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Abstract— The Mojette transform is a tomographic reconstruction
method based on a discrete and finite interpretation of the Radon theorem.
Since the Mojette acquisition follows the discrete image geometry, this
method resolves the well-known irregular sampling problem. A specific
algorithm called Corner Based Inversion (CBI) is proposed to reconstruct
without any error an image from its projections even if the angular
coverage is not sufficient (missing wedge). However, this reconstruction
is noise sensitive and reconstruction from corrupted data fails. In this
paper, we develop new noise robust CBI algorithms and we apply them
both on discrete Mojette acquisitions and on usual Radon acquisitions.
Reconstruction results are discussed to highlight the efficiency of these
algorithms for usual tomography and perspectives are proposed to reduce
the missing wedge effect.

Keywords-Mojette transform, Corner Based Inversion, noisy projections,
missing wedge effect.

1 Introduction

X-Rays form an electromagnetic wave which has a wavelength
much shorter than visible light. This property allows it to go
through matter. In this process, the X-Ray beam undergoes an
attenuation proportional to the density of the traversed matter. It is
the basic principle for X-Ray radiography. In medical or industrial
CT scanner, a 2D slice of the imaged object is acquired by casting
X-Rays following several angles around the object. For each angle,
the attenuation of the X-Ray beam is measured leading to a 1D
projection of the object. The 2D slice is then reconstructed from
a set of projections [10] using the Radon theorem [12]. The main
drawback of this method is that the Radon theorem is defined in
the continuous domain whereas images are in the discrete domain.
The continuous-to-discrete mapping leads to appromixations or
deformations, especially when a set of successive projections is
not available (i.e. missing wedge effect [2]).

Different approaches can be followed to overcome these problems
or to reduce their effects. The first one is to try to improve
reconstructed image quality by filtering in the frequency domain
or by reconstructing with multiscale and/or iterative methods.
The second one is to directly implement discrete reconstructions
because they are not sensitive to the missing wedge effect.

In this article, we first introduce the Radon theorem and the discrete
Mojette Transform [6]. Second, the Corner Based Inversion (CBI)
is defined as an efficient and exact reconstruction. It is not sensitive
to the missing wedge effect but noise sensitivity is the main
limitation of this inversion.

Consequently, we develop and optimize new CBI algorithms to
attenuate the noise effect and to reconstruct an image from noisy
Mojette projections. Afterwards, a reconstruction from a Spline
Mojette acquisition is proposed. The results are discussed and
compared with other usual Mojette reconstructions (which are not
noise sensitive but also not robust to the missing wedge). Then,
we explain how Spline Mojette is equivalent to a specific discrete

Radon transform and we detail how the overall proposed algorithms
can be used in usual tomography. Finally, a preliminary study to
reduce the missing wedge effect by using the new methods is
investigated.

2 Material and Methods
2.1 Radon Transform

The Radon transform R maps a 2D function f into a 1D
projection for a given angle # and a module p [12], [18]. This
transform is defined by :

Re(p):/oo /00 f(z,9)0(p — xcos —ysinb)dzdy (1)

where 6 and p are respectively the angular and radial coordinates
of the projection line (0, p), and §(-) is the Dirac impulse function.
The sinogram denoted S is made of a set of projection lines. Each
projection line corresponds to an acquisition using equation 1.
From an image I sized W x H, the discrete Radon transform R
is [18]:

Ro(p) = > I(i,5)aijop 2
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where the pixel kernel aj9, defines the weight value between a
pixel (7,7) and a projection line (6, p). It is usually the discrete
Dirac impulse or the order-0 spline kernel (which considers a pro-
jection proportionally to the distance crossed into the pixel) [19],
[20]. A discrete acquisition is achieved according to a constant
radial sampling step dp and a constant angular sampling step 66.
The inverse Radon transform recovers the original domain from
the projections. From a sinogram S sized Ny x N,, the discrete
inverse Radon transform R~ is :
Ng Np
R7Mi,5) = 1(6,5) = > Y S(ia,ip)cijep 3)
ig=1i,=1
where 7¢ and ¢, are respectively the angular and radial indexes of
the projection line (6, p) in the sinogram and S(ig,i,) = Re(p).
The Radon transform and its inverse are exact in continuous
domain. In computerized tomography, we have to use its discrete
inversion (equation 3) to compute a discrete image. The used
sinogram can be given from a continuous (equation 1) as well
as a discrete (equation 2) acquisition. However, this discretization
induces approximations on the reconstructed image. Well-known
algorithms have been developed for the last decades to increase the
quality of resulted images. Note for instance the back-projection
of filtered projections (BFP), reconstructions in Fourier space [16]
and iterative methods based on the algebraic techniques [4], [9],
[5] or maximum likelihood [3], [17], [11].



For instance, the sinogram 1(b) is acquired following several
angles and samples from the original domain 1(a). Each sinogram
column represents the sample values of each projection. From this
sinogram, an image imaging the original domain is computed by
using the BFP [18] (figure 2(a)) or the iterative SART [1] algorithm
(figure 2(b)).
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Figure 1.  (a) Original domain. (b) Acquisition of the original domain
following 90 angles (X-axis) of 64 samples (Y-axis).

(@ (b)

Figure 2.  Images reconstructed with the BFP (a) and the SART (b)
algorithms using the sinogram 1(b).

2.2 Limitations of the Radon Transform

These methods suffer from two main limitations. They follow
a fixed acquisition geometry (the angular and radial steps are
constant). So, an irregular sampling appears between pixels and
projections because the discrete image properties are not taken into
account for the acquisition. Moreover, the reconstructed image is
considered globally and not one pixel after the other. Since the
already reconstructed pixels are not deduced on the projections,
the sinogram always contains all the data instead of the strictly
necessary data for not yet reconstructed pixels.

The global deformation of the regions in the reconstructed
images (figure 3) are due to the missing wedge effect. It appears
when the acquired sinogram angles do not cover all the directions
between 0 and 7. For instance, the sinogram shown on the
figure 3(a) only contains projections acquired between 0 and %ﬂ'.
The successive missing angles between %ﬂ' and 7 are expressed
by the black columns. With such a sinogram, methods based on
the Radon theorem (BFP 3(b) and algebraic SART method 3(c)
results) suffer from deformations.

2.3 Mojette Transform

The Dirac-Mojette transform [8], [7], [6] is defined as a dis-
crete version of the Radon transform. It considers only angles
6 = tan~! (%) where p € Z and ¢ € ZT are relatively
prime and are respectively the number of pixel displacement
horizontally and vertically. The Dirac-Mojette transform is so given
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Figure 3.  Radon acquisition (a) with a 3 missing wedge. BFP (b) and

algebraic SART method (c) reconstructions.

by (Equation 4) :
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Therefore, the transformed domain consists in projections where
each element M, ,(b), called a bin, is the sum of every pixel
intersecting the line b = ip — jq. The Dirac-Mojette transform
result is described in figure 4 for a 3 x 3 image and for the set of
projections {(—1,1),(1,1),(1,0)}.

The geometry of the Dirac-Mojette sinogram is defined by p and
g. The number of bins on the projection (p,q) is (for a W x H
image) [15] :

Ny(p,q) = (W = 1)|p| + (H — 1)[q| + 1 (5)

Moreover, note that the angular and radial steps are not yet
constant and depend on the chosen projection set. For instance,
the step between each bin line on the projection (p, q) is :

1
VP + ¢
This geometry solves the Radon sampling problem because
sampling properties are defined and adjusted for each projection

angles. It results that each pixel contributes to one and only one
bin value per projection.

dp = (6)
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Figure 4. Result of the Mojette transform on a 3 X 3 image and for the
set of projections {(—1,1), (1,1),(1,0)}.

An image can be recovered if the set of projections follows the
Katz criterion [10]. It ensures that the image is reconstructed by
the set of projections P = {(pi,q:),pi € Z,qi € Z*,i € 1...N}
if :

N N
W<y Ipilor H< Y |gil (7)
=1 =1

The set of projections P can be computed automatically with the
Farey series [15].



The inverse transform back-projects the bins of the different
projections onto the reconstructed image. A single bin-pixel corre-
spondence must be determined to reconstruct a pixel [8]. We use
the specific acquisition denoted M;q (b) done from an image where
each pixel is valued 1. M;yq(b) is the pixel number to reconstruct
on the bin (b,p, q). If M}, ,(b) = 1, there is only one pixel (i, j)
on the bin whose value becomes I(i,5) = Mp 4(b). Its value is
subtracted from each projection My, 4, (b;) where it appears and
corresponding M/, . (b;) are decremented. A step of this algorithm

P1,q1
is shown on the figure 5.

19-7=12

7 16-7=9 1

Figure 5. First step of the reconstruction : a projection line crosses only
one pixel. Bin value is the pixel value. The pixel is reconstructed and its
value is subtracted in the bins where it appears. Corresponding values in
the M* sinogram are decremented.

The reconstruction of the image is achieved when the total
number of pixels has been treated. Since this process iteratively
computes the image pixel by pixel, a W x H image is completely
reconstructed in W x H steps. This algorithm is usually called
Corner-Based Inversion (CBI). Because of the regular sampling,
this algorithm is exact (in the sense that the reconstructed image
is equal to the original one) if the sinogram is not noisy and the
projection set follows the Katz criterion.

2.4 Spline Mojette Transform

The previous Dirac-Mojette transform uses the Dirac interpolator

to select on each bin the crossed-on-center pixels. For instance in
the figure 6, the two grey pixels give the bin valued 13. Notice
that these pixels do not form a discrete line.
The Spline-Mojette transform [6] has been developed to allow the
bins to follow discrete lines. So, all the pixels crossed by a bin line
are considered even if they are not centered. Spline-Mojette bins
can be determined from Dirac-Mojette one’s.

6
\eMS=8+0.5(6 +13)

Figure 6. From the Dirac-Mojette to the Spline-Mojette acquisition.

Indeed on the figure 6, the central Dirac-Mojette bin is only
composed of the central pixel. However, the corresponding line
crosses grey and hatched pixels. Hatched (resp. grey) pixels define
previous (resp. next) bin in the Mojette projection. Consequently,
the Spline-Mojette value M, ,(b) can be expressed as a linear

combination of Mojette values [13] :

Np(Pv‘Z)

Z p,q(b, bi) Mp.q(bi) ®

b;=1

M, ,(b) =

where « is the Spline coefficient between two bins b and b; [19].
The Spline-Mojette transform computes discrete line values from
Dirac-Mojette bins. This process gives an acquisition equivalent to
a discrete and finite Radon transform following specific acquisition
angles [15]. In such a case, the projection line geometry is closer to
continuous X-Ray attenuation obtained with a CT-scan acquisition.
From Spline-Mojette values, Dirac-Mojette bins are fast recovered
using a triangular system resolution [13] or a deconvolution.

2.5 CBI-Spline reconstruction

Another reconstruction approach from a Spline-Mojette acquisi-
tion consists in an adjustment of the CBI algorithm to the Spline
interpolator. Then, M;q (b) represents the number of crossed pixels
according to the Spline geometry (i.e. {(i,7) € I/ap,q(b,ip —
jg) # 0}). For instance, the scheme 7(a) shows M, ,(b) and
M, ,(b) values for the projection (2,1). From the M" sinogram,
we can find an univoque correspondence. Contrary to the previous
algorithm, it is not necessary with a pixel crossed on the center.
In this case, the contribution is done by the Spline weighting.
For instance on the scheme 7(a), there is a univoque correspon-
dence between the bin on the top and the hatched pixel, with
a contribution 0.5. The pixel is then reconstructed according to
its contribution as it is shown on the figure 7(b). Afterwards, the
updates are processed on all the bins crossing the pixel according to
their corresponding contributions (c.f. figure 7(c)). Update reveals
a new correspondence. Then, like the previous algorithm, this one
reconstructs directly the image pixel by pixel from a Spline-Mojette
sinogram. Notice that whatever the Spline-Mojette reconstruction
used, the result is exact in the sense that the reconstructed image
is equivalent to the acquired one. In the following, we distinguish
CBI-Dirac and CBI-Spline algorithms.

2.6 Advantages and Limitations of the Mojette reconstructions

The main advantage of Mojette reconstructions compared to
usual methods is the robustness to the missing wedge effect.
The reconstruction is exact even if the angular coverage of the
projection set is strictly lesser than m. An example is given on
the figure 8 with 4 projections distributed on [0, Z]. First scheme
represents the acquisition. Image 8(b) shows reconstruction of 4
pixels from the projection (2,1). Bin updates reveal two new
univoque correspondences used (c.f. figure 8(c)) to reconstruct
2 more pixels. Finally, the 3 last pixels are reconstructed (cf.
figure 8(d)). The reconstruction is exact whereas the acquisition
angular coverage is only 7.

The main drawback of CBI algorithms is their sensitivity to the
noise in the projections. Since the projections are updated from a
reconstructed pixel, the noise in the bins is propagating iteratively.
The figure 9 shows the beginning of this propagation. Similarly,
the reconstruction of Dirac-Mojette bins from noisy Spline-Mojette
acquisition is ineffective using triangular system resolution.

Algorithms derived from usual tomography, such as the BFP-
Mojette or iterative SART-Mojette have been developed [15] to
overcome this limitation. They are not exact any more, but they
achieve successfully a reconstruction from a noisy sinogram. They
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(a) Spline-Mojette acquisition of the projection (2,1) with the values of the associated unary sinogram. (b) Correspondance between a bin and

a pixel and pixel reconstruction according to its Spline contribution into the bin. (c) Bin and unary sinogram updates according to the Spline weight of
the reconstructed pixel. (d) Spline weighting of the bin crossing the central pixel for the projection (2, 1) used in this example.

12 14 14
3
1
3 8
13
1 5
: o %5 )
| 87 & 16
s & 16
(a) (b)

Figure 8.

can be applied as well as from a Dirac than from a Spline Mojette
acquisition as it is shown on the figure 10. On the other hand,
these methods are not robust to the missing wedge effect any more,
except the Spline BFP-Mojette (cf. images on figure 11).

2.7 Goals

From the previous observations, it seems that the missing wedge
effect is not only due to the unavailable projection set, but it is
also a problem of data disassembling on existing projections. This
data division is well ensured by Dirac bins (especially when using
the CBI), but not anymore in Spline ones. Consequently, our goal
in the following is to develop noise robust CBI [14] to observe
the propagation of the missing wedge effect into the projections
during the reconstruction process. Because this algorithm has to be
launched from a Dirac-Mojette sinogram, we investigate on a noise
robust inversion to compute an efficient projection data division
giving Dirac bins from Spline ones. However, we also investigate
on a noise robust CBI-Spline algorithm as an alternative solution.

3 Noise-robust CBI

In this section, we first develop a new method based on the CBI
algorithm [14] which allows the reconstruction of an image from
noisy Dirac-Mojette bins. Afterwards, we propose two solutions to
reconstruct from a noisy Spline-Mojette sinogram. The first one
is based on simulated annealing to recover the Dirac bins from
a noisy Spline-Mojette or specific Radon acquisition. The second
one is based on the CBI-Spline algorithm. It computes directly the
image from the noisy Spline-Mojette acquisition.

2 8 6
/\,0
N0
0 %,
0~ ~ .8
7 8
P2 0
// 0 0
b3l i
7
7|5 | a 0
(© (d

CBI reconstruction using 4 projections distributed on [0, Z].

2

3.1 New CBI algorithm for reconstruction from noisy projec-
tions

In this section, we develop new criteria about the pixel recon-
struction and the bin update to lead on a new noise-robust CBI
algorithm.

1) Pixel reconstruction from multiple bin-pixel correspondences:
We can first observe that the greater the Farey series order is,
the larger the projection number is. This redundancy of data
increases the number of single bin-pixel correspondence available
to reconstruct each pixel. For instance, a data redundancy example
is exposed on the figure 8(d) (bold bin lines).

Let us denote P¥ the set of not-reconstructed pixels at CBI
iteration k. We denote M. (i,7) the ordered value set of bins
M,,4(b) > 0 such that the pixel (4,5) € P* is crossed by the bin
line (b, p, q) (i.e. (¢,5) C (b,p, q)). Notice M), 4(b) > 0 because a
pixel value is positive. Then, a negative bin value is not significant
even if some of associated pixels are not reconstructed. The bin
set is defined by :

MC(Zh?) = {Mpl,ql (bl) > 0/(7‘7.7) € Pk A (7’7]) C (blvphql)}
)
We denote | M. (i, j)| the set size. The reconstructed pixel value
depends on the distribution chosen to exploit the bin value set.
In our algorithm, we work with a Gaussian distribution instead of
an average or median one because it gives a good estimate of the
pixel value and it is not influenced by extrema. The pixel value is
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Figure 9. Iterative propagation of the noise from a bin to the others. The
first reconstructed pixel is obtained from a bin containing an error e1. This
error is introduced during bin updates in 2 other projections. A second pixel
is reconstructed from a bin affected by an error ez. This error is in its turn
inset into other bins. The third pixel is reconstructed with bottom right bin
containing the two previous errors. Its erroneous value is deduced from the
projections, and so on.

(d

Figure 10. Reconstructed images using the BFP-Mojette from Dirac (a)
and Spline (b) acquisition. Reconstructed images using the SART-Mojette
from Dirac (c) and Spline (d) acquisition. Acquisition from a 64 x 64
pixel image with the set of projections given by the 5-order Farey series
(minimum verifying the Katz criterion).

computed by :
| Mec(3,)] _(z—i"]”cg:*-”)"ﬁ-w))z
L. L. Mc (4,5
[(Zvj):P(Z7J7M): Z € 2 MPI,an(bl)

=1
10
where « is a centering coefficient valued 0 by default.

(d)

Figure 11. Missing wedge robustness of the BFP-Mojette and SART-
Mojette algorithms. BFP-Mojette from Dirac (a) and Spline (b) acquisition.
SART-Mojette from Dirac (c) and Spline (d) acquisition.

If all bins are negative whereas pixels to recover remain, the
reconstruction is not achieved even if the Katz criterion is verified.
In that case, the bin values are decreased too fast. In other words,
the already reconstructed pixel intensities have been globally
overvalued. To overcome this problem, the image reconstruction
is restarted with a lesser pixel valuation. The ~ coefficient is used
to regulate this valuation.

2) Pixel reconstruction from minimal erroneous bins: The ob-
servation of the noise propagation also reveals that the more a bin
is updated, the more its value is altered. From this noticing, we
define N,%(b) the number of incurred bin updates (by default,
Np%(b) is initialized with O value). Since a bin is updated each
time an associated pixel is reconstructed, N,% (b) corresponds to
the number of already reconstructed pixels on the bin. The overall
error on a reconstructible pixel (z,7) is denoted F(i,5) and is
defined by :

[ Mc (4,5)]

EG.j)= Y Nigb) (1n
=1

3) Pixel selection: The probability of a pixel being reconstructed
accurately is proportional to the number of single bin-pixel cor-
respondences and depends on the error E(4, ). Consequently, we
propose that the reconstructed pixel (i, ji) at iteration k is the one
with both the maximum correspondence number and the minimal
error. These conditions are verified by :

|M.(ik, ji)| = maz{|M.(3,4)|, (i, §) € P*}
E(ix, jr) = min{E(,j), (i, j) € P*}

(iks Jr) € Pk/{
12)
4) Mollified bin-pixel correspondences: Now the bin error is
defined, we can introduce the exactness probability of a bin used
to reconstruct a pixel at iteration k as :
Np%(b)

p’qu(b) — ¢ Dpq® (13)

where Dy 4(b) = M}, ,(b)k—o is the distance (in pixels) crossed
by the projection line in the image. It corresponds to the initial
value of M;’q(b). The probability is introduced in equation 10 to



mollify the bin importance for the reconstructed pixel according to
its exactness. The overall pixel computation formula becomes :

| Me (i) ,(z—ww)z
L. [Mc(3,5)]
1(i,) = > poa(be 2 My, q,(br) (14)
=1

5) Mollified bin updates: In the original CBI, a bin value
M, 4(b) is updated by My q(b) — I(ix,jx) when the associated
pixel (ik,jr) is reconstructed. In the new algorithm, the bin
update is mollified to reduce the noise effect and the risk that
a reconstruction does not finish because all bins are negative. The
bin update becomes :

I(ikvjk)
Z(v)

where Z(y) is an attenuation coefficient depending on ~. If the
reconstruction can not be achieved despite of this precaution,
the ~ coefficient is increased and the reconstruction process is
reinitialized.

6) Pixel update from final bin values: In the original CBI
algorithm, a bin is valued O if all the associated pixels are
reconstructed. This property is not verified in our reconstruction
because of the noise on the projections. This non-zero value can
be re-injected into the image. By default, we can update uniformly
each pixel associated with the considered bin. However, earlier a
pixel is reconstructed, the more its value is accurate. As before
with the correctness probability of bins, we define the correctness
probability of a pixel according to its reconstruction rank k by :

Mp,q(b) = Mpyq(b) - 15)

2=

P, g) =e” (16)

Then, given a final bin value M;f,q(b) at iteration k, the associated
pixels are updated with :

kr. -
p"(,9) k .
— M 4 (b),V(i,7) C (b,p,q)
Z(z‘,j)c(b,p,q) pk(zh]) m (17)

7) The algorithm: Considering the previous definitions, the
new CBI performs as detailed in algorithm 1. This noise robust
algorithm is denoted NRCBI-Dirac in the following.

[(ihj) = I(ivj)_

3.2 From noisy Spline-Mojette to Dirac-Mojette bins

We develop now a new method to reconstruct the Mojette
bins from noisy Spline-Mojette data. The process is an iterative
reconstruction in h which approximates the bin value M;};l (b) at
iteration h+1 by successive comparisons of original Spline-Mojette
values M; ,(b) and recomputed M;'"(b) (performed from M™).

The bin update step is then computed as follows :
My (0) = My, (b) + Espiq(b) (18)

where Esplt (b) is defined by a Simulated Annealing (SA) step.
In the algebraic reconstruction, the unpenalized update value is
usually defined by :

N E) S S
S0 PP 4 (b,b5) (Mg (bi) — Mk (b:))
S o, (b, bi)

where M0 (bi) = 3020 g (bi, by) M4 (b) s the recom-
puted Spline value from bins obtained at previous iteration.

Esppd(b) = (19)

Algorithm 1: C Bl oise (M)

17+ 0;

2 k+0;

3 PR ={(4,5)/(i,§) € I}

4 V(bl,pl, ql) e M, N;,"ll?ql (bl) <+~ 0;

s while P* # & do

6 find (i, jx) using criterion 12;

7 if (ix, jx) # NULL then

8 I(ig, jr) = P(i,5, M) (formula 14);
9 Pk(—Pk—(ik,jk);

10 end

11 else

12 y—v+1;

13 restart from line 2;

14 end

15 foreach (b, pi, q1) € Mc(ix, jx) do

16 update M), 4, (b)) with equation 15;
17 increase N7, (b;) and decrease M, , (bi);
18 if Npi,qi(b)) =0A Mp,.q (b)) # 0 then

19 ‘ update all (¢,5) C (b, pi, q) (formula 17)
20 end

21 end

22 end

23 return /;

We now define the penalized update value as :

P(Espl(5))
h,N _ h,0 - \T2Pp,g\¥))
ESpPaq (b) - Espp,q (b) + F(h + 1) (20)
where P(x) returns a random value in [—5, Z], and F'(z) is an

increasing function whose ensures that the maximal error applied
decreases when the iteration step increases.

Following a simulated annealing procedure, the overall update
step is defined by :

Espﬁ;g(b) if Espﬁjg(b) < Espﬁ;év (b)

ESPZJ(I’) = q Esppy

Esph’o b) > Esph’N b
hN(b) if { Pv‘I( ) p,q ( )

_=h
p < ehmaz

0 else.

ey
where p is randomly chosen in [0, 1], and Amqs is defined as the
maximum iteration Temperature.
We denote E" = ", |M; ,(b) — M3l (b)| the error between
the original and recomputed Spline projection at iteration h. The
iterative process is stopped when E" — E"*! < ¢, where € is
a given parameter. This iterative process allows the computation
of each bin value and finally gives an approximation of the Dirac-
Mojette projections. Moreover, the final error E” can be introduced
into the NRCBI-Dirac algorithm as initial bin error value N7 (D).

3.3 Investigation about a noise robust CBI-Spline algorithm

Now, we adjust the noise robust CBI algorithm to the Spline
geometry. The pixel selection performs similarly, i.e. from the
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Figure 12. Reconstructions from noisy Spline-Mojette sinogram. Image
obtained with the NRCBI-Spline method (a). Image obtained with the SA
+ NRCBI-Dirac algorithm (b).

minimal error and maximum bin set size. The bin set is obtained by
taking into account the Spline contribution of each bin crossing a
pixel. Similarly, the bin updates are not limited to the bins crossing
the pixel center. All the bins going through the pixel (according to
their corresponding Spline weights) are updated.

Moreover, the final Spline-Mojette bin value is re-injected in
all the traversed pixels, according to their contributions. Note
t(p,q) the sum of Spline contributions of the projection (p,q).
For instance, ¢(2,1) = 0.5+ 1+ 0.5 = 2 (cf. figure 7(d)).
When the bin [ is at end of use on the projection (2,1), we
distribute 555 M3,1 (1) on the pixels crossed by the bins [ — 1
and [+ 1 (because they are crossed by ! with the contribution 0.5).
Finally, we distribute the final error “T{UMil(l) between each
pixel crossed on the center by the bin [. This method is denoted
NRCBI-Spline in the following.

3.4 SA+NRCBI-Dirac or NRCBI-Spline ?

Even if the NRCBI-Spline method is theorically close to the
NRCBI-Dirac algorithm, it performs a number of bin update very
larger than the previous one. Consequently, the residual error on
the bins is larger. It can smooth the image when it is re-injected on
the pixels. Inversely, SA + NRCBI-Dirac suffers from the errors
induced by the two steps of the reconstruction. For instance, image
shown on the figure 12(a) is reconstructed with the NRCBI-Spline
algorithm from a noisy sinogram whereas the image 12(b) is
obtained using the SA + NRCBI-Dirac algorithm. We recall that
the usual triangular resolution system + CBI-Dirac algorithm or the
CBI-Spline method give the same and exact reconstruction when
it is applied from a not noisy sinogram. In the presence of noise,
the new both methods have to be studied and discussed because
their results are not equivalent any more.

4 Results and Discussion

In this section, we detail the reconstruction results obtained
with the algorithms developed above. They are tested on the well-
known Lena image and on the synthetic Shepp-Logan [16] phantom
(which is an usual test image in tomography). From the original
images sized 64 x 64, the Mojette (or Spline-Mojette) sinogram M
is acquired using different Farey series from the order 5 (minimum
projection set following the Katz criterion). Each sinogram is
biased with an additive uniform noise whose value By () is
randomly chosen in interval [—2.5%Mmaz,2.5%Mmaz], Where
Mae = maz{M,,q(b), (b,p,q) € M}.

The reconstructed image properties are compared to the original
one using the Structural SIMilarity (SSIM) criterion [21] :

SSIM(I,J)=1(I,J)-c(I,J) r(I,J) 22)

where 0 < I(I,J) < 1 (resp. 0 < ¢(I,J) < 1) is the
global intensity (resp. contrast) comparison between two images
I and J, and 0 < 7(I,J) < 1 is the correlation coefficient.
0 < SSIM(I,J) <1 gives the quality rate of the reconstruction.
The closer the SSIM value is to 1, the better the reconstruction
quality is. Moreover, noise robustness is measured with signal to
noise ratio (SNR). It is expressed in dB and represents signal loss.

4.1 Reconstruction from noisy Dirac-Mojette acquisition

We first show the results obtained with the NRCBI-Dirac al-
gorithm for reconstructing an image from noisy Mojette bins.
Resulted images and comparisons are detailed on the table I. C BT
value denotes the average number of bin-pixel correspondences
used to reconstruct a pixel. Results are compared with the efficient
and noise robust SART-Mojette method.

Since the standard CBI resolution diverges, the final reconstruc-
tion step is not reached. Conversely with the new algorithm, the
reconstruction is achieved when the Katz criterion is verified. The
reconstruction quality increases with the Farey series order, i.e.
with the number of projections. From the 5-order Farey series
results, we denote the importance of data redundancy to achieve a
reconstruction with a great quality rate. Indeed, the SSIM obtained
to reconstruct the simple Shepp-Logan phantom is up than 0.8, but
Lena only gives a SSIM = 0.6.

From the 7-order, the acquisition contains sufficient data density,
i.e. a sufficient single bin-pixel correspondence number to recon-
struct each pixel accurately. The Lena image quality becomes better
than 0.8. The Shepp-Logan image quality is up to 0.95 when the
projection number becomes large (from the 9-order Farey series).
The SNR of the Shepp-Logan increases significantly with the Farey
series order. Since this phantom contains a lot of uniform regions,
their intensities are properly averaged through the large density
data on the projections. This is the reason why the signal loss
goes from —2.25 to —0.78 when the Farey series order increases
from 5 to 10. Conversely, even if the SNR of images containing
more details (Lena for instance) seems to be improved with the
projection number, its value is quasi-stabilized from Farey order
7. So, we can globally conclude that the SNR remains constant
whatever the projection number.

Finally, we denote that the reconstruction is not competitive with
the results obtained by the Dirac SART-Mojette reconstruction
for the Lena image. Inversely on Shepp-Logan reconstruction, the
images are as well as recovered when the number of projections
becomes large.

4.2 Reconstruction from Noisy Spline-Mojette acquisition

Now, we detail the reconstruction results obtained from a noisy
Spline-Mojette acquisition. The protocol test is similar as above,
except that the noise is applied on the Spline sinogram. First,
the images are computed from this one using the SA + NRCBI-
Dirac method. Note that the noise on the Mojette bins is then
due to the noise applied on Spline acquisition enforced by the
SA approximations. Second, the images are computed using the
NRCBI-Spline algorithm. The resulted images and corresponding
comparison values are given on the table II.

The image quality increases between Farey series of orders 5 and
7. Afterwards, contrary to CBI-Dirac results, the quality decreases
when the Farey series order increases. It is particularly noticeable



Farey order 5 7 9 10
Projections 40 72 112 128
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SSIM 0.999
SNR 2.67
Table I

IMAGES RECONSTRUCTED WITH NOISE ROBUST CBI AND SART-MOJETTE FROM DIRAC-MOJETTE SINOGRAMS ALTERED BY AN ADDITIVE AND
UNIFORM NOISE. ACQUISITIONS USING DIFFERENT FAREY SERIES ORDER (FROM MINIMAL ORDER 5 TO ENSURE THE KATZ CRITERION). THE
CORRESPONDING PROJECTION NUMBER AND AVERAGE NUMBER OF CORRESPONDENCES (C'BI) ARE GIVEN. THE STRUCTURAL SIMILARITY RATE
SSIM AND THE SIGNAL LOSS EXPRESSED BY THE SNR ARE DETAILED.

on the Lena results whatever the method used. However, the SSIM
converges when the Farey series order becomes greater than 9.
It is close to 0.65 (Lena) and 0.82 (Shepp-Logan) using the SA
+ NRCBI-Dirac method whereas it is close to 0.57 (Lena) and
0.52 (Shepp-Logan) using the NRCBI-Spline algorithm. Then, the
image quality is better using the first method. Moreover, image
reconstruction is not stabilized with the NRCBI-Spline algorithm
as it is noticeable on the Shepp-Logan result using 9-order Farey
series.

On the other hand, the SNR is improved on the Shepp-Logan
phantom results whatever the method whereas it decreases with
the second method on Lena results. The NRCBI-Spline algorithm
reinjects a too large part of the final bin error. Then, it acts as
a smoothing on the image and it deteriorates the SNR. The bin
update, necessary in the NRCBI algorithms to contain the error,

is in fact too important here. It finally deteriorates image quality.
However, it can not be ousted otherwise the reconstruction fails.
Let us consider now the SA + NRCBI-Dirac SNR results. The
“noise” implied by the SA resolution still gives a smoothness of
bin values and finally acts as a low pass filter on the images.
Globally, the results are fuzzier than the ones obtained from
a Mojette acquisition (whatever the method) and corresponding
SSIM and SNR are worse. Then, the both new methods are not
competitive with the Spline SART-Mojette method for now.

4.3 Reconstruction from Spline-Mojette acquisition with miss-
ing wedge

Now, we observe the reconstruction of a Spline-Mojette acquisi-
tion with missing wedge. Note that if the Spline-Mojette sinogram
is noise free, we can recover the Dirac bins from the spline ones
using a triangular linear system resolution [13]. In a such case, the



Farey order

SA + NRCBI-Dirac

NRCBI-Spline

Spline SART-Mojette

SA + NRCBI-Dirac

NRCBI-Spline

Spline SART-Mojette

0.999
2.43

SSIM
SNR

Table II
IMAGES RECONSTRUCTED FROM NOISY SPLINE-MOJETTE SINOGRAM. SA + NRCBI-DIRAC RESULTS : THE MOJETTE BINS ARE FIRST RECOVERED
USING SA ALGORITHM AND THE NOISE-ROBUST CBI IS LAUNCHED. NRCBI-SPLINE RESULTS ARE OBTAINED DIRECTLY FROM THE NOISY
SPLINE-MOJETTE SINOGRAM. THE SSIM AND SNR ARE DETAILED TO ESTIMATE THE GLOBAL RECONSTRUCTION QUALITY. RESULTS ARE
COMPARED TO THE SPLINE SART-MOJETTE RECONSTRUCTION.



computed Mojette bins are exact. The overall Mojette sinogram
is then noise free. Reconstruction with usual CBI algorithm is
achieved successfully (exact reconstruction) if the projection set
follows the Katz criterion.

For instance, considering an image sized 64 x 64 pixels, the
10-order Farey series gives 128 projections between 0 and 7. If
we delete the projections between %w and , the 85 remaining
projections still follow the Katz criterion. If the sinogram is not
noisy, the reconstruction is achieved successfully.

In the same condition with a noisy sinogram, the usual protocol
fails, and reconstruction using Spline SART-Mojette gives defor-
mation in the regions of the image (cf. results on figure 13(a)).
The image reconstructed with the SA + the NRCBI-Dirac method
is given on figure 13(b). We can denote that the reconstruction
is geometrically more accurate - especially the external contour
of the head phantom - even if it is more noisy than the SART-
Mojette one. Even if it can not be used at once to reconstruct
from incomplete acquisition, it could be a solution to compute
the initial image used by iterative methods. Inversely, the NRCBI-
Spline method is not robust to the missing wedge effect anymore
because deformations appear in the result (cf. figure 13(c)). These
deformations are generated by the non-uniform and too large pixel
correction using final bin values (it is not uniform in the sense that
final bin error is not covering uniformly the image between 0 and
).

(a) (b) (©

Figure 13.  Reconstructed images using the SART-Mojette (a), SA +
NRCBI-Dirac (b) and NRCBI-Spline (c) algorithms from an acquisition
with missing projection set.

4.4 Reconstruction from a real acquisition

Because the new algorithms perform image reconstruction from
noisy sinogram, we can investigate the reconstruction from an usual
acquisition (for instance, a sinogram similar to the figure 1(b)). In
a such case, the Mojette sinogram is obtained by interpolation from
the real sinogram to map the uniform acquisition (constant angular
step 86 and constant radial step dp) into Spline-Mojette bins. Here,
the Farey series giving the projection number the closest to the
number of acquired angles is chosen. Afterwards, a radial (along
the samples) and angular (along the projections) interpolation is
performed between acquisition and Spline-Mojette bins. Finally, the
SA + NRCBI-Dirac or the NRCBI-Spline algorithms are launched.

For instance, the image 14(a) is obtained from the usual sino-
gram 1(b). First, it is interpolated into a Spline-Mojette sinogram
and second, the SA + NRCBI-Dirac is performed. Similarly, the
image 14(b) is obtained using the NRCBI-Spline method.

Let us consider now the reconstruction from a sinogram with
missing wedge. For instance, the image 14(c) is obtained from the
sinogram 3(a). Despite the noise into the image, data deformation
are visible whereas the algorithm used is robust the missing wedge

Figure 14. Reconstruction from a real acquisition using a radial/angular
interpolation between the acquired sinogram and the Spline-Mojette bins.
(a) Reconstruction without missing wedge from sinogram 1(b). (b) Recon-
struction with missing wedge from sinogram 3(a).

(cf. results on the figure 13). NRCBI-Spline algorithm is not
considered anymore because we have already highlighted that it
is sensitive to the missing wedge.

Consequently, the interpolation step reveals an alternative issue
to the missing wedge effect. Indeed, image deformations are
necessarily due to the acquisition and interpolation steps because
they are the only ones that differ from the previous protocol. In
other words, deformations are not due to the missing wedge but are
the consequence of poor accuracy on existing projections. This poor
accuracy can be the consequence of both the acquisition sampling
(which is not sufficient) and the interpolation (which not correctly
separates projection data into the bins).

5 Conclusion and Perspectives

The missing wedge effect is observed in usual tomography
when a set of projections is not available along several angles. It
implies deformations in the reconstructed image. The investigation
proposed in this paper focuses on a discrete geometry approach
based on the Mojette transform. This study highlighted that the
missing wedge effect is not only due to the missing projections
but also to a leak of precision in the existing projections. The
Dirac-Mojette transform is not sensitive to the missing wedge effect
because projection data are already well separated. However, this
geometry is not compatible with usual tomography. Spline-Mojette
is closer to an usual acquisition geometry, and we have developed
new noise robust CBI algorithms in order to apply them from noisy
Mojette or real acquisitions. Unfortunately, the reconstructions are
not as competitive as other noise robust algorithms such as SART-
Mojette.

Indeed, the CBI algorithms explained in this paper allow an
inversion from noisy projections. The used sinogram can be a
noisy Mojette one as well as an interpolated Radon acquisition.
According to the results obtained, the developed algorithms com-
pute images efficiently but still need to be optimized (especially
the NRCBI-Spline method). We first have to model the noise
and its propagation between the projections to improve and to
regulate the pixel valuation. A pixel computation more efficient
than the Gaussian distribution has to be developed according to
the noise model. Using this specific technique, we are going to
observe the evolution of data in the sinogram step by step during
the reconstruction. This tool could be used to locate for instance
anomalies during the reconstruction (especially those generated by
the missing wedge).

Moreover, the SA algorithm has to be improved for the NRCBI
to be used in tomography. The optimization of this part of the



algorithm is an essential goal, especially because it smoothes the
Mojette bins and finally affects the reconstructed image quality.
This remarks is also available for the NRCBI-Spline algorithm,
proposed as an alternative solution of the SA + NRCBI method
(even if it is noise and missing wedge sensitive for now). More par-
ticularly, SA is the essential algorithm step allowing the projection
data division. The quality of this division seems to be a solution to
the missing wedge problem. This specific use has to be developed
and results have to be compared with those obtained by other
methods which deal with missing wedge effect (such as dual-axis
algorithms [2] or wavelet-based reconstruction). Finally, adjusting
the usual acquisition geometry (in Radon transform) to the specific
Mojette one without projection detail loss (due to the radial/angular
interpolation) will be a main goal in our future works.
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