplasm and especially in the nucleus, where GFP has been

previously shown to accumulate (Figure 1, left and middle panels).

In contrast, fluorescence was barely detectable in the cytoplasm of

cells transfected with the Long-GFP plasmids and rather

accumulated in discrete nuclear foci that may correspond to

nucleoli (Figure 1, right panels). This 13-aa sequence could thus

function as an efficient nucleolar localization signal (NoLS).

2. Endogenous long Ilf3/NF90 isoforms are targeted to
the nucleolus

To confirm the role of the 13-aa motif in nucleolar targeting

and to avoid any bias associated with overexpression, the presence

of endogenous L- and S-Ilf3/NF90 isoforms was examined in

subcellular fractions prepared from P19 cells. Identical results were

obtained with HeLa cells (data not shown). Western blotting of

different fractions using a polyclonal antibody raised against

common regions of the two proteins [1] revealed that the L- and S-

Ilf3 isoforms were present in both cytoplasmic and nuclear

fractions (Figure 2). In contrast, only the L-NF90 isoforms were

found in the nuclear fraction whereas all the NF90 isoforms were

recovered in the cytoplasm. Furthermore, when purified nuclei

were fractionated into nucleoplasmic and nucleolar fractions, only

the L-Ilf3 and L-NF90 isoforms were found associated with the

nucleoli. The identity of the different fractions was checked by

immunodetecting UBF, as a nucleolar marker, and a-tubulin, as a

cytosolic marker. These results strengthen the idea that the N-

terminal 13-aa sequence present in the L-Ilf3 and L-NF90

isoforms acts as a potent NoLS.

To confirm the targeting of L-isoforms to the nucleolus and

explore the role of their posttranslational modifications in this

compartimentalization, subcellular fractions were analyzed by 2D-

PAGE. For isoforms present in both cytosolic and nuclear

fractions (L- and S-Ilf3 and L-NF90), the same 2-D patterns were

obtained (data not shown), suggesting that the posttranslational

modifications do not regulate their nucleocytoplasmic distribution.

However, the comparison of the Ilf3 and NF90 heterogeneities in

subnuclear compartments showed an exclusive distribution of the

isoforms between the nucleolus and the nucleoplasm (Figure 3). As

shown above (Figure 2), the nuclear NF90 isoforms were almost

solely recovered in the nucleolar fraction (Figure 3, lower right

panel). The faint signal observed in the nucleoplasmic fraction

(Figure 3, middle right panel) was detected with a ten-fold longer

exposure time than that obtained with the nucleolar extract and is

probably due to L-NF90 isoforms trafficking between the

nucleolus and the cytosol. Concerning Ilf3, only the most alkaline

L-isoforms were exclusively recovered in the nucleolar fraction

whereas all the other L- and S-isoforms were found in the

nucleoplasm. These results confirm that the nucleolar fraction

contains only isoforms of Ilf3/NF90 containing the 13 aminoacid

motif and strongly suggest that posttranslational modifications of

L-Ilf3 isoforms, evidenced by their different more acidic pI,

negatively regulate their nucleolar localization.

3. A cytoplasmic protein fused to Long Ilf3/NF90
N-terminus is targeted to the nucleolus

Since GFP can enter the nucleus, we tested the ability of the 13-

aa motif to target to the nucleus and nucleolus a well-known

cytoplasmic protein, the human eukaryotic releasing factor 1

(heRF1). The heRF1 coding sequence was fused at the 39 end of

the sequence coding for the first 54 aa of the L-Ilf3/NF90 isoforms

(NoLS-heRF1) or for the first 41 aa of the S-Ilf3/NF90 isoforms

(N-heRF1). The constructs were transfected into HeLa cells and

the heRF1 localization was observed by immunofluorescence

microscopy (Figure 4).

In control cells transfected with N-heRF1 (Figure 4, middle

panels), anti-eRF1 antibodies stained only the cytoplasmic

compartment, as expected for endogenous heRF1 (Figure 4,

upper panels). By contrast, in cells expressing NoLS-heRF1

(Figure 4, lower panels), nuclei were also decorated (Figure 4,

merge panels). Furthermore, fluorescence was also associated with

nuclear structures corresponding to nucleoli (Figure 4, arrows in

lower panels). In conclusion, the 13-aa motif appears to be

necessary and sufficient to import a cytoplasmic protein into the

nucleus and to further drive it to the nucleolus. This motif, only

present in the L-Ilf3 and L-NF90 isoforms, thus encompasses a

dual NLS and NoLS.

4. Aminoacid deletion or substitution in the NoLS
modulate the subnuclear distribution

To identify key residues for nucleolar targeting in the 13-aa

sequence, deletion and substitution mutants were constructed

using NoLS-GFP sequence (GFP coding sequence fused at the 39

Nucleolar Localization of L-Ilf3 and L-NF90
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end of the sequence coding for the first 54 aa of the L-Ilf3/NF90

isoforms). Expression vectors were transfected into HeLa cells and

after 24 hours cells were processed for indirect immunofluores-

cence with anti-B23 monoclonal antibodies. The intranuclear

distribution of GFP and B23 was then observed by confocal

microscopy (Figure 5). The three upper rows of figure 5A show the

subcellular localization of GFP alone, wild-type NoLS-GFP and

N-GFP (GFP coding sequence fused at the 39 end of the sequence

coding for the first 41 aa of the S-Ilf3/NF90 isoforms). While

NoLS-GFP (positive control) accumulated in nucleoli, GFP alone

and N-GFP (negative controls) uniformly labeled the whole

nucleus and were seemingly excluded from nucleoli.

The 13-aa sequence contains a four-arginine stretch, which fits

well with eukaryotic or viral NoLS consensus, K/R-K/R-X-K/R

[28–30]. Deletion of the four arginines (Figure 5A, D4R-GFP row)

led to the loss of nucleolar localization, as indicated by the absence

of colocalization with B23.

As shown above, the 13-aa sequence can drive heRF1 into the

nucleus (Figure 4). Given the similarity between the NoLS and

basic NLS, one can ask why any NLS-containing protein is not

automatically targeted to the nucleolus. What is required in

addition to these four positively-charged residues to become an

efficient and specific NoLS? Looking at the residues adjacent to

the four-arginine stretch within the 13-aa sequence, two features

could be singled out: a threonine residue predicted to be

phosphorylated by protein kinase C and a three-histidine stretch.

When the threonine was replaced by alanine (T10A) or by the

phosphomimetic aspartate (T10D), no difference with the positive

control (Figure 5A, NoLS-GFP) was observed (Figure 5A, T10A-

GFP and T10D-GFP rows), indicating that neither this threonine

residue nor its putative phosphorylation are involved in NoLS

function. When the three histidines were deleted (Figure 5B, D3H-

GFP row) or replaced by three alanines (Figure 5B, 3H-.3A-GFP

row) or three phenylalanine (Figure 5B, 3H-.3F-GFP row), an

intermediate situation between the positive and negative controls

was observed: nucleoli were less fluorescent and the nucleoplasm

appeared more fluorescent than in the positive NoLS-GFP control.

Fluorescence quantification indicated that, in the D3H-GFP, 3H-

.3A-GFP and 3H-.3F-GFP experiments, nucleoli emitted only

two-thirds of the GFP fluorescence recovered in the positive

control (cells quantified: 39, 14, 21 and 32, respectively). These

results indicate that the loss or the replacement of the three

histidines by three alanines or phenylalanines significantly weakens

the nucleolar targeting/retention.

Figure 1. Subcellular localization of GFP fused with the short or long N-terminal sequence of Ilf3/NF90. Plasmids pEGFP-N1 (Control,
left panels), pEGFP-N1-Ilf3/NF90 common N-terminal short sequence (Short-GFP, mid panels) and pEGFP-N1-Ilf3/NF90 common N-terminal long
sequence (Long-GFP, right panels) were transfected into HeLa cells. After 24 hours, cells were fixed and co-stained with anti-a-tubulin antibody (a-
Tub) and DAPI. GFP or GFP fusion proteins appear in green, a-tubulin in red and DAPI staining in blue. Arrows point to intranuclear foci.
doi:10.1371/journal.pone.0022296.g001

Nucleolar Localization of L-Ilf3 and L-NF90
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To assess the role of positive charges carried by the three

histidine residues, they were substituted by three lysines or

glutamates (Figure 5B, 3H-.3K-GFP and 3H-.3E-GFP rows).

With the positively-charged lysines, the fluorescence levels of

nucleoli were similar to those of NoLS-GFP (96%, n = 20) whereas

with the negatively-charged glutamates (n = 11), the nucleoli

fluorescence levels were similar or weaker to those of D3H-GFP,

3H-.3A-GFP and 3H-.3F-GFP mutants. Finally, when a double

3H-.3K/D4R-GFP mutant was tested, no nucleolar targeting

was observed (Figure 5B, 3H-.3K/D4R-GFP row) similarly to

D4R-GFP mutant. Altogether, these results show that the three

added lysines cannot substitute for the four missing arginines and

strongly suggest that the positive charges of the three histidines

may be important to retain the proteins in the nucleolus. The four

arginines should then be required to drive a cytoplasmic protein

into the nucleus and, from there, up to the nucleolus whereas the

three histidines should increase its retention time in the nucleolus,

maybe through specific interactions with nucleolar constituants.

5. Long Ilf3/NF90 isoforms are present in the granular
component of the nucleolus

To better define the subnucleolar localization of long isoforms,

the GFP sequence was fused in frame after the S-Ilf3, L-Ilf3 or L-

NF90 sequences. Constructs were transfected into HeLa cells and

after 24 hours cells were processed for indirect double immuno-

fluorescence with human anti-fibrillarin serum and anti-B23

monoclonal antibodies. The intranuclear distribution of GFP

and markers was then observed by confocal microscopy (Figure 6).

In control cells expressing GFP alone as in cells transfected with

the S-Ilf3 constructs, GFP fluorescence was observed in the whole

nucleoplasm without any particular localization (Figure 6, Control

and S-Ilf3 rows, left panels), whereas in cells transfected with the

L-Ilf3 or L-NF90 constructs, GFP fluorescence was mostly

restricted to the nucleoli (Figure 6, L-Ilf3 and L-NF90 rows, left

panels). The fibrillarin and B23 antibodies decorating dense

fibrillar and granular components, respectively (Figure 6, vertical

middle panels) and the merged images showing a strict

Figure 2. Subcellular distribution of Ilf3 and NF90 in P19 cells. After subcellular fractionation, proteins from identical percentages of each
fraction were submitted to SDS-PAGE, blotted onto nitrocellulose and immunodetected with the serum Ab78 raised against Ilf3 and NF90 (S.E.: short
exposure time; L.E.: long exposure time), anti-UBF serum (UBF) or anti-a-tubulin antibody (a-tub.). Molecular weight markers (kDa) are indicated at the
right.
doi:10.1371/journal.pone.0022296.g002

Figure 3. Ilf3 and NF90 polymorphism in nuclear fractions
purified from P19 cells. Ilf3 and NF90 from P19 cell nuclear fractions
were submitted to 2-D PAGE and immunodetected with polyclonal
antibody 78. Arrows positioned in the same coordinates in Ilf3 or NF90
panels indicate the positions of Ilf3 and NF90 long and short isoforms.
The faint signal in the middle right panel was detected with a ten fold
longer time exposure than that of the other panels.
doi:10.1371/journal.pone.0022296.g003

Nucleolar Localization of L-Ilf3 and L-NF90
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colocalization of L-Ilf3 and L-NF90 isoforms with B23 and not

with fibrillarin (Figure 6, L-Ilf3 and L-NF90 rows, right panels), we

concluded that the unmodified L-Ilf3 and L-NF90 isoforms appear

to be mainly present in the nucleolus granular component [31].

6. Dynamic behavior of Ilf3 and NF90 during nucleolar
disruption and reformation

DRB, an inhibitor of protein casein kinase II that phosphor-

ylates nucleolar proteins, such as nucleophosmin, nucleolin and

UBF, has been described to disorganize the nucleolus [32]. To

analyze the behavior of Ilf3/NF90 during the reversible disruption

and reformation of nucleoli, we have compared their dynamics

with that of B23 during these processes.

When L-NF90-GFP and mcherry-B23 were co-expressed in

HeLa cells, both proteins colocalized in the granular component

(Figure 7, upper panels), as L-Ilf3 (Figure 5; lower panels). After

treatment with DRB, the mcherry fluorescence was greatly

reduced whereas the L-NF90-GFP fluorescence diffused in the

nucleoplasm (Figure 7, middle panels). One hour after DRB

removal, a partial restoration of nucleolar structures was observed.

While B23 seemed to rapidly and almost totally localize into the

reforming nucleoli, only a part of L-NF90 also relocalized with

B23. The remaining L-NF90 was detected at the periphery of

reforming nucleoli, around the B23 foci (Figure 7, lower panels).

Identical results were obtained with L-Ilf3-GFP (data not shown).

7. L-Ilf3 and L-NF90 are highly dynamic and exchange
between nucleoli

Knowing that L-Ilf3 and L-NF90 can dissociate from and

reassociate with nucleoli (Figure 7), FRAP experiments using L-

Ilf3-GFP, L-NF90-GFP and B23-GFP were performed to analyze

precisely their kinetics. In HeLa cell nuclei, one nucleolus was

photobleached then GFP fluorescence recovery was followed

during 240 seconds, using one of the other non-bleached nucleoli

of the same nucleus and one nucleolus of a neighboring cell as

controls (Figure 8A).

Figure 8B shows GFP fluorescence recordings from the

bleached nucleolus (green curve), from one adjacent nucleolus in

the same nucleus (purple curve) and from one nucleolus of a

distinct cell (yellow curve). The bleached nucleolus was rapidly re-

colonized by L-NF90-GFP and its fluorescence level reached a

plateau after 90 seconds post-bleach. At the same time, we

observed that the fluorescence level of the adjacent nucleolus

slightly and progressively decreased after the bleach and was

Figure 4. Subcellular localization of human eRF1 fused with short or long N-terminal sequence of Ilf3/NF90. Plasmids pCMV-heRF1-Ilf3/
NF90 short N-terminal sequence (N-heRF1, mid panels) and pCMV-heRF1-Ilf3/NF90 long N-terminal sequence (NoLS-heRF1, lower panels) were
transfected into HeLa cells. After 24 hours, untransfected (Control, upper panels) or transfected cells were co-stained with anti-heRF1 antibody
(heRF1), anti-a-tubulin antibody (a-Tub) and DAPI. Endogenous heRF1 or heRF1 recombinant fusion proteins appear in green, a-tubulin in red and
DAPI in blue. Arrows point to intranuclear foci corresponding to nucleoli.
doi:10.1371/journal.pone.0022296.g004

Nucleolar Localization of L-Ilf3 and L-NF90
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stabilized after about 60 seconds. During this experiment, the

fluorescence level of the nucleolus of the neighbor cell remained

constant. These results indicate that L-NF90 behaves as a highly-

dynamic protein which is rapidly exchanged between the different

nucleoli within the same nucleus. Experiments performed with L-

Ilf3-GFP and B23-GFP revealed the same dynamic exchange

between nucleoli (data not shown), as reported also for several

nucleolar proteins (38).

Computation of fluorescence recovery recordings from inde-

pendent experiments with L-Ilf3-GFP (n = 14), L-NF90-GFP

(n = 15) and B23-GFP (n = 11) is shown in figure 8C. t1/2

recovery, deduced for each protein (L-Ilf3: 38.9 seconds; L-

NF90: 19.8 seconds; B23: 4 seconds and 39 seconds), indicated

that L-Ilf3 and L-NF90 diffuse in a monodimensional manner

whereas B23 appears to be composed of two mobile subpopula-

tions, one diffusing more rapidly than the other, that is in

opposition with previous report [33]. Finally, data analysis showed

that L-Ilf3 mobile fraction represents 70% of total proteins, 93%

for L-NF90 and 85% for B23.

Altogether, FRAP experiments indicate that L-Ilf3 and L-NF90

are each composed by a single population of highly mobile

proteins that can exchange rapidly from one nucleolus to another

within the same nucleus.

Discussion

Previous studies showed that Ilf3 and NF90 are produced by

alternative splicing in the 39 region of their premessenger RNA

[3,4]. In addition, alternative splicing of exon 3 leads to the

presence or absence of a 13-aa peptide at the N-terminus of both

proteins [5]. Herein, we investigated in HeLa cells the influence of

this sequence on the subcellular localization of recombinant fusion

proteins (Figures 1, 4). We also analyzed the colocalization of

GFP-tagged Ilf3/NF90 and B23 in HeLa cells and the distribution

of endogenous Ilf3/NF90 in subcellular fractions of HeLa and P19

cells. Altogether, our results strongly suggest that the N-terminal

13 aa acts as a NoLS that also favors entry of the protein into the

nucleus.

This NoLS contains three histidines followed by four arginines,

forming a stretch of basic residues. Analysis of 61 previously-

characterized or putative NoLS present in well-defined nucleolar

proteins showed the presence of the nucleolar localization consensus

motif, K/R-K/R-X-K/R [34,35]. Many proteins are constantly or

transiently associated with the nucleolus. Many of them contain a

NoLS in which the consensus can be present in single or multiple

copies that can be positioned anywhere in the primary sequence

[28-30]. Surprisingly, computer analysis of these 61 NoLS showed

that, among the eight possible combinations, the homogenous

KKXK and RRXR motifs are found preferentially (30% and 40%,

respectively; Table 1, bottom lane). Concerning the chemical nature

of the residue X (Table 1, right column) and its observed frequency,

as compared with that in vertebrate proteins, we noted a strong

occurrence of proline (,9.7% vs 5%), lysine (16.1% vs 7.2%),

asparagine (17.7% vs 4.4%) and arginine (22.6% vs 4.2%) at this

position. Acidic aspartate and glutamate were never found at this

position, nor cysteine, tyrosine and histidine.

Figure 5. Subnuclear distribution of GFP fused to deletion or substitution mutants of Ilf3/NF90 NoLS. (A) Plasmids pEGFP-N1 (Control),
pEGFP-N1-Ilf3/NF90 common N-terminal long region (NoLS-GFP), pEGFP-N1-Ilf3/NF90 common N-terminal short region (N-GFP), pEGP-N1/deletion
mutant of the four-arginine stretch from the NoLS (D4R-GFP), pEGP-N1/substitution mutant of the threonine 10 by alanine (T10A-GFP) and pEGP-N1/
substitution mutant of the threonine 10 by aspartate (T10D-GFP) and (B) plasmids pEGP-N1/deletion mutant of the three-histidine stretch (D3H-GFP),
pEGP-N1/substitution mutant of the three-histidine stretch by three alanines (3H-.3A-GFP), three phenylalanines (3H-.3F-GFP), three lysines (3H-
.3K-GFP) or three glutamates (3H-.3E-GFP) and pEGP-N1/substitution mutant of the three-histidine stretch by three lysines/deletion mutant of the
four-arginine stretch (3H-.3K/D4R-GFP) were transfected into HeLa cells. After 24 hours, cells were co-stained with the monoclonal anti-B23
antibody (B23) and DAPI. After confocal microscopy acquisition, focal planes exhibiting a B23 optimal signal were chosen. GFP fusion proteins appear
in green, B23 in red and DAPI in blue.
doi:10.1371/journal.pone.0022296.g005

Nucleolar Localization of L-Ilf3 and L-NF90

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e22296



In the case of Ilf3 and NF90 L-isoforms, analysis of mutants

indicated, in addition to the indispensable role of the four

arginines to direct proteins to the nucleolus, the presence of

positive charges close to the arginine stretch seems to be very

important to retain these proteins in the nucleolus. The deletion or

the replacement of the three histidines by uncharged (alanine or

phenylalanine) or negatively-charged (glutamate) residues effec-

tively decreases the efficiency of the nucleolar targeting by one

third. A contrario, their substitution by three lysines with their strong

and permanent positive charges maintains this efficiency.

Interestingly, whereas the distribution of endogenous Ilf3 in the

nucleus revealed that most of Ilf3 was recovered in the

nucleoplasm (Figures 2 and 3), the overexpression of L-Ilf3

showed a preferential localization in nucleoli (Figure 6). This

observation could be explained by the fact that the unmodified L-

Ilf3 isoforms are only recovered in the nucleoli while the

posttranslationally-modified isoforms are in the nucleoplasm

(Figure 3). Indeed, if we consider that overexpressed L-Ilf3 is not

posttranslationally-modified because the modification enzymes are

titrated by the excess of substrate proteins, we can explain why the

majority of the chimeric L-Ilf3-GFP is associated with the nucleoli

(Figure 6) and not found in the nucleoplasm, as endogenous L-Ilf3

(Figures 2, 3). Nuclear fraction of endogenous L-NF90 being

exclusively associated with the nucleoli (Figure 2), independently of

their posttranslational modifications status (Figure 3), the overex-

pressed L-NF90 is also only localized in the nucleoli (Figure 6).

These observations could explain why a L-Ilf3 or L-NF90

overexpression leads to a cellular death (data not shown), certainly

due to a perturbation of the nucleolar organization and functions

resulting from an overaccumulation of overexpressed proteins.

The nucleolar localization of L-Ilf3/NF90 isoforms resembles

that of proteins involved in nucleocytoplasmic transport of mRNA

[36] or mRNA editing [37]. For these proteins, it was suggested

that they assemble with their cargo mRNA into RNP directly in

the nucleolus or first in the nucleoplasm and then localize to the

nucleolus [38]. In both cases, RNP particles leave the nucleolus

after an eventual binding of nucleolar proteins and/or RNAs and

are then exported to the cytoplasm. The functional reason for re-

routing RNP particles via the nucleolus on the way to the

cytoplasm is not clear, but two hypotheses can be considered.

Either the passage by the nucleolus is a checkpoint to ensure the

functional integrity of RNP complexes, or it represents a

sequestration step allowing some negative regulation to occur on

mRNA translation and/or protein activity [38]. Whatever it may

be, since Ilf3/NF90 have been previously reported to interact with

several RNAs [1,15-20], the idea of a transient association of RNP

containing Ilf3/NF90 with the nucleolus was reinforced by data

showing that they interact with the nucleolar protein ADAR [39].

Figure 6. Subnuclear distribution of exogenously-expressed S-Ilf3, L-Ilf3 and L-NF90 isoforms in HeLa cells. Plasmids pEGFP-N1
(Control row), pEGFP-N1-S-Ilf3 (S-Ilf3 row), pEGFP-N1-L-Ilf3 (L-Ilf3 row) or pEGFP-N1-L-NF90 (L-NF90 row) were transfected into HeLa cells. After
24 hours, cells were co-stained with human anti-fibrillarin serum (Fibrillarin) and monoclonal anti-B23 antibody (B23). After confocal microscopy
acquisition, focal planes were chosen to obtain optimal fibrillarin and B23 signals. DAPI (not shown here) was used to define the nuclear limits (white
drawings). GFP and GFP fusion proteins appear in green, fibrillarin in red and B23 in blue.
doi:10.1371/journal.pone.0022296.g006
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At the end of mitosis or after a DRB treatment, the timing of

incoming proteins in the reassembling nucleoli depends on their

subnucleolar localization, hence on their function [31,32,40].

Indeed, the proteins recovered in the fibrillar component and

implied in early rRNA processing steps, e.g., fibrillarin and UBF,

arrived at first whereas the proteins of the granular component

responsible for late rRNA processing stages, e.g., B23 and Nop52,

relocalized to the nucleolus later [31,32,40]. Even if some L-NF90

isoforms can reintegrate rapidly the granular component, the

relocalization of most of them occurs much later. This difference

in the timing of the relocalization of L-NF90 and the other

granular component proteins would suggest that L-NF90 (and

certainly unmodified L-Ilf3 also present there) could be implicated

either in the very last stages of rRNA processing and/or

preribosomes assembly or in other yet unknown functions.

FRAP experiments have shown that L-Ilf3 and L-NF90 exhibit

a highly dynamic behavior and can exchange between different

nucleoli within the same nucleus. This corresponds to a typical

behavior for numerous nucleolar proteins [31]. These internu-

cleolar exchanges indicate that all the nucleoli of a given nucleus

can be considered as a single nuclear compartment instead of

independent components. In the FRAP experiments described in

this paper, only the fluorescence recovery of L-Ilf3-GFP and L-

NF90-GFP present in nucleoli is measured, assuming that the

endogenous proteins behave similarly. The t1/2 recovery values

corresponding to nucleoplasmic or cytoplasmic Ilf3/NF90 may be

different from those reported here.

Herein, we showed that the N-terminal 13-aa sequence of the L-

Ilf3 and L-NF90 proteins, encoded by the alternatively-spliced

exon 3, allows their subcellular localization to nucleoli, thus acting

as a NoLS. Moreover, this particular sequence is necessary and

sufficient to target unrelated cytoplasmic polypeptides to the

nucleolus.

Considering the numerous cellular functions previously report-

ed for Ilf3 and NF90 [1,6,7,11-24] and their multiple cellular

localizations ([1,23,26,27]; our results), and given that all isoforms

are not present in all cellular compartments, each isoform may

have specialized functions. Moreover, taking into consideration

the important polymorphism of Ilf3/NF90, it is obvious that this

protein heterogeneity is not generated solely by alternative splicing

events, but also by posttranslational modifications, such as arginine

methylation [6] and phosphorylation [4,7,8]. Analyses of their

implication in the subcellular localization of Ilf3/NF90 and/or in

the regulation of their functions are currently in progress.

Materials and Methods

Cell culture
HeLa and P19 cells were cultured as described [5]. When

mentioned, cultured cells were treated for two hours by addition of

5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB; Sigma-Al-

drich, St Louis, MO, USA) at the concentration of 240 mmole.L-1.

Indirect immunofluorescence
HeLa cells were fixed as described [1]. Subsequent steps were

performed in PBS supplemented with 0.2% (v/v) Triton X100 and

1% (w/v) bovine serum albumine. Cells were stained for one hour

at room temperature with monoclonal anti-a-tubulin DM1A

(1:1000; Sigma-Aldrich), polyclonal anti-heRF1 antibodies (1:200),

human polyclonal anti-fibrillarin D157 serum (1:500) and/or

monoclonal anti-B23 antibody FC82291 (1:500; Sigma-Aldrich).

Primary antibodies were revealed using the Alexa Fluor 488 goat

Figure 7. Subcellular distribution of exogenously-expressed L-NF90 isoforms in HeLa cells treated with DRB. Plasmids pEGFP-N1-L-
NF90 (L-NF90-GFP) and mcherry-B23 (B23-mcherry) were transfected into HeLa cells. 24 hours later, cells were fixed either immediately (Control,
upper panels) or after a DRB treatment during two hours (DRB 2 h, mid panels) followed by a chase of one hour (Chase 1 h, lower panels). GFP and
mcherry fusion proteins appear in green and red, respectively.
doi:10.1371/journal.pone.0022296.g007
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Figure 8. Fluorescence recovery in HeLa cell nucleoli after photobleaching (FRAP) of GFP-tagged L-Ilf3, L-NF90 or B23. Plasmids
pEGFP-N1-L-Ilf3, pEGFP-N1-L-NF90 or pEGFP-N1-B23 were transfected into HeLa cells. After 24 hours, living cells were subjected to photobleaching.
A. In HeLa cells expressing L-NF90-GFP, one nucleolus was targeted for laser bleaching (left panel, green circle in the upper cell) whereas another
nucleolus from the same cell (blue circle in the upper cell) and a nucleolus from a distinct cell (yellow circle in the lower cell) were marked to serve as
controls. Images were acquired every two seconds during 40 seconds before, immediately after or during 240 seconds after bleaching (prebleach,
bleach, post-bleach 6 and 240 seconds, respectively). B. Fluorescence recordings emitted from the 3 delimited regions in A (green: bleached
nucleolus; purple: control nucleolus from the same cell; yellow: control nucleolus from another unbleached cell). C. Kinetics of mean fluorescence
recovery after photobleaching of GFP-tagged L-Ilf3 (n = 14), L-NF90 (n = 15) or B23 (n = 11) after a normalization of fluorescence intensity. The t1/2 of
mean fluorescence recovery are indicated in the figure.
doi:10.1371/journal.pone.0022296.g008
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anti-rabbit (1:1000; Molecular Probes, Eugene, OR, USA), the

Alexa Fluor 660 goat anti-human (1:1000; Invitrogen) or the Alexa

Fluor 660 goat anti-mouse Igs (1:1000; Invitrogen). Each

incubation was followed by three PBS washes and coverslips were

mounted onto glass slides in CitifluorTM (Citifluor Ltd, Leicester,

UK). When needed, cells were incubated 10 minutes with PBS

containing 49,6-diamidino-2-phenylindole (DAPI, 0.1 mg.mL21) to

visualize DNA and rinsed twice with PBS before mounting.

Subcellular fractionation
Subcellular fractionation of HeLa and P19 cells was performed

by differential centrifugation as described [41] with modifications in

the buffer A composition (Tris-HCl 10 mmol.L21 pH 7.4, KCl

10 mmol.L21, MgCl2 1.5 mmol.L21, dithiothreitol 0.5 mmol.L21).

Protein concentrations were determined using the Micro BCA

Protein Assay Reagent Kit (Pierce, Rockford, IL, USA).

1D- and 2D-PAGE and Western blot
1D- and 2D-PAGE were performed as described [42,43] with

minor modifications [44]. Electrotransfer of proteins onto

nitrocellulose (Hybond C, GE Healthcare, Chalfont St Giles,

UK) was performed according to [45] with minor modifications

[44]. After membrane saturation [1], polyclonal anti-Ilf3/NF90

serum (Ab78; [1]), monoclonal anti-Ilf3/NF90 antibodies (BD

Biosciences, Palo Alto, CA, USA), monoclonal anti-a-tubulin

antibodies (DM1A; Sigma-Aldrich), monoclonal anti-B23 anti-

bodies (B0556; Sigma-Aldrich) or human polyclonal anti-UBF

D165 serum were incubated overnight at room temperature and

revealed with peroxidase-linked secondary antibodies (Sigma-

Aldrich) by the chemiluminescence method.

Plasmid constructions
Numbering of Ilf3 and NF90 primer oligodeoxynucleotides

(MWG, Courtabœuf, France; Eurogentec, Liège, Belgium) was

done according to the mouse Ilf3 and NF90 sequence published

previously (GenBank accession numbers AF447751/NM010561,

AF447752/NM001042707, DQ104405/NM001042708 and

DQ104406/NM001042709; 5), italic types correspond to non-

complementary sequences used to introduce specific restriction

sites (underlined characters, AGATCT: Bgl II and GAATTC: EcoR I)

or the Kosak consensus sequence (double-underlined characters,

GCCACC), respectively.

To construct the short or long Ilf3/NF90 N-terminus in frame

with the GFP (Short- or N- and Long- or NoLS-GFP), PCR were

performed using plasmids pSK+ containing Ilf3 as template (5) and

IN-51 (193-236: 59-CCGGAATTCGCCACCATGGCATTGTAT-

CATCATCACTTCATCACAAGAAGAGAAGGCG-39) or IN-

52 (193-229: 59-CCGGAATTCGCCACCATGCGTCCCATGA-

GAATTTTTGTGAATGATGATCGCC-39) as 59 primer and

IN-31 (5282500 or 4892461: 59-GGCTACCAGGCCGACCC-

Table 1. Occurrence frequencies (%) of possible NoLS sequences (K/R-K/R-X-K/R) and of the twenty aminoacids at the X position in
several NoLS-containing nucleolar proteins.

Motif KKXK KKXR KRXK KRXR RRXR RRXK RXKR RKXK OFa MFb OF/MF

Res. X

G 4.84 - - - - - - - 4.84 7.4 0.65

A 1.61 - - - - - - - 1.61 7.4 0.22

V 1.61 - - - - - - - 1.61 6.8 0.24

L 3.23 - - - - - 1.61 - 4.84 7.6 0.64

I - - - 1.61 - - - - 1.61 3.8 0.42

P 3.23 - - 1.61 4.84 - - - 9.68 5.0 1.94

S - - 1.61 1.61 3.23 - - - 6.45 8.1 0.8

T 1.61 - - - - - - - 1.61 6.2 0.26

C - - - - - - - - 0.00 3.3 0.00

M - - - - - 1.61 - - 1.61 1.8 0.90

N 6.65 - 1.61 3.23 6.45 - - - 17.74 4.4 4.03

Q - 1.61 - - 3.23 - - - 4.84 3.7 1.31

F - - - - 1.61 1.61 - - 3.23 4.0 0.81

Y - - - - - - - - 0.00 3.3 0.00

W - - - - 1.61 - - - 1.61 1.3 1.24

D - - - - - - - - 0.00 5.9 0.00

E - - - - - - - - 0.00 5.8 0.00

K 6.45 4.84 - - 3.23 - 1.61 - 16.13 7.2 2.24

R - 3.23 1.61 - 17.74 - - - 22.60 4.2 5.38

H - - - - - - - - 0.00 2.9 0.00

29.03 9.68 4.84 8.06 41.93 3.23 3.23 0.00

51.61 48.39

aAmong the eight possible sequence combinations (upper line), observed frequency (OF) of each aminoacid at the X position in NoLS present in 61 well-characterized
nucleolar proteins and using for the analysis.

bMean frequency (MF) of each aminoacid observed in vertebrate proteins.
doi:10.1371/journal.pone.0022296.t001

Nucleolar Localization of L-Ilf3 and L-NF90

PLoS ONE | www.plosone.org 10 July 2011 | Volume 6 | Issue 7 | e22296



GCATCACGCCCC-39) as 39 primer. Final PCR products were

digested with EcoR I and Apa I, isolated by migration in an 2.0%

(w/v) agarose gel, electroeluted and finally subcloned in pEGFP-

N1 (BD Biosciences) previously linearized with the same enzymes.

To construct the short or long N-terminus Ilf3/NF90 in frame

with human eRF1 (N-heRF1 and NoLS-heRF1), PCR were

performed using Long-GFP and Short-GFP plasmids as template

and IN-53 (193-197: 59-GCTCAAGCTTCGAATTCGCCACC-

ATGGC-39) or IN-54 (193-197: 59-GCTCAAGCTTCGAATTCGC-

CACCATGCG-39) as 59 primer and IN-32 (355-338 or 316-299:

59-CATCCAGATCTGGGCCCGCTCAGTATGGG-39) as 39 pri-

mer. PCR products were digested with EcoR I and Bgl II, isolated

by migration in an 1.5% (w/v) agarose gel, electroeluted and

finally subcloned in pCMV-heRF1 [45] previously linearized with

the same enzymes.

To construct the deletion and substitution NoLS-GFP mutants,

site-directed mutagenesis PCR were performed using NoLS-

GFP plasmid as template and primers containing some non-

complementary nucleotides allowing to introduce mutation

codons (bold types). To construct D4R-GFP mutant, D4R-5 (59-

ATGGCATTGTATCATCACTTCATCACACGTCCCATGA-

GAATTTTTGAATGATGATCG-39) and D4R-3 (59-CGAT-

CATTCAAAAATTCTCATGGGACGTGTGATGAAGTGAT-

GATGATACAATGCCAT-39) were used as 59 and 39 primers,

respectively. To construct T10A-GFP and T10D-GFP mutants,

T10A-5 (59-GCATTGTATCATCATCACTTCATCGCAAGA-

AGAAGAAGG-39) or T10D-5 (59-GCATTGTATCATCAT-

CACTTCATCGATAGAAGAAGAAGG-39) and T10A-3 (59-

CCTTCTTCTTCTTGCGATGAAGTGATGATGATACAAT-

GC-39) or T10D-3 (59-CCTTCTTCTTCTATCGATGAAGT-

GATGATGATACAATGC-39) were used as 59 and 39 primers,

respectively. To construct D3H-GFP, 3H-.3A-GFP, 3H-.3E-

GFP, 3H-.3F-GFP and 3H-.3K-GFP mutants, D3H-5 (59-

CCGGAATTCGCCACCATGGCATTGTATTTCATCACAA-

GAAGAAGAAGGCGTCCC-39) or 3H-.3A-5 (59-CCGGAAT-

TCGCCACCATGGCATTGTATGCTGCAGCGTTCATCAC-

AAGAAGAAGAAGGCGTCCC-39) or 3H-.3E-5 (59-CCGGA-

ATTCGCCACCATGGCATTGTATGAGGAAGAGTTCATC-

ACAAGAAGAAGAAGGCGTCCC-39) or 3H-.3F-5 (59-CCG-

GAATTCGCCACCATGGCATTGTATTTCTTCTTCTTCA-

TCACAAGAAGAAGAAGGCGTCCC-39) or 3H-.3K-5 (59-

CCGGAATTCGCCACCATGGCATTGTATAAGAAGAAATT-

CATCACAAGAAGAAGAAGGCGT-39) and D3H-3 (59-CGC-

CTTCTTCTTCTTGTGATGAAATACAATGCCATGGTGG-

CGAATTC-39) or 3H-.3A-3 (59-CGCCTTCTTCTTCTTGT-

GATGAACGCTGCAGCATACAATGCCATGGTGGCGAA-

TTC-39) or 3H-.3E-3 (59-CGCCTTCTTCTTCTTGTGAT-

GAACTCTTCCTCATACAATGCCATGGTGGCGAATTC-

39) or 3H-.3F-3 (59-CGCCTTCTTCTTCTTGTGATGAA-

GAAGAAGAAATACAATGCCATGGTGGCGAATTC-39) or

3H-.3K-3 (59-CGCCTTCTTCTTCTTGTGATGAATTTC-
TTCTTATACAATGCCATGGTGGCGAATTC-39) were used

as 59 and 39 primers, respectively. To construct the 3H-.3K/

D4R-GFP double-mutant, site-directed mutagenesis PCR were

performed using 3H-.3K-GFP (see above) as template, and 3H-

.3K/D4R5 (59-CCGGAATTCGCCACCATGGCATTGTA-

TAAGAAGAAATTCATCACACGTCCCATGAG-39) and 3H-

.3K/D4R3 (59-CTCATGGGACGTGTGATGAATTTCTTC-

TTATACAATGCCATGGTGGCGAATTC-39) as 59 and 39 pri-

mers, respectively. All products resulting from site-directed

mutagenesis PCR were digested with Dpn I to discard methylated

DNA template before transformation in bacteria.

To amplify expression vectors, constructs were introduced in

Escherichia coli strain XL1 blue (Stratagene, Santa Clara, CA, USA)

then plasmids were purified using the QIAfilter Plasmid Midi Kit

(Qiagen, Mayence, Germany).

DNA transfection
DNA transfection in HeLa and P19 cells was performed by

electroporation as described [46] or using Nanofectin reagent

(PAA, Pasching, Austria). After 24 hours of culture, HeLa cells

were fixed then used either for direct GFP fluorescence or indirect

immunofluorescence analysis [1]. Indirect immunofluorescence

was performed with monoclonal anti-B23 antibody FC82291

(Sigma-Aldrich), anti-fibrillarin D157 human polyclonal serum (Dr

Danièle Hernandez-Verdun’ gift), rabbit serum S19 that recog-

nizes eRF1 [46] and anti-a-tubulin DM1A monoclonal antibody

(Sigma-Aldrich).

Widefield microscopy
The different slides were observed using an upright BX41

Olympus microscope with 60X (1.25 N.A.) UPlan F1 APO

objective. The DAPI was visualized with the DAPI/Hoechst/

AMCA filter cube (Exc. 325-375, dic. 400, em. 435–485; Chroma

Technology Corporation, Bellows Falls, VT, USA), the GFP or

Alexa 488 fluorescence were detected with FITC filter cube (Exc.

465–495, dic. 505, em. 515–555; Chroma Technology Corpora-

tion, Bellows Falls, VT, USA), the Alexa 568 fluorescence was

detected with mcherry filter cube (Exc. 530–560, dic. 570, em.

572–648; Chroma Technology Corporation, Bellows Falls, VT,

USA) and the filter cube Y5 (exc. 630–650, dic. 660, em. 665–695;

Chroma Technology Corporation, Bellows Falls, VT, USA) was

used for visualization of Alexa 660. The different images were

acquired using the CoolSnap Cf CCD camera (Photometrics,

Roper Scientific, Tucson, AZ, USA) driven by Metamorph

software (Molecular Devices, Sunnyvale, CA, USA).

Confocal microscopy
The cells were imaged using confocal laser scanning microscopy

(Leica SP2 or Leica SP5 system, Leica Microsystems, Heidelberg,

Germany) using a HCX PL APO CS 63.0X 1.4NA oil UV

objective. DAPI, GFP or Alexa 488, Alexa 568 and Alexa 660

were excited sequentially with 405, 488, 561 and 633 nm laser

lines, respectively and the fluorescence were selected between 415–

460, 500–535, 550–620 and 640–735 nm, respectively. The

overlay images were done with ImageJ software.

Photobleaching and live cell microscopy
24 hours after transfection, pre-warmed culture medium

without phenol red and supplemented with fetal calf serum

(10%, v/v) and Hepes (2 mmol.L21 pH 8.0) was added to HeLa

cells. Coverslips were mounted in a Ludin chamber (Life Imaging

Service, Basel, Switzerland) and cells were imaged with a Leica

TCS-SP5 confocal laser scanning microscope (Leica, Solms,

Germany) with a 63X 1.4NA oil UV objective. During

experiments, cells were kept at 37uC using air conditioning

chamber (Life Imaging Service). The regions of interest (ROI)

were bleached with the 488 nm laser at full power whereas

imaging acquisitions were done at 4% of laser full power. Images

were collected in 5126512 format using the Leica LAS-AF

software every two seconds during 40 seconds before, immediately

after and at two seconds intervals after nucleolar bleaching for 240

seconds.

Quantification of relative fluorescence intensity
Fluorescence intensity was measured using Image J 1.4g

software. For FRAP experiments, the average intensity in the
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ROI before bleaching, immediately after bleaching and post-

bleaching was measured. Fluorescence intensity of the nucleus was

also measured. Background fluorescence was measured in a field

outside the cell and subtracted from the nucleolar and nuclear

fluorescence values. The normalized fluorescence intensity (FI) was

calculated as follows: FI = (INOt/INt)/(INO0/IN0), where INOt

corresponds to the average fluorescence intensity of the photo-

bleached nucleolus at various time points after photobleaching,

INt to the average fluorescence intensity of the entire nucleus at

the corresponding time point, INO0 to the average fluorescence

intensity of the photobleached nucleolus before photobleaching

and IN0 to the average fluorescence intensity of the entire nucleus

before photobleaching.

Non-linear curve fitting of the recovery data was carried out

with Microsoft Excel using the ‘‘Solver’’ macro. The fluorescence

recovery was plotted against time and t1/2 recovery was calculated

using the following equations depending whether the diffusion

corresponds to mono- or biexponential type: F(t) = ((Finf 2F0).

(12e(2t/t1/2)) +F0) or F(t) = ((Finf2F0). (((12A). e(2t/t1/2,1)) 2

((12A). e(2t/t1/2,2))) +F0) where F0 corresponds to the intensity

value immediately after bleaching, Finf to the intensity value at the

end of the experiment, t to the time point and A to one recovery

fraction. All parameters were determined from the fitting of each

mean curve. The total mobile and the total immobile fractions

were calculated on the fitted mean curves as described [47]. The

total mobile fraction (MF) is given by (Finf2F0) / (12F0) and the

immobile fraction (IF) by 12MF.
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