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Abstract. An additive group action on an affine 3-space over a complex Dedekind domain A is said to be twin-
triangular if it is generated by a locally nilpotent derivation of A[y, z1, z2] of the form r∂y + p1(y)∂z1

+ p2(y)∂z2
,

where r ∈ A and p1, p2 ∈ A[y]. We show that these actions are translations if and only if they are proper. Our
approach avoids the computation of rings of invariants and focuses more on the nature of geometric quotients for such
actions.

Introduction

In 1968, Rentschler [16] established in a pioneering work that every algebraic action of the additive group Ga = Ga,C

on the complex affine space A
2 is triangular in a suitable polynomial coordinate system. Consequently, every set-

theoretically free Ga-action is a translation, in the sense that A2 is equivariantly isomorphic to A
1×A

1 where Ga acts by
translations on the second factor. An example due to Bass [2] in 1984 shows that in higher dimensions, Ga-actions are no
longer triangulable in general, and Winkelmann [19] constructed in 1990 a set-theoretically free Ga-action on A

4 which
is not a translation. The question about set-theoretically free Ga-actions on A

3 was eventually settled affirmatively first
by Deveney and the second author [5] in 1994 under the additional assumption that the action is proper and then in
general by Kaliman [14] in 2004.

For proper actions, the argument turns out to be much simpler than the general one, the crucial fact being that
combined with the flatness of the algebraic quotient morphism π : A

3 → A
3//Ga = Spec(Γ(A3,OA3)Ga) which is

obtained from dimension considerations, properness implies that the action is locally trivial in the Zariski topology, i.e.
that A

3 is covered by invariant Zariski affine open subsets of the from Vi = Ui × A
1 on which Ga acts by translations

on the second factor. The factoriality of A
3 implies in turn that a geometric quotient A

3/Ga exists as a quasi-affine
open subset of A3//Ga ≃ A

2 with at most finite complement, and the equality A
3/Ga = A

3//Ga ultimately follows by
comparing Euler characteristics.

Local triviality in the Zariski topology is actually a built-in property of proper Ga-actions on smooth algebraic varieties
of dimension less than four. Indeed, recall that an action µ : Ga ×X → X on an algebraic variety X is said to be proper
if the morphism µ×pr2 : Ga×X → X×X is proper, in this context in fact a closed immersion since Ga has no nontrivial
algebraic subgroup. Being in particular set-theoretically free, such an action is then locally trivial in the étale topology,
i.e., there exists an étale covering U ×Ga → X of X which is equivariant for the action of Ga on U ×Ga by translations
on the second factor. This implies that a geometric quotient exists in the category of algebraic spaces in the form of
an étale locally trivial Ga-bundle ρ : X → X/Ga over a certain algebraic space X/Ga, the properness of µ being then
equivalent to the separatedness of X/Ga (see e.g. [15]). Now if X is smooth of dimension at most three, then X/Ga

is a smooth separated algebraic space of dimension at most two whence a quasi-projective variety by virtue of Chow’s
Lemma. Since Ga is a special group, the Ga-bundle ρ : X → X/Ga is then in fact locally trivial in the Zariski topology
on X/Ga which yields the Zariski local triviality of the Ga-action on X.

For Ga-actions on higher dimensional affine spaces, properness fails in general to imply Zariski local triviality and
Zariski local triviality is no longer sufficient to guarantee that a proper Ga-action is a translation. In particular, starting
from dimension 5, there exists proper triangular Ga-actions which are not Zariski locally trivial [6] and proper triangular,
Zariski locally trivial actions with strictly quasi-affine geometric quotients [19]. But the question whether a proper Ga-
action on A

4 is a translation or at least Zariski locally trivial remains open and very little progress has been made in
the study of these actions during the last decade. The only existing partial results so far concern triangular Ga-actions
: Deveney, van Rossum and the second author [9] established in 2004 that a Zariski locally trivial triangular Ga-action
on A

4 is in fact a translation. The proof depends on the very particular structure of the ring of invariants for such
actions and hence cannot be adapted to more general actions. The second positive result concerns a special type of
triangular Ga-actions called twin-triangular, corresponding to locally nilpotent derivations of C[x, y, z1, z2] of the form
∂ = r(x)∂y + p1(x, y)∂z1 + p2(x, y)∂z2 where r(x) ∈ C [x] and p1(x, y), p2(x, y) ∈ C[x, y]. It was established by Deveney
and the second author [7] that a proper twin-triangular Ga-action corresponding to a derivation for which the polynomial
r(x) has simple roots is a translation. This was accomplished by explicitly computing the invariant ring C[x, y, z1, z2]

Ga

and investigating the structure of the algebraic quotient morphism A
4 → A

4//Ga = Spec(C[x, y, z1, z2]
Ga). While a

result of Daigle and Freudenburg [4] gives finite generation of C[x, y, z1, z2]Ga for arbitrary triangular Ga-actions, there
is no a priori bound on the number of its generators, and the simplicity of the roots of r(x) was crucial to achieve the
computation of these rings.

Here we consider the more general case of twin-triangular actions of Ga = Ga,X = Ga,C ×Spec(C) X on an affine
space A

3
X over the spectrum X of a complex Dedekind domain A. Removing in particular the condition on simplicity

of the roots of r, we show that a proper Ga-action on A
3
X generated by an A-derivation of A[y, z1, z2] of the form

∂ = r∂y + p1(y)∂z1 + p2(y)∂z2 , r ∈ A, p1, p2 ∈ A[y] is a translation, i.e. the geometric quotient A
3
X/Ga is X-isomorphic
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to A
2
X and A

3
X is equivariantly isomorphic to A

3
X/Ga ×X Ga where Ga acts by translations on the second factor. Even

though finite generation of the rings of invariant for triangular A-derivations of A[y, z1, z2] holds in this more general
setting thanks to the aforementioned result of Daigle and Freudenburg, our approach avoids the computation of these
rings and focuses more on the nature of the geometric quotients A

3
X/Ga. As noted before, these quotients a priori exist

only as separated algebraic spaces and the crucial step is to show that for the actions under consideration they are
in fact schemes, or, equivalently that proper twin-triangular Ga-actions on A

3
X are not only locally trivial in the étale

topology but also in the Zariski topology. Indeed, if so then a straightforward generalization of the aforementioned result
of Deveney, van Rossum and the second author shows that such Zariski locally trivial triangular Ga-actions are in fact
translations.

To explain the main idea of our proof, let us assume for simplicity that A = C [x](x) and consider a triangular A-
derivation ∂ = xn∂y + p1(y)∂z1 + p2(y, z1)∂z2 of A[y, z1, z2] generating a proper action on A

3
X that we denote by Ga,∂ .

Being triangular, the action of Ga,∂ commutes with that Ga,∂z2
defined by the partial derivative ∂z2 and descends to

an action on A
2
X = Spec(A[y, z1]) ≃ A

3
X/Ga,∂z2

corresponding with that generated by the derivation xn∂y + p1(y)∂z1 .
Similarly, the action of Ga,∂z2

on A
3
X descends to the geometric quotient A3

X/Ga,∂ . These induced actions are in general
no longer set-theoretically free but if we take the quotient of A2

X by Ga,∂ as an algebraic stack [A2
X/Ga,∂ ] we obtain a

cartesian square

A
3
X

pry,z1

��

// A
3
X/Ga,∂

��

A
2
X

// [A2
X/Ga,∂ ]

which identifies [A2
X/Ga,∂ ] with the algebraic stack quotient [(A3

X/Ga,∂)/Ga,∂z2
]. In this setting, the Zariski local triviality

of a proper triangular Ga-action on A
3
X becomes equivalent to the statement that a separated algebraic X-space V

admitting a Ga-action with algebraic stack quotient [V/Ga] isomorphic to that of a triangular Ga-action on A
2
X is in fact

a scheme. While a direct proof (or disproof) of this equivalent characterization seems totally out of reach with existing
methods, we establish that it holds at least over suitable Ga,∂-invariant principal open subsets U1 of A2

X = Spec(A[y, z1])
faithfully flat over X and whose algebraic stack quotients [U1/Ga,∂ ] are in fact represented by locally separated algebraic
spaces U1/Ga,∂ . So this provides at least a Ga,∂-invariant principal open subset V1 = pr−1

x,z1
(U1) ≃ U1 × Spec(C[z2]) of

A
3
X , faithfully flat over X, and for which the Zariski open sub-space V1/Ga,∂ of A3

X/Ga,∂ is a scheme.
This is where twin-triangularity enters the argument: indeed for such actions the symmetry between the variables z1

and z2 enables the same construction with respect to the other projection pry,z2 : A3
X → A

2
X = Spec(A[y, z2]) providing a

second Zariski open sub-scheme V2/Ga,∂ of A3
X/Ga,∂ faithfully flat over X. Since the action of Ga,∂ is by definition equiv-

ariantly trivial over the complement of the closed point 0 of X, its local triviality in the Zariski topology follows provided
that the invariant affine open subsets V1 and V2 can be chosen so that their union covers the closed fiber of prX : A3

X → X.

With this general strategy in mind, the scheme of the proof is fairly streamlined. In the first section, we describe
algebraic spaces that arise as geometric quotients of certain affine open subsets U of an affine plane A

2
X over a Dedekind

domain equipped with a triangular Ga-action. Then we establish the crucial property that for such affine open subsets
U , a proper lift to U × A

1 of the induced Ga-action on U is equivariantly trivial with affine geometric quotient. This
criterion is applied in the second section to deduce that proper twin-triangular Ga-actions on an affine 3-space A

3
X over

a complex Dedekind domain are locally trivial in the Zariski topology.

1. Preliminaries on triangular Ga-actions on an affine plane over a Dedekind domain

This section is devoted to the study of certain algebraic spaces that arise as geometric quotients for triangular Ga-
actions on suitably chosen invariant open subsets in A

2
X .

1.0.1. As a motivation for what follows, consider a Ga-action on A
3 = A

1 × A
2 = Spec(C[x][y, z]) generated by a

triangular derivation ∂ = xn∂y + p(y)∂z of C[x, y, z], where n ≥ 1 and where p(y) ∈ C[y] is a non constant polynomial.
Letting P (y) ∈ C[y] be an integral of p, the polynomials x and t = −xnz + P (y) generate the algebra of invariants
C[x, y, z]Ga = Ker∂. Corresponding to the fact that y/xn is a slice for ∂ on the principal invariant open subset {x 6= 0}
of A3, the quotient morphism q : A3 → A

3//Ga = Spec (C [x] [t]) restricts to a trivial principal Ga-bundle over the open
subset {x 6= 0} of A

3//Ga. In contrast, the set-theoretic fiber of q over a point (0, t0) ∈ A
3//Ga consists of a disjoint

union of affine lines in bijection with the roots of P (y) − t0, each simple root corresponding in particular to an orbit
of the action. Thus A

3//Ga is in general far from being even a set-theoretic orbit space for the action. However, the
observation that the inverse image by q of the line L0 = {x = 0} ⊂ A

3//Ga is equivariantly isomorphic to the product
L1 × A

1 = Spec(C[y][z]) on which Ga acts via the twisted translation generated by the derivation p(y)∂z of C[y, z]
suggests that a better geometric object approximating an orbit space for the action should be obtained from A

3//Ga by
replacing the line L0 by L1 , considered as total space of the finite cover h0 : L1 → L0, y 7→ t = P (y).

On the other hand, on every invariant open subset V of A3 on which the action restricts to a set-theoretically free
Ga-action, a geometric quotient ρ : V → V/Ga exists in the form an étale locally trivial Ga-bundle over an algebraic space
V/Ga. By definition of ∂, the fixed points of the Ga-action are supported on the disjoint union of lines {x = p(y) = 0}.
Therefore, letting C0 ⊂ L0 = Spec(C[t]) be the complement of the branch locus of h0 and considering A

1 × C0 as an
open subset of A3//Ga, a geometric quotient exists on the open subset V = q−1(A1 ×C0) of A3. In view of the previous
discussion, the algebraic quotient morphism q |V : V → V//Ga ≃ A

1 × C0 ⊂ A
3//Ga should thus factor through a

Ga-bundle ρ : V → V/Ga over an algebraic space V/Ga obtained from A
1 ×C0 by replacing the curve {0}×C0 ≃ C0 by

the finite étale cover h0 : C1 = h−1
0 (C0) → C0 of itself.

In what follows, to give precise sense to the above intuitive interpretation, we review the construction of a particular
type of algebraic space S obtained from a surface by “replacing a curve by a finite étale cover of itself” and we check
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that these spaces do indeed arise as geometric quotients for Ga-actions on certain affine threefolds. Then, conversely, we
characterize effectively which étale locally trivial Ga-bundles ρ : V → S over such spaces have an affine total space.

1.1. Algebraic space surfaces with an irreducible r-fold curve.

Given a smooth affine curve X = Spec(A), a closed point o ∈ X and a finite étale morphism h0 : C1 = Spec(R1) → C0 =
Spec(R0) between smooth connected affine curves, our aim is to construct an algebraic space S = S(X, o, h0) which
looks like X ×C0 but with the special curve {o}×C0 ≃ C0 replaced by C1. To obtain such an S, one can simply define
it as the quotient of X×C1 by the étale equivalence relation (x, c1) ∼ (x′, c′1) ⇔ (x = x′ 6= 0 and h0(c1) = h0(c

′
1)). More

formally, letting X∗ = X \ {o}, this means that S = X × C1/R where

diag ⊔ j : R = X × C1 ⊔ (X × C1)×X∗×C0
(X × C1) \ Diag −→ (X × C1)× (X × C1)

is the étale equivalence relation defined by the diagonal embedding diag : X×C1 → (X×C1)× (X×C1) and the natural
immersion j : (X ×C1)×X∗×C0

(X ×C1) \Diag → (X ×C1)× (X ×C1) respectively. This equivalence relation restricts
on the invariant open subset X∗×C1 to that defined by the diagonal embedding X∗×C1 → (X∗×C1)×X∗×C0

(X∗×C1)
which has quotient X × C0. This implies that the R-invariant morphism pr1 × h0 : X × C1 → X × C0 descends to
a morphism ϕ : S → X × C0 restricting to an isomorphism over X∗ × C0. In contrast, since R induces the trivial
equivalence relation on {o} × C1 ≃ C1, one has ϕ−1({o} × C0) ≃ C1 as desired.

A disadvantage of this simple presentation of S is that the equivalence relation R is quasi-finite but not finite. To
construct an alternative presentation of S as a quotient of a suitable scheme Z by a finite étale equivalence relation, in
fact by a free action of a finite group G, we proceed as follows:

1.1.1. We let C = Spec(R) be the normalization of C0 in the Galois closure of the field extension Frac(R0) →֒ Frac(R1).
By construction, the induced morphism h : C → C0 is a torsor under the corresponding Galois group G which factors as

h : C
h1→ C1

h0→ C0 where h1 : C → C1 is a torsor under a certain subgroup H of G with index equal to the degree r of
the finite morphism h0. Now we let Z be the scheme obtained by gluing r copies Zg , g ∈ G/H , of X ×C by the identity
outside the curves {o} × C ⊂ Zg . The group G acts freely on Z by Zg ∋ (x, t) 7→ g′ · (x, t) = (x, g′ · t) ∈ Zg′·g and so
a geometric quotient ξ : Z → S = Z/G exists in the category of algebraic spaces in the form of an étale G-torsor over
an algebraic space S. The local morphisms pr1 × h : Zg ≃ X × C → X × C0, g ∈ G/H , glue to a global G-invariant
morphism ϕ : Z → X ×C0 which descends in turn to a morphism ϕ : S = Z/G → X ×C0 restricting to an isomorphism
outside {o} × C0. In contrast, ϕ−1({o} × C0) is isomorphic as a scheme over C0 to the quotient of C × (G/H) by the
diagonal action of G whence to C/H ≃ C1.

Z

C

X × C

pr1

•
o

X

S

C1

pr1 ◦ ϕ̄

•
o

X

C0

X × C0

pr1

•
o

X

ξ ϕ

ϕ̄

Figure 1.1. Construction of S as a quotient of Z by a finite group action

The fact that the algebraic spaces S = Z/G obtained by this construction coincide with the X × C1/R defined above
can be seen as follows. By construction, every open subset Zg ≃ X × C of Z, g ∈ G/H , is invariant under the induced
action of H , with quotient Zg/H ≃ X×C/H = X×C1. So the morphism X×C → S induced by restricting ξ : Z → S

to any open subset Zg ⊂ Z descends to an étale morphism X × C1 = X × C/H → S, and one checks that the étale
equivalence relation (pr1,pr2) : (X × C1) ×S (X × C1) ⇉ X × C1 is precisely isomorphic to that R ⇉ X × C1 defined
above.

Remark 1.1. Note that if h0 : C1 → C0 is a not an isomorphism then S cannot be a scheme. Indeed, otherwise the
image by ξ of a point z0 ∈ {o} × C ⊂ Zg ⊂ Z for some g ∈ G/H would have a Zariski open affine neighborhood U in
Sh0

. But then since ξ : Z → S is a finite morphism, ξ−1(U) would be a G-invariant affine open neighborhood of z0 in
Z, which is absurd as such a point does not even have a separated open neighborhood in Z.

1.2. Geometric quotients for restricted triangular Ga-actions on a relative affine plane.

Here we show that the algebraic spaces S = S(X, o, h0) described in the previous subsection naturally arise as geometric
quotients for Ga-actions on certain open subsets of affine planes over discrete valuation rings.

1.2.1. We let X = Spec(A) be the spectrum of a discrete valuation ring with uniformizing parameter x and with residue
field C. We denote by o its closed point and we let A2

X = Spec(A [y, z]). Given an irreducible triangular locally nilpotent
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A-derivation ∂ = xn∂y + p (y) ∂z of A [y, z], where p(y) ∈ A [y], we let P (y) ∈ A [y] be a integral of p (y). Since ∂ is
irreducible, p (y) is not divisible by x and so the restriction P of the morphism P : A1

X = Spec(A[y]) → A
1
X = Spec(A[t])

over the closed point of X is not constant. Its branch locus is a principal divisor div (α) for a certain α ∈ C [t] and we let
C∂ = Spec(R0), where R0 = C [t]α, be its complement. The polynomial −xnz + P (y) ∈ A [y, z] defines a Ga-invariant
X-morphism f : A2

X = Spec(A [y, z]) → Spec (A [t]), smooth over X × C∂ , and such that the induced Ga-action on
V∂ = f−1 (X × C∂) ⊂ A

2
X is set-theoretically free. Thus a geometric quotient exists in the category of algebraic spaces

in the form of an étale locally trivial Ga-bundle ρ : V∂ → V∂/Ga. Clearly, the curve C1 = Spec(R0 [y] / (P (0, y)− t)) is
smooth and irreducible, and the induced morphism h0 : C1 → C∂ is finite and étale. With the notation of § 1.1.1 above,
we have the following result:

Proposition 1.2. The algebraic space quotient V∂/Ga is isomorphic to S(X, o, h0).

Proof. Again, we let h : C = Spec(R) → C∂ be the Galois closure of the finite étale morphism h0 : C1 → C∂ . By
construction, the polynomial P (y)− t ∈ R [y] splits as P (y)− t =

∏

g∈G/H(y− tg) for certain elements tg ∈ R, g ∈ G/H ,
on which the Galois group G acts by permutation. Furthermore, since h0 : C1 → C∂ is étale, it follows that for distinct
g, g′ ∈ G/H , one has tg(c) 6= tg′(c) for every point c ∈ C. Now a similar argument as in the proof of Theorem 3.2 in [12]
implies that there exists a collection of elements σg ∈ A⊗CR with respective residue classes tg ∈ R modulo x, g ∈ G/H ,
on which G acts by permutation, a polynomial S1 ∈ A⊗C R [y] with invertible residue class modulo x and a polynomial
S2 ∈ A⊗C R [y] such that in A⊗C R [y] one can write

P (y)− t = S1(y)
∏

g∈G/H

(y − σg) + xnS2(y).

This implies that W = V∂ ×C∂
C ≃ Spec (A⊗C R [y, z] /(xnz − P (y) + t) is isomorphic to the sub-variety of C × A

2
X

defined by the equation xnz = P̃ (y) = S1(y)
∏

g∈G/H(y − σg). Furthermore, the Ga-action of V∂ lifts to the set-
theoretically free Ga-action on W commuting with that of G associated with the locally nilpotent A ⊗C R-derivation
xn∂y + ∂y(P̃ (y))∂z. Then a standard argument (see e.g. loc. cit. or [11]) shows that the Ga-invariant morphism
prX,C : W → X × C factors through a G-equivariant Ga-bundle η : W → Z over the scheme Z as in § 1.1.1 above with
local trivializations W |Zg≃ Zg × Spec(C[ug ]), where ug = x−n(y − σg), g ∈ G/H , and transition isomorphisms over
Zg ∩ Zg′ ≃ Spec(Ax ⊗C R) of the form ug 7→ ug′ = ug + x−n(σg − σg′) for every pair of distinct elements g, g′ ∈ G/H .
By construction, we have a cartesian square

W //

η

��

V∂ ≃ V/G

ρ

��

Z // S = Z/G,

where the horizontal arrows are G-torsors and the vertical ones are Ga-bundles, which provides, by virtue of the universal
property of categorical quotients, an isomorphism of algebraic spaces V∂/Ga ≃ S = S(X, o, h0). �

1.3. Criteria for affineness.

Even though Proposition 1.2 shows in particular that algebraic spaces of the form S = S(X, o, h0) may arise as geometric
quotient for Ga-actions on affine schemes, the total space of an étale locally trivial Ga-bundle ρ : V → S is in general
neither a scheme nor even a separated algebraic space. However it is possible to characterize effectively which Ga-bundles
ρ : V → S have affine total space.

1.3.1. Indeed, with the notation of § 1.1.1 above, since X × C0 is affine, the affineness of V is equivalent to that of
the morphism ϕ ◦ ρ : V → X × C0. Furthermore, since ρ : V → S is an affine morphism and ϕ : S → X × C0 is an
isomorphism outside the curve {o}×C0, it is enough to consider the case that X = Spec (A) is the spectrum of a discrete
valuation ring with closed point o and uniformizing parameter x. Every Ga-bundle ρ : V → S pulls-back via the Galois
cover ξ : Z → S = Z/G to a G-equivariant Ga-bundle η = pr2 : W = V ×S Z → Z. By construction of Z, the latter
becomes trivial on the canonical covering U of Z by the affine open subsets Zg ≃ X×C, g ∈ G/H , whence is determined
up to isomorphism by a G-equivariant Čech 1-cocyle

{fgg′} ∈ C1(U ,OZ) ≃
⊕

g,g′∈G/H,g 6=g′

Ax ⊗C R.

With this notation, we have the following criterion:

Theorem 1.3. For a Ga-bundle ρ : V → S, the following are equivalent:
a) V is a separated algebraic space,

b) For every every pair of distinct elements g, g′ ∈ G/H, there exists an element f̃gg′ ∈ A⊗CR with invertible residue

class modulo x such that fgg′ = x−lf̃gg′ for a certain l > 1.
c) V is an affine scheme.

Proof. By virtue of [10, Proposition 10.1.2 and Lemma 10.1.3 ], b) is equivalent to the separatedness of the total space
of the Ga-bundle η : W → Z and this property is also equivalent to the affineness of W thanks to the generalization of
the so-called Fieseler criterion for affineness [13] established in [10, Theorem 10.2.1]. Now if V is a separated algebraic
space then so is W = V ×S Z as the projection pr1 : W → V is a G-torsor whence a proper morphism. Thus W is in
fact an affine scheme and so V ≃W/G ≃ Spec(Γ(W,OW )G) is an affine scheme as well. �

1.3.2. Given a Ga-bundle ρ : V → S with affine total space V , we have a one-to-one correspondence between Ga-bundles
over S and lifts of the Ga-action on V to V × A

1. Indeed, if ρ′ : V ′ → S is another Ga-bundle then the fiber product
V ′ ×S V is a Ga-bundle over V via the second projection, whence is isomorphic to the trivial one V × A

1 on which Ga

acts by translation on the second factor. Via this isomorphism, the natural lift to V ′×S V of the Ga-action on V defined
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by t · (v′, v) = (v′, t · v) coincides with a lift of it to V × A
1 with geometric quotient V × A

1/Ga ≃ V ′. Conversely, since
every lift to V × A

1 of the Ga-action on V commutes with that by translations on the second factor, the equivariant
projection pr1 : V × A

1 → V descends to a Ga-bundle ρ′ : V ′ = V × A
1/Ga → S = V/Ga fitting into a cartesian square

V × A
1

pr1

��

// V ′ = V × A
1/Ga

ρ′

��

V
ρ

// S = V/Ga

of Ga-bundles. In this diagram the horizontal arrows correspond to the Ga-actions on V and its lift to V × A
1 while

the vertical ones correspond to the actions on V × A
1 by translations on the second factor and the one it induces on

V × A
1/Ga. Combined with Theorem 1.3, this correspondence leads to the following criterion:

Corollary 1.4. Let ρ : V → S be a Ga-bundle with affine total space over an algebraic space S as in § 1.1.1. Then the
total space of a Ga-bundle ρ′ : V ′ → S is an affine scheme if and only if the corresponding lifted Ga-action on V × A

1

is proper.

Proof. Since properness of the lifted Ga-action on V × A
1 is equivalent to the separatedness of the algebraic space

V ′ ≃ V × A
1/Ga, the assertion is a direct consequence of Theorem 1.3 above. �

2. Twin triangular Ga-actions of affine 3-spaces over Dedekind domains

In what follows, we let X be the spectrum of a Dedekind domain A over C, and we let A
3
X be the spectrum of the

polynomial ring A[y, z1, z2] in three variables over A. Algebraic actions of Ga,X = Ga×Spec(C)X on A
3
X are in one-to-one

correspondence with locally nilpotent A-derivations of A[y, z1, z2]. Such an action is called triangular if the corresponding
derivation can be written as ∂ = r∂y + p1(y)∂z1 + p2(x, y)∂z2 for some r ∈ A, p1 ∈ A[y] and p2 ∈ A[y, z1]. A triangular
Ga,X -action on A

3
X is said to be twin-triangular if the corresponding p2 belongs to the sub-ring A[y] of A[y, z1].

2.1. Proper twin-triangular Ga-actions are translations.

This sub-section is devoted to the proof of the following result:

Theorem 2.1. A proper twin-triangular Ga,X-action on A
3
X is a translation, i.e., A3

X/Ga,X is X-isomorphic to A
2
X and

A
3
X is equivariantly isomorphic to A

3
X/Ga ×X Ga,X where Ga,X acts by translations on the second factor.

2.1.1. The argument of the proof given below can be decomposed in two steps : we first establish in Proposition 2.2
that any Zariski locally trivial triangular Ga,X-action on A

3
X is a translation. This reduces the problem to showing that

a proper twin-triangular Ga,X-action on A
3
X is not only equivariantly trivial in the étale topology, which always holds

for a proper whence free Ga,X -action, but also in the Zariski topology. This is done in Proposition 2.3. In the sequel,
unless otherwise specified, we implicitly work in the category of schemes over X and we denote Ga,X simply by Ga.

We begin with the following generalization of Theorem 2.1 in [9]:

Proposition 2.2. Let A be a Dedekind domain over C and let ∂ be a triangular A-derivation of A[y, z1, z2] generating
a Zariski locally trivial Ga-action on A

3
X = Spec(A [y, z1, z2]). Then the action is equivariantly trivial with quotient

isomorphic to A
2
X .

Proof. The hypotheses imply that A
3
X has the structure of Zariski locally trivial Ga-bundle over a a quasi-affine X-

scheme ψ : Y = A
3
X/Ga → X (see e.g. [8]). Furthermore, since each fiber, closed or not, of the invariant morphism

prX : A3
X → X is isomorphic to an affine 3-space equipped with an induced free triangular Ga-action, it follows from [18]

that all fibers of ψ : Y → X are isomorphic to affine planes over the corresponding residue fields. It is enough to show
that Y is an affine X-scheme. Indeed, if so, then by virtue of [17], ψ : Y → X is in fact a locally trivial A2-bundle in
the Zariski topology whence a vector bundle of rank 2 by [3]. Furthermore, the affineness of Y implies that the quotient
morphism A

3
X → Y is a trivial Ga-bundle. Thus Y × A

1 ≃ A
3
X as bundles over X and so ψ : Y → X is the trivial

bundle A
2
X over X by virtue of [1, IV 3.5]. The affineness of ψ : Y → X being a local question with respect to the

Zariski topology on X, we may reduce to the case where A is a discrete valuation ring with uniformizing parameter x
and residue field C. Since Γ(Y,OY ) ≃ A[y, z1, z2]

Ga is finitely generated by virtue of [4], it is enough to show that the
canonical morphism α : Y → Z = Spec(A[y, z1, z2]

Ga) is surjective, whence an isomorphism. If ∂y ∈ A∗ then the result
is clear. Otherwise if ∂y = 0 then the assertion follows from loc. cit. We may thus assume that ∂y ∈ xA \ {0} and then
the result follows verbatim from the argument of [9, Theorem 2.1] which shows that α is surjective over the closed point
of X. �

Now it remains to show the following:

Proposition 2.3. A proper twin-triangular Ga-action on A
3
X is locally trivial in the Zariski topology.

Proof. The question is local in the Zariski topology onX. Since the corresponding derivation ∂ = r∂y+p1(y)∂z1+p2(y)∂z2
of A[y, z1, z2] has a slice over the principal open subset Dr of X, whence is equivariantly trivial over it, we may reduce
after localizing at the finitely many maximal ideals of A containing r to the case where A is discrete valuation ring with
uniformizing parameter x and r = xn for some n ≥ 1. Then it is enough to show that the closed fiber A3

o of the projection
prX : A3

X → X is contained in a union of invariant open subsets of A3
X on which the induced actions are equivariantly

trivial. By virtue of Lemma 2.4 below, we may assume up to a coordinate change preserving twin-triangularity that the
residue classes pi ∈ C[y] of the pi’s modulo x are non constant and that the inverse images of the branch loci of the
morphisms P i : Spec (C [y]) → Spec (C [t]) defined by suitable integrals P i of pi, i = 1, 2 are disjoint. The first property
guarantees that the triangular derivations ∂i = xn∂y + pi(y)∂zi of A [y, zi], i = 1, 2, are both irreducible. Furthermore,
if we let V∂i

be the invariant open subset of A
2
X,i = Spec(A [y, zi]), i = 1, 2, equipped with Ga-action associated with
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∂i as defined in § 1.2.1 above, then the second property implies that A
3
o is contained in the union of the open subsets

pr−1
zi

(V∂i
) ≃ V∂i

×A
1, where przi : A3

X → A
2
X,i, i = 1, 2, are the natural projections. These projections being equivariant,

the Ga-action on A
3
X restricts on pr−1

zi
(V∂i

) ≃ V∂i
× A

1 to a proper lift of that on V∂i
, i = 1, 2, and so the geometric

quotients pr−1
zi

(V∂i
)/Ga, i = 1, 2, are affine schemes by virtue of Corollary 1.4. This implies in turn that the induced

actions on the open subsets pr−1
zi

(V∂i
), i = 1, 2, are equivariantly trivial and completes the proof. �

In the proof of Proposition 2.3, we exploited the following crucial technical fact concerning set-theoretically free twin-
triangular Ga-actions:

Lemma 2.4. Let A be a discrete valuation ring over C with uniformizing parameter x. A twin-triangular A-derivation
∂ of A[y, z1, z2] generating a set-theoretically free Ga-action is conjugate to a one of the form xn∂y + p1(y)∂z1 + p2(y)∂z2
with the following properties:

a) The residue classes pi ∈ C[y] of the polynomials pi ∈ A[y] modulo x, i = 1, 2, are both non zero and relatively
prime,

b) There exists integrals P i ∈ C[y] of pi, i = 1, 2, for which the inverse images of the branch loci of the morphisms

P i : A
1 → A

1, i = 1, 2, are disjoint.

Proof. A twin-triangular derivation ∂ = xn∂y + p1(y)∂z1 + p2(y)∂z2 generates a set-theoretically free Ga-action if and
only if xn, p1(y) and p2(y) generate the unit ideal in A[y, z1, z2]. So p1 and p2 are relatively prime and at least one of
them, say p2, is nonzero. If p1 = 0 then p2 is necessarily of the form p2(y) = c+ xp̃2(y) for some nonzero constant c and
so changing z1 for z1 + z2 yields a twin-triangular derivation conjugate to ∂ for which the corresponding polynomials
p1(y) and p2(y) both have non zero residue classes modulo x. More generally, changing z2 for λz2 + µz1 for general
λ ∈ C

∗ and µ ∈ C yields a twin-triangular derivation conjugate to ∂ and still satisfying condition a). So it remains to
show that up to such a coordinate change, condition b) can be achieved. This can be seen as follows : we consider A

2

embedded in P
2 = Proj(C[u, v, w]) as the complement of the line L∞ = {w = 0} so that the coordinate system (u, v) on

A
2 is induced by the rational projections from the points [0 : 1 : 0] and [1 : 0 : 0] respectively. We let C be the closure in

P
2 of the image of the immersion j : A1 = Spec(C[y]) → A

2 defined by integrals P 1 and P 2 of p̄1 and p̄2, and we denote
by a1, . . . , ar ∈ C the images by j of the points in the inverse image of the branch locus of P 1 : A1 → A

1. Since the
condition that a line through a fixed point in P

2 intersects transversally a fixed curve is Zariski open, the set of lines in P
2

passing through a point ai and tangent to a local analytic branch of C at some point is finite. Therefore, the complement
of the finitely many intersection points of these lines with L∞ is a Zariski open subset U of L∞ with the property that
for every q ∈ U , the line through q and ai, i = 1, . . . , r, intersects every local analytic branch of C transversally at every
point. By construction, the rational projections from [0 : 1 : 0] and an arbitrary point in U \ {[0 : 1 : 0]} induce a new
coordinate system on A

2 of the form (u, λv + µu), λ 6= 0, with the property that none of the ai, i = 1, . . . , r, is contained
in the inverse image of the branch locus of the morphism λP 2 + µP 1 : A1 → A

1. Hence changing z2 for λz2 + µz1
for a pair (λ, µ) corresponding to a general point in U yields a twin-triangular derivation conjugate to ∂ and satisfying
simultaneously conditions a) and b). �

2.2. Complement : a criterion for properness of twin-triangular Ga-actions.

In contrast with the set-theoretic freeness of a Ga-action on an affine variety, which can be easily decided in terms of the
corresponding locally nilpotent derivation ∂ of its coordinate ring, it is difficult in general to give effective conditions on
∂ which would guarantee that the action is proper. However, for twin-triangular derivations, we derive below from our
previous descriptions a criterion that can be checked algorithmically.

2.2.1. For a set-theoretically free twin-triangular Ga-action on the affine space A
3
X = Spec(A[y, z1, z2]) over a Dedekind

domain A, properness is equivalent to the separatedness of the algebraic space quotient Y = A
3
X/Ga. Since X is affine,

the separatedness of Y is equivalent to that of the morphism θ : Y = A
3
X/Ga → X induced by the invariant projection

prX : A3
X → X. The question being local in the Zariski topology on X, we may reduce again to the case where A is a

discrete valuation ring with uniformizing parameter x.
We may further assume that the corresponding twin-triangular A-derivation ∂ = xn∂y + p1(y)∂z1 + p2(y)∂z2 of

A[y, z1, z2] satisfies the hypotheses of Lemma 2.4. If n = 0, then ∂ generates an equivariantly trivial whence proper
Ga-action with y as an obvious global slice. So we may assume from now on that n ≥ 1. Our assumptions guarantee
that similarly to § 1.2.1 above, an integral Pi ∈ A[y] of pi defines a morphism Pi : A1

X → A
1
X = Spec(A[t]) whose

restriction P i over the closed point of X is non constant. Passing to the Galois closure Ci = Spec(Ri) of the finite étale
morphism obtained by restricting P i over the complement C0,i ⊂ Spec(C[t]) of its branch locus enables as in the proof
of Proposition 1.2 the expression of Pi(y)− t ∈ A⊗C Ri [y] as

(2.1) Pi(y)− t = S1,i(y)
∏

g∈Gi/Hi

(y − σg,i) + xnS2,i(y)

for suitable elements σg,i ∈ A ⊗C Ri, g ∈ Gi/Hi and polynomials S1,i, S2,i ∈ A ⊗C Ri [y]. Then we have the following
criterion:

Proposition 2.5. With the assumption and notation above, the following are equivalent:
a) ∂ generates a proper Ga-action on A

3
X ,

b) For every i 6= j in {1, 2} and every pair of distinct elements g, g′ ∈ Gi/Hi, Pj(σg,i) − Pj(σg′,i) ∈ A⊗C Ri can be

written as xn−kf̃ij,gg′ where 1 ≤ k ≤ n and where f̃ij,gg′ ∈ A⊗C Ri has invertible residue class modulo x.

Proof. The hypothesis on ∂ guarantees that the A-derivations ∂i = xn∂y + pi(y)∂zi of A[y, zi] are both irreducible.
Letting V∂i

be the invariant open subset of A2
X = Spec(A[y, zi]) associated to ∂i as defined in § 1.2.1, it follows from the

construction given in the proof of Proposition 1.2 that Wi = V∂i
×C0,i Ci is the total space of a Ga-bundle ηi :Wi → Zi

over an appropriate scheme Zi. The Ga-action on V∂i
× Spec(C[zj ]) ⊂ A

3
X , j 6= i, induced by the restriction of ∂ lifts

to one on Wi × A
1 commuting with that by translations on the second factor and so the quotient W ′

i = Wi × A
1/Ga
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has the structure of a Ga-bundle η′i : W ′
i → Zi over Zi. Since ∂ satisfies the conditions of Lemma 2.4, it follows

from Corollary 1.4 and the proof of Proposition 2.3 that the properness of ∂ is equivalent to the separatedness of the
schemes W ′

i , i = 1, 2. So it is enough to show that in our case condition b) above is equivalent to that in Theorem 1.3.
We only give the argument for W ′

1, the case of W ′
2 being similar. With the notation of the proof of Proposition 1.2,

η1 : W1 → Z = Z1 is the Ga-bundle with local trivializations W1 |Zg≃ Zg × Spec(C[ug ]), where ug = x−n(y − σg,1),
g ∈ G1/H1, and transition isomorphism over Zg ∩Zg′ ≃ Spec(Ax ⊗C R1) given by ug 7→ ug′ = ug + x−n(σg,1 − σg′,1) for
every pair of distinct elements g, g′ ∈ G1/H1. The lift to W1 × A

1of the induced Ga-action on V∂1
× Spec(C[z2]) ⊂ A

3
X

coincides with the one defined locally on the open covering {W1 |Zg≃ Zg×A
1, g ∈ G1/H1} of W1×A

1 by the derivations
∂g = ∂ug + ϕ2(u2)∂z2 of A ⊗C R1[ug , z2] where ϕ2(ug) = p2(x

nug + σg,1), g ∈ G1/H1. Letting Φ2(t) ∈ A ⊗C R1 [t] be
an integral of ϕ2(t) ∈ A ⊗C R1 [t], a direct computation of invariants shows that η′1 : W ′

1 = W1 × A
1/Ga → Z is the

Ga-bundle with local trivializations W ′
1 |Zg≃ Zg × Spec(C[vg ]) where vg = z2 − Φ2(ug), g ∈ G1/H1, and transition

isomorphisms
vg 7→ vg′ = vg + Φ2(ug)− Φ2(ug′) = vg + x−n(P2(σg,1)− P2(σg′,1)).

So condition b) above for i = 1 and j = 2 is precisely equivalent to that of Theorem 1.3. �

Remark 2.6. With the notation of § 2.2.1, for every regular value λi of P i : A
1 → A

1, the expression 2.1 specializes to
one of the form

Pi(y)− λi = S1,i(y)
∏

g∈Gi/Hi

(y − σg,i) + xnS2,i(y)

for elements σg,i ∈ A, g ∈ Gi/Hi, reducing modulo x to the distinct roots of P i(y) − λi ∈ C[y], and polynomials
S1,i, S2,i ∈ A [y]. One checks that condition b) in Proposition 2.5 can be equivalently rephrased in this context as the
fact that for every i 6= j in {1, 2}, every regular value λi of P i, and every pair of distinct elements g, g′ ∈ Gi/Hi,
Pj(σg,i) − Pj(σg′,i) ∈ A \ xnA. This alternative form enables to quickly decide that certain twin-triangular derivations
give rise to improper Ga-actions. For instance, consider the family of derivations Dn = x∂y+2y∂z1 +(1 + yn) ∂z2 , n ≥ 1,
of C [x](x) [y, z1, z2]. If n = 2m, one has P1 = y2 and P2 = y

(

y2m + 2m+ 1
)

/(2m+1). At the regular value 0 of P 2, the
2m nonzero roots of P2 come in pairs ±αk ∈ C

∗, k = 1, . . . ,m, and so P1(αk)−P1(−αk) = 0 for every k. It follows that
the corresponding action is improper. In contrast, if n is odd then the criterion is satisfied at the regular value 0 of P 2.
Actually, for all odd n, it was established in [7] by different methods that the corresponding Ga-action is a translation.

For a triangular derivation ∂ = xn∂y + p1(y)∂z1 + p2(y, z1)∂z2 of A[y, z1, z2] generating a set-theoretically free Ga-
action and such that the induced derivation xn∂y + p1(y)∂z1 of A[y, z1] is irreducible, on can still deduce from Theorem
1.3 a more general version of the above criterion which is again a necessary condition for properness. While more
cumbersome than the twin-triangular case, the criterion can be used to construct improper actions and has potential to
study arbitrary proper triangular actions.
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