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Abstract

The study of genetic sequences is of great importance in biology and medicine. Se-
quence analysis and taxonomy are two major fields of application of bioinformatics.
In the present paper we extend the notion of entropy and clarity to the use of dif-
ferent metrics and apply them in the case of the Fuzzy Polynuclotide Space (FPS).
Applications of these notions on selected polynucleotides and complete genomes
both in the I'?** space, but also using their representation in FPS are presented.
Our results show that the values of fuzzy entropy/clarity are indicative of the de-
gree of complexity necessary for the description of the poynucleotides in the FPS,
although in the latter case the interpretation is slightly different than in the case
of the I'?*k hypercube. Fuzzy entropy/clarity along with the use of appropriate
metrics can contribute to sequence analysis and taxonomy.
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1 Introduction

Bioinformatics is a relatively new discipline (see Jamshidi N. et al. (2001),
Morgenstern B. (2002), Paun Gh. et al. (1998), Percus J. (2002) and Tang
B. (2000)) where Mathematics play an important role in the analysis of ge-
netic sequences. The genetic material of living organisms consist of nucleic
acids DNA and RNA. The analysis of the genetic material is of great impor-
tance for diagnosis and taxonomy reasons. In this course there are two basic
strategies that are commonly used: a) sequence analysis, i.e. determination
of the building blocks of a nucleic acid (nucleotides) and their order in the
molecular chain, and b) sequence comparison used to identify the degree of
difference/similarity between polynuclotides, e.g in order to identify similarity
with known viruses.

DNA and RNA are made of triplets XY Z of codons each of them having
the possibility to be one of four nucleotides {U, C, A, G} in the case of DNA
and {T,C, A,G} in the case of RNA (A=Adenine, C=Cytosine, G=Guanine,
T=Thymine, U=Uracil). Sadegh-Zadeh (see Sadegh-Zadeh K. (2000)) showed
that the genetic code can be represented in a 12-dimensional space because a
triplet codon XY Z has a 3 x 4 = 12 dimensional fuzzy code (ay, ..., a12) and
it is a point in the 12-dimensional fuzzy polynucleotide space [0, 1]'? as a sub-
space of the real space [0, oc]'?. Sadegh-Zadeh (see Sadegh-Zadeh K. (2000))
introduced the Fuzzy Polynucleotide Space (FPS) based on the principle of the
fuzzy hypercube Kosko B. (1992). In this notation a polynucleotide consisting
of a sequence of k triplets XY Z is a point in a I'>** space. However, Torres
and Nieto (see Torres A. et al. (2003)) mapped a polynucleotide on a I'?
space by considering the frequencies of the nucleotides at the three base sites
of a codon in the coding sequence. In that work using a metric motivated by
publications of Lin Lin C.T. (1997) and Sadegh-Zadeh (see Sadegh-Zadeh K.
(2000)), they calculated distances between nucleotides. They also applied their
algorithm for the comparison of complete genomes (for example M.tuberculosis
and E.coli). Further work has been recently performed using the idea of Nieto
et al. (see Nieto J.J. et al. (2006)) in which the influence of several metrics
have been examined. The advantages of this methodology are:

a) one can compare polynucleotides of very big length in a very efficient com-
putationally way and

b) one can apply the algorithm in order to compare polynucleotides of different
length as it is the case for genomes of different organisms.

We point that metrics play an important role on computational biology. Dif-
ferent metrics have been used to study secondary structures (see V. Moulton
et al. (2000)) or biopolyment contact structures (see M. Liabres et al. (2004)).



It is very important to be in a position to determine how close two genetic
sequences are since there are many important biological and medical impli-
cations (see DasGupta B. et al. (1998), Foster M. et al. (1999), Gusev V.
D. (1999), Jiang T. et al. (2002), Liben-Nowell D. (2001) and Li M. et al.
(2001)). The biological distance among the 20 amino acids can be calculated
according to their classification results. Since the concept of pseudo amino
acid composition was proposed by Chou (Chou K. C. (2001)), many efforts
have been made trying to use various quantities to represent the 20 native
amino acids in order to better reflect the sequence-order effects through the
vehicle of pseudo amino acid composition (PseAA), along with work in order
to choose effective properties for such procedures (Trinquier and Sanejouand
(1998)). In an earlier paper (Chou K. C. (2000)), the physicochemical dis-
tance among the 20 amino acids (Schneider G., Wrede P., (1994)) was adopted
to define PseAA. Subsequently, some investigators used complexity measure
factor (Xiao et al, (2005)), some used the values derived from the cellu-
lar automata (Xiao et al, (2005b), Xiao et al, (2005¢), Xiao et al, (2006),
Xiao et al, (2006b)), some used hydrophobic and/or hydrophilic values (Chou
(2005), Feng (2002), Wang et al. (2006), Wang et al. (2004), Gao et al.
(2005), Chen et al. (2006), and some were through Fourier transform (Liu
et al. (2005), Perez-Montoto et al. (2009)), as well as trough cellurar au-
tomaton approach (Xiao et al, (2009b)) The pseudo amino acid composition
was originally introduced to improve the prediction quality for protein sub-
cellular localization and membrane protein type (Chou K. C. (2001)), as
well as for enzyme functional class (Chou (2005)). Work using pseudo amino
acid composition has also been performed (?, Xiao et al, (2008b), Xiao et
al, (2009a)). The pseudo amino acid composition can be used to represent
a protein sequence with a discrete model yet without completely losing its
sequence-order information (Chou and Shen (2007a)), and hence is partic-
ularly useful for analyzing a large amount of complicated protein sequences
by means of the taxonomic approach. Actually, it has been widely used to
study various protein attributes, such as protein structural class (Chen et al.
(2006a), Chen et al. (2006b), Lin and Li (2007a), Ding et al. (2007), Gu and
Chen (2009)), protein subcellular localization (Chou and Shen (2008), Chou
and Shen (2007a), Shen and Chou (2007a), Chou and Shen (2007b)), pro-
tein subnuclear localization (Shen and Chou (2005), Mundra et al. (2007))
protein submitochondria localization (Du and Li (2006)), protein oligomer
type (Chou and Cai (2003)), conotoxin superfamily classification (Mondal
(2006),Lin and i (2007b)) membrane protein type (Liu et al. (2005), Shen
and Chou (2005), Wang et al. (2006), Shen et al. (2006), Chou and Shen
(2007b)) apoptosis protein subcellular localization (Chen and Li (2007a),
Chen and Li (2007b) enzyme functional classification (Chou K. C.; (2005),
Chou and Cai (2004), Zhou et al. (2007), Shen and Chou (2007b)) protein
fold pattern (Shen and Chou (2006)), and signal peptide ((Chou and Shen
(2007c), Shen and Chou (2007c)). Recent research works on the extension of
these kind of parameters in the form of Markov Chain invariants of 2D graph



or networks representation of aminoacid, DNA, and RNA sequences to codify
psuedo-aminoacid and pseudo-nucleotide bases composition (Aguero-Chapin
et al. (2008), Gonzalez-Diaz et al. (2007a), Gonzalez-Diaz et al. (2007b),
Aguero-Chapin et. al. (2006), Vilar et al. (2009)) as well as more complex
work such as Xiao et al, (20009¢), Xiao et al, (2010)). The reader can also
consult some recent reviews which made a discussion of many of these previous

results (Gonzalez-Diaz et al. (2008), Chou (2009), Lin et al. (2009)).

In the present paper we present some new results concerning the notions of
entropy and clarity of a nucleotide that can be used in order to estimate the
fuzziness of a polynucleotide. We compare the results with that obtained in
Sadegh-Zadeh K. (2000). We note that it is possible to compare sequences
using a minimum entropy principle ( Sadovsky M.G. (2003)). More precisely
we focus on the use of different metrics in the calulation of the entropy and
clarity of a polynucleotide in conjunction with the use of FPS which can be
used in order to reduce the information necessary for the representation of
large polynucloetides.

The structure of the paper is as follows. In section 2 we present the notion of
the Fuzzy Polynucleotide Space (FPS) and the entropy concept and give some
applications on polynucleotides and selected genomes. We compare some of the
results using our entropy definitions with results obtained in Giulia Menconi
(2005) where the notion of computable complexity of several complete genomes
is analyzed and compared with the classical entropy results. In section 3,
clarity of a polynucleotide is considered and results on several polynucleotides
are presented. Finally in section 4 the conclusions of the present work are
summarized.

2 Entropy and fuzzy polynucleotide space

2a) Fuzzy sets and fuzzy hypercube
Let X be a set. A is a fuzzy subset of X if there is a function p4 such that
1) pa: X —[0,1].

2) A={(z,pa(x)) : € X}, that is A is the set of all pairs (z, pa(z)) such
that 2 € X and p(z) is the degree of its membership in A.

In what follows if X = {z, z,...,x,} and

A= {(wr, pa(@1); s (s paln)) s



then we write
A= (NA(xl): e NA(xn))

Let A and B two fuzzy sets of a set X.

Then by A A B we denote the fuzzy set for which the membership function
pans : X — [0,1] is defined as following

prans(z) = min{pa(z), pp(z)},
for every z € X.

Also by AV B we denote the fuzzy set for which the membership function
pavg : X — [0,1] is defined as following

pavp(z) = max{ua(z), pp(z)},
for every x € X.

For A a fuzzy set, the fuzzy complement A€ is defined by A%(x) = 1 — A(x),
reX.

Kosko Kosko B. (1992) introduced a geometrical interpretation of fuzzy sets
as points in a hypercube. Indeed, for a given set X = {z1, 29, ..., 2, }, the set
of all fuzzy subsets (of X) is precisely the unit hypercube

" =0,1]",
since any fuzzy subset A determines a point P € I™ given by

= (/«LA(ml)a ) /«LA(mn))

Reciprocally, any point P = (ay, ..., a,) € I" generates a fuzzy subset A of X
defined by the map 4 : X — [0, 1] such that pa(z;) =a;,i=1,2,...,n.

Nonfuzzy or erisp subsets of X = {xq,...,x,} are given by mappings
p:X —{0,1}

from the set X into the set {0,1} and they are located at the 2" corners of
the n-dimensional unit hypercube I"™. So, the ground set X = {z1,...,2,} is
itself the fuzzy set (1,1,...,1) € I". Also, the empty fuzzy set is the fuzzy set
(0,0, ...,0) € I", denoted by ().

Hypercubical calculus is developed in Zaus M. (1999), and some applications
of the fuzzy unit hypercube are given in Nieto J.J. et al. (2003), Sadegh-
Zadeh K. (1999) and Hegalson C.M. et al. (1998). In this context a codon



corresponds to a corner of the 12-dimensional unit hypercube '?. Any element
of I'? may be viewed as a fuzzy codon.

DNA and RNA can be treated as a language written using an alphabet of
strings. The role of strings is played by several chemical compounds. In fact the
alphabet for DNA is {7, C, A, G} while for RNA {U, C, A, G} where A,C,G,T
and U stand for Adenine, Cytosine, Guanine, Thymine and Uracil respectively.
In this context in the case of RNA alphabet if U is the first letter of this alpha-
bet one codes it as (1,0,0,0) : 1 because the first letter U is present, 0 since
the second letter does not appear, () since the third letter is not present and 0
since the fourth letter G does not appear. In a similar way C is represented as
(0,1,0,0), A as (0,0,1,0) and G as (0,0,0,1). So if we have a nucleotide de-
scribed by the codon UCG (serine) this would be written in the I'? hypercube
as

(1,0,0,0,0,1,0,0,0,0,0,1).

There are cases where the exact chemical structure of the sequence is not
known for the complete sequence. In this case some components of its fuzzy
code being neither 0 or 1 but a value in the interval (0,1) and are sequences
not necessarily at a corner of the hypercube. If for example we have a codon

(0.3,0.4,0.2,0.1,0,0,1,0,1,0,0,0)

This stands for XAU. The first letter X is unknown and corresponds to: U to
extent 0.3, C to extent 0.4, A to extent 0.2 and G to extend 0.1

When we have a polynuclotide which is a sequence of k triplets, one would
need a k x 12 hyperspace. For example if we have the polynucleotide described
by the sequence UACUGU (tyrosin/cysteine), it is a point in 12*1? = 1?1 and
represented by

s1 =(1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0)

However if one considers the frequencies of the nucleotides of the alphabet at
the three base sites of a codon in the coding sequence it may be viewed as a
point in the hypercube %

Table 1a. Number of nucleotides at the three base sites of a codon in the s;
sequence.



U|C|A |G| total
First base 210100 2
Secondbase | 0 | 0 | 1 |1 2

Third base | 1 |1 | 0| 0 2

Table 1b. Fractions of nucleotides at the three base sites of a codon in the
coding sequence of s;.

uj|C| A |G

First base 1 0 0 0

Second base | 0 0 05105
Third base | 0.5 [ 05| 0 0

Taking into account the number of nucleotides at the three base sites of a
codon in the s; sequence (see Table 1a) as well as the fractions of nucleotides
at the three base sites of a codon in the coding sequence of s; (See Table 1b)
sequence s; can be written in the 7'? space as

f(s1) = (1,0,0,0,0,0,0.5,0.5,0.5,0.5, 0, 0).

In the case of complete genome the frequencies of the nucleotides at the three
base sites of a codon in the codon sequence are considered. This can be viewed
as point in the hypercube I'2.

This idea has been applied to the genomes of M.tuberculosis, E.coli, and
A.aeolicus to obtain their fuzzy set of frequencies and calculate their cor-
responding distance in the Fuzzy Polynucleotide Space (FPS) (see Torres A.
et al. (2003) and Nieto J.J. et al. (2006)).

When dealing with genetic sequences it is of interest:

i) to be able to describe how different two sequences are. For this reason the
notion of distance is used (see Nieto J.J. et al. (2003), Nieto J.J. et al. (2003)
and Nieto J.J. et al. (2006)), and

ii) to know how much ordered the sequence is. In this direction the notion of
entropy and clarity is employed (see, for example, Sadegh-Zadeh K. (2000)).
Since the notion of entropy is related also to the calculation of distances be-
tween points in the FPS, we describe briefly in the next section the notion of
distance and then pass to the concepts of entropy and clarity.

2b) Metrics - Distances



Consider the n-dimensional unit hypercube I™.

Ifp=(p1,-Pn):q = (q,-..,qs) € I" are two different fuzzy polynucleotides,
then we consider the following distances between the elements p and ¢:

1) Euclidean distance

Ppg) =\ 2_(pi — a)*

2) Hamming distance

M(p.q) = Ipi — al-
=1

3) Nieto - Torres Vazquez-Trasande (NTV) metric

Yy pi — 4
I(p,q) = —== .
(p-4) > max{p;,q}

Also, if p=qg=10=(0,...,0), then {(0, ) = 0 (see Nieto J.J. et al. (2003)).

The distance [ is motivated by publications Lin C.T. (1997) and Sadegh-
Zadeh K. (2000). We know that [ is a metric Nieto J.J. et al. (2003) and
has already been employed in Torres A. et al. (2003) and Nieto J.J. et al.
(2006). In A. Dress and T. Lokot (2003) (see, also A. Dress et al. (2004)) it
is proposed to call this metric as the NT'V metric.

2c) The entropy of a polynucleotide
Let X ={z1,...,2,} be aset and
A= {("131; MA(':El) = al)a X3 (:ETL; /JA(xn) = a’ﬂ)} = (ala ) (ln),

where a; € [0,1], a fuzzy set of X. Then by ¢(A) (see, for example, Sadegh-
Zadeh K. (2000)) we denote the number

n n

> palz) =) a

1=1 =1

In the crisp case, ¢(A) is the cardinality of A.
In the following we propose a new definition of entropy

Definition 1. Let (I",d) be a metric space (see, for example, Engelking R.
(1977)), X = {x1,...,x,} aset, C = (0.5,...,0.5) € I", ) = (0,...,0) € I", and



F(2X) the fuzzy power set of X. The map
entropyq : F(2X) — [0, 1],

d(A,C)

d(C,0)’

for every A = (ay, ...,a,) € 1", is called fuzzy entropy map with respect to the
metric d.

entropyqs(A) =1 —

Remark. De Luca and Termini A. De Luca and S. Termini (1972) first
axiomatized nonprobabilistic entropy in the setting of fuzzy sets theory (see
also Jiu-Liun Fan et al. (2002)). We adopt them here. Let X be a set and let
E be a set-to-point map
E: F(2¥) —[0,1],

where F(2¥) is the fuzzy power set of X. Hence E is a fuzzy set defined on
fuzzy sets of X. E is an entropy measure if it satisfies the four De Luca-Termini
axioms:

(DT1) E(A) =0 if A € 2% (A non fuzzy), where 2% is the power set of X.
(DT2) E(A) =1 if A(x) = 0.5, for every z € X.

(DT3) E(A
)

< ( ) if A(z) < B(x) when B(z) < 0.5 and B(z) < A(x)
when B(z) > 0.5

)
>
(DT4) E(A) = e(A°).

It is possible that for some metric d the fuzzy entropy map entropy, with
respect to the metric d to satisfy the De Luca and Termini axioms. So, for
example for the metrics [* and /2 it is clear that the maps

I"(A,C

Ei(A) = entropyp (A) =1 — ll((C: @))

and I*(A,C)
Ey(A) = entropyp(A) =1 — 12(C,0)

satisfy the above four De Luca-Termini axioms.

Also, it is possible that for some metric d the map entropy, does not satisfy
the De Luca and Termini axioms. So, for example for the NTV metric [ the
map

I(A,C)

1(C.0)

does not satisfy the above four De Luca-Termini axioms (see Example 2 be-
low).

Ey(A) = entropy(A) =1 —



In the following we present some theorems concerning the specification of the
formulas used to calculate entropies in the FPS space for specific metrics.

Theorem 1. Let X = {xq,.....,x,} and A = (ay, ..., a,) a fuzzy set of X. Then,
the following statements are true:

c(C)—=1"A,C)  n—21"(A0)
c(CO) B n ’
Vvn —21*(A,0)

entropy;2(A) = ,

NG

entropyp (A) =

and
entropy(A) =1 —1(A,C),
where C'is the fuzzy set (0.5, ...,0.5) of I"™.

Proof. Tt is known that (see Sadegh-Zadeh K. (2000)) ¢(C) = I*(C,0). Thus

l](C,A)
1(C.0)
11(C, A)
()

_(0) I

(0)

entropyp (A) =

A,0)

Obviously,
c(C)=0.5+05+..+05=n-05= g

and we have:

entropyp(A) = (0
_ % - ll (A C)
%

~n—21"(A,0)

B n
Also

1
P(C0) =5 -V

and

10



12(C, A)

entropyp(A)=1—

2(C,0)
_, B4

L
— \/ﬁ_ QZ(A’C)
N v

n-0.5
e =255 =1
Thus
I(A,C
entropy(A) =1 — l((C @)) =1-1(A0).

This complete the proof.

Example 1. Let X = {x1,25} be a set and A = (0.4,0.8) a fuzzy set of X.
We consider the metric space (I2,1%).

Using the definition of entropy givenin Sadegh-Zadeh K. (2000) we have (see
page 23 of Sadegh-Zadeh K. (2000)):

ent(A) = % = 0.4286.

Using the above definition we have:

2—2'(A,C
entropyy (A) = 2(’)
2 9(10.4— 05|+ (0.8 — 0.5)
B 2
2—-08 1.2
= = — =0.6.
2 2

We thus observe that the entropy of Sadegh-Zadeh does not coincide with the
Hamming entropy

ent(A) = 0.4286 # entropy;(A) = 0.6.

11



Remark. According to the Definition 1 and Theorem 1 we have a geometrical
intepretation of entropy is illustrated in Figure 1. The entropy, of a fuzzy set
A is 1 minus the Euclidean distance a = [*(A4,C) divided by the Euclidean
distance b = I?(C, (), that is

entropy;(A) =1 — %

0,0,1) ANO,LD

N (LLD)

o | (0.1,0)

100 ¥ L.LO)
Figure 1
Theorem 2. Let X = {zy,....@,} be a set and A = (ay,...,a,), where a; €

[0,1], a fuzzy set of X. Let A“=(1—ay,...,1 —a,) € I". Then:

(ANAY)  2-c(ANAY) 21" (AN A%D)
c(C) n B n ’

entropyp(A) =
where C' is the fuzzy set C' = (0.5,...,0.5) € I".

Proof. Suppose that a; < 0.5 for every i = 1,2,...,n — 1, and a,, > 0.5. Then,
we have:

AN A= (min{a;,1 — a1 },...,min{a, 11,1 — a,_1 }, min{a,, 1 —a,})

=(ay, ., ay_1,1 — ay).

By the above we have

12



I*(A,0)

entropyp (A) =1

- INC,0)
—1_ Y1105 — ag
n-0.5
1 Z?;ll |0.5 — a;| +10.5 — ay|
n-0.5
_1_2?;]10.5—ai+an—0.5
n-0.5
:1_n-0.5—(a1+a2+...+an,1)+an—1
n-0.5
- n-05-n-05+ (@ +ay+ ...+ ap1) —a,+1
N n-0.5
_a1+a2+...+an_1+1—an
B n-0.5
c(ANAY)
(o)

Now ¢(C) = §. Thus,

entropyp(A) = = .

Finally, by the fact that
c(ANAS) =LA N A D).

it follows that

2-11(ANA A%D)

n

entropyp (A) =

When some of the a; are less than or equal 0.5 and others greater than 0.5,
the proof is analogous.

In the following we present some examples of applications of the use of the
entropy definitions in various cases of polynucleotides from relatively small
ones up to large ones.

Example 2. Let (I2,d) be a metric space, X = {7, 25} a set, and A = C =
(0.5,0.5) a fuzzy set of X. Then, we have:

d(C,C)
a(C. 0)

entropyys(A) =1 — =1-0=1.

Example 3. Let (I%,d) be a metric space, X = {1,279} a set and A = (0, 1),
B = (1,0) and D = (1,1) three fuzzy sets of X. Then, we have:

13



d(C, A)
d(C. D)

entropyqs(A) =1 — =1-1=0,
where d = I' or d = I2.

Similarly
entropyq(B) = entropy.(D) = 0,

where d = [ or d = I2.

For the NTV metric [ we have

I(C, A 2 1
entropy(A) =1 — l((C @)) =1 3= 3
1
entropy,(B) = 3
and
I(C,D) 1 1
entropy, (D) =1 — 1C.0) =1- 5= 5

We see that for points at the corners of I?, NT'V metric does not result zero
values as is the case for metrics [' or [2.

Example 3. Consider the sequences employed also by Sadegh-Zadeh in Sadegh-
Zadeh K. (2000):

s;=UACUGU tyrosine/cysteine

This point belongs to the 24-dimensional unit cube and it corresponds to a
corner in I?*. Following the methodology of Torres and Nieto Torres A. et al.
(2003) we calculate the frequencies (fractions) of the nucleotide at the three
base sites in order to obtain their fuzzy representation in the I'? hyperspace.
The corresponding results appear in tables 1a and 1b. Note that the entropy
in 1?* is
entropyp (s1) = entropyz(s1) =0
and
entropy,(si1) = 0.2,

In the 7'? space the frequencies give a point in the I'? space :

F(s1) = (1,0,0,0,0,0,0.5,0.5,0.5,0.5,0,0).

Note that now we identify s; in I** and f(s;) in I'%

If C = (0.5,...,0.5) € I'% then, we have the following entropies for the Eu-
clidean metric
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&

*(s1,C
entropyz(s;) =1 — B, C) =1—- — ~(.183503,

1*(C,0) V3

Hamming metric,

l1 (S], C) 1
entropyp (S]) =1- m = g ~ 0333333,
and NTV metric
l(S],C) 5
ent s$1)=1- = — ~ 0.384615.
entropy(s1) 1(C, ) 13

We can see that there is a difference in the results when dealing with EPS.
This subtlety will be analyzed with further results.

Example 4. Consider the sequences:
$9=CACUGU histidine/cysteine
s3=CUCUGU leucine/cysteine
s4=CAUUGU histidine/cysteine
s5=CAGUGU glutamine/cysteine
s¢=CAAUGU glutamine/cysteine

These are points in a 24-dimensional unit cube since they are made of 2
triplets. Following the methodology of Torres A. et al. (2003) we calculated
the frequencies (fractions) of the nucleotides at the three base sites in order to
obtain their fuzzy representation in the I'? hyperspace. The entropy in the 1?4
is again zero as there is no uncertainty concerning the chemical composition.
However when dealing with FPS results will be different. In the case of FPS
zero entropy means maximum order we have the same triplet all along the
genetic sequence.

The above sequences are represented in the 1'% space as (see Nieto J.J. et al.
(2006)):

s5 = (0.5,0.5,0,0,0,0,0.5,0.5, 0.5, 0.5, 0, 0),
s3 = (0.5,0.5,0,0,0.5,0,0,0.5,0.5,0.5, 0, 0),
1= (0.5,0.5,0,0,0,0,0.5,0.5,1,0,0,0),
ss = (0.5,0.5,0,0,0,0,0.5,0.5,0.5, 0,0, 0.5)
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and
s¢ = (0.5,0.5,0,0,0,0,0.5,0.5,0.5,0,0.5,0).

The results of entropy using the various metrics are summarized in Table 2.

Table 2. entropy values for sequences sy, s3, 54, S5, S¢ using the metrics [, [!
and [? calculated in FPS.

metric S9 S3 Sy S5 S6

12 0.292893 | 0.292893 | 0.183503 | 0.292893 | 0.292893

It 0.5 0.5 0.333333 0.5 0.5
l 0.5 0.5 0.384615 0.5 0.5

S9, S3, S4, S5 and sg present the same entropy results although the exact value
changes depending on the metric used and only s4 presents different entropy
which is lower. In fact ss, s3, s5 and sg, have the same number of coordinates
being equal to 0.5 and all the others 0, while s, has only four coordinates
equal to 0.5, one equal to 1 and all the others equal to 0.

Example 5. Now consider the following sequences:
s7=UACUAC
ss=UAGUAU
s=UACUCG

which correspond in the FPS respectively to

s = (1,0,0,0,0,1,0,0,0,0,1,0)

ss = (1,0,0,0,0,1,0,0,0.5,0,0,0.5),

s9 = (1,0,0,0,0,0.5,0.5,0,0,0,0.5,0.5).

The corresponding entropy values appear in Table 3. Note in the first one, s7,
the same triplet UAC is repeated all along the sequence. In the second one,
sg, the dinucleotide UA is repeated at the same base positions.

Table 3. Calculated entropy values for sequences s7, sg and sq using the
metrics [, I and 2.
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metric | s7 Sg Sg

12 0 | 0.087129 | 0.183503
I 0 | 0.166667 | 0.333333
l 0.2 | 0.285714 | 0.384615

The program to compute the entropy using these three metrics is available on
request from the authors.

As we know from physics, entropy is a measure of the order/disorder of the
system, which represents the degree of complexity in order to describe the
system. In the case where we have repetition of the same triplet (as it is
the case for UAC in sequence s7) we have maximum order resulting in zero
entropy. In the case where we have repetition of the same dyad like UA in
sequence sg we have a slightly higher entropy and in other cases like sequence
sg entropy increases further.

We remind here that there is a probabilistic definition of entropy for signals
related to thermodynamics see Shannon, C.E. (1946)). This classical measure
of entropy is defined as

H=-> pjlog,(pj)

where p; are the non-zero probabilities of a signal to have a given value.

Applying this definition in the case of selected polynucleotides as represented
in the FPS the role of p; is played by the non-zero coordinates of the polynu-
cleotide. In this case for the entropy of s7, sg and sg we have

H(s7) =0,

H(sg) =1
and

H(sg) =2

What is of interest is that sequence s; which corresponds to the most ordered
sequence results in zero entropy. In the other two sequences we have increasing
entropy as in the case of definitions based on metrics given above. It is also
remarkable that the ratio of entropies of sequences sg and sg equals 2 in both
cases: probabilistic entropy and entropy based on metrics.

Example 6. Consider the following sequences with three triplets

r1 = UACUACUAC
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ro = UACUACUAG

rs = UACCAAUAG

represented in the I**'2 = I3 space as

ri = (1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0, 1,0)

rs = (1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,1)
rs = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1).

The entropy in the I3¢ space is

entropyy(r1) = entropyq(re) = entropyq(rs) =0,
where d = 1! or d = [?, and

entropy,(r1) = entropy,(re) = entropy(rz) = 0.2.
However in the FPS representation the entropy of the sequences would not
result zero values. In fact zero values would be reproduced only for the se-
quences where the same triplet is repeated all along the sequence, for the
second where we have repetition of the dyad UA at the same base positions
entropy increases and is higher in the third case. Following the methodology
of Torres A. et al. (2003) we calculated the frequencies (fractions) of the nu-

cleotides at the three base sites in order to obtain their fuzzy representation
in the I'? hyperspace:

r = (1,0,0,0,0,1,0,0,0,0,1,0)

ry = (1,0,0,0,0,1,0,0,0,0,2/3,1/3)

rs = (2/3,1/3,0,0,0,1,0,0,0,1/3,1/3.1/3)

The corresponding entropy values are summarized in Table 4.

Table 4. Calculated entropy values for sequences 7y, ro and r3 using the
metrics [, I and [2.
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metric | 7 79 r3

12 0 | 0.077042 | 0.206508
I 0 | 0.111111 | 0.277778
I 0.2 | 0.255814 0.35

Remarks. (1) In the case of large sequences the maximum entropy would cor-
respond to the characteristic case in which we have equiprobable distribution
of all alphabet letters at all three bases. This would correspond to the point.

E = (0.25,0.25,0.25,0.25,0.25,0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25)

in the FPS representation. Its entropy in the metric /? is

I*(E,C V12 -.0.25?
entropy;(E) =1 — F(B,0) =1—-——=——=05

2(C,0) V12-0.52

The entropies obtained by the use of metrics I* and [ are:

I'(E,C)
entropyp(E) =1- W =0.5
and
L, UEC)
entropy(E) =1 — 0 0.5

A point in the FPS corresponds to a corner of the hypercube when we have
the same triplet all along the sequence. If we have maximum order, the point
occupies a corner of the hypercube. The bigger the distance from the corners,
the bigger the entropy, and thus the bigger the complexity to describe the
sequence. In the probabilistic definition of entropy, for the point £ we have:

H(E) =6
which is the maximum possible value in 2.

(2) If A= (ay,...,a;9) € I'*, C = (0.5,...,0.5) € I'?, and ) = (0,...,0) € I'?,
then
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12(C, A)
2(C.0)
V(a1 —05)2 + ..+ (a1 — 0.5)?
V(05 =002+ .+ (05— 0)?
V(a1 —05)2 + ...+ (a1 — 0.5)?
% .

entropyp(A)=1—

In FPS we have that

a; + ... +app = 3.
This comes out from the fact that each a; corresponds to the frequency of
appearance of a letter of the DNA (or RNA) alphabet at each triplet base
(first, second, third). For each base these probabilities which correspond to a
quadruplet of a; sums to 1, so for the three bases this results in 3.

Using a simple program of Mathematica (see Appendix 1) we see that the
map

V0@ —0.5)2+ .+ (a1g— 0.5)2
V3

entropy;(A) =1 —

with the restriction
aq + ...+ 19 = B
we have a maximum of the entropy at the point F.

As above, we can see that

ll(C, A) —1_ |(11 - 05| —+ ...+ |(112 - 05|
e, 0) 6

entropyp(A) =1 —

with the restriction
ay + ...+ a2 = 3.

have a maximum (of entropy) at the point E.

Example 7. Following the methodology of Torres A. et al. (2003), we consider
the point

(0.1632,0.3089, 0.1724, 0.3556, 0.2036, 0.3145, 0.1763, 0.3056, 0.1645, 0.3461, 0.1593, 0.3302) € I'2.

which corresponds to the fuzzy set of frequencies of the genome of M.tuberculosis
(see Torres A. et al. (2003)), the point

(0.1605, 0.2420, 0.2600, 0.3374, 0.3116, , 0.2286, 0.2846, 0.1752, 0.2619, 0.2568, 0.1831,0.2981) € I'2.

which corresponds to the fuzzy set of frequencies of the genome of F.coli, and
the point
(0.1706,0.1605,0.3241,0.3446,0.3282,0.1735,0.3478,0.1504,0.2139,0.2455, 0.3052,0.2352) € 2
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which corresponds to the fuzzy set of frequencies of the genome of A.aeolicus
(see Nieto J.J. et al. (2006)).

We also compare the entropies of the Mycoplasma Pneumoniae using our def-
initions of entropy. In tables 5a and 5b we present the results concerning the
representation of Mycoplasma Pneumoniae in FPS.

Table 5a. The number of nucleotides at the three base sites of a codon in the
codon sequence of Mycoplasma Pneumoniae.

T C A G
First base | 48995 | 42525 | 78622 | 70293

Second base | 73438 | 46554 | 86585 | 33858

Third base | 77233 | 54942 | 62523 | 45737

Table 5b. Fractions of nucleotides at the three base sites of a codon in the
coding sequences of Mycoplasma Pneumoniae.:

T C A G

First base 0.2038 | 0.1769 | 0.327 | 0.2923

Second base | 0.3054 | 0.1936 | 0.3601 | 0.1408

Third base | 0.3212 | 0.2285 | 0.26 | 0.1902

Thus, the genome of M.pneumoniae is represented in the I'? hypercube by
the point

(0.2038, 0.1769, 0.327, 0.2923, 0.3054, 0.1936, 0.3601, 0.1408, 0.3212, 0.2285, 0.26,
0.1902)€ I'2.

Table 6. Entropy values for sequences M.tuberculosis, E.coli, A.aeolicus and
M.pneumoniae using the metrics [, [' and [? calculated in FPS.

metric | M.tuberculosis E.coli A.aeolicus | M.pneumoniae
12 0.475876 0.488814 | 0.478769 0.482055
It 0.500033 0.499967 | 0.499917 0.499967
l 0.500033 0.499967 | 0.499917 0.499967

The corresponding entropies of all long polynucleotides appear in Table 6. We
observe that metrics give the same numerical results while the NTV metric
gives different results and can differentiate in a more clear way the complexity
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of polynucleotides in their FPS representation.

Remark. In table 7 we compare the results obtained using the three above
entropy definitions for the A.aeolicus and E.coli with the results of Menconi
Giulia Menconi (2005) where they computed the complexity K of a genome
and the probabilistic entropy H; (for more details on the notions of K and H;
see Giulia Menconi (2005)). What is of interest is that in the case of entropy;
and entropy, results are practially identical, while entropy;> results in a small
but identifiable difference between the two genomes in the same sense like K
and H,.

Table 7. Comparison of results obtained using entropy;, entropy;, entropy;
with the results of complexity K and probabilistic entropy H; of Giulia Men-
coni (2005) in the case of A.aeolicus and E.coli.

Genome K H, entropy;2 | entropy; | entropy
A .aeolicus | 1.883 | 1.976 0.478 0.499 0.499
E.Coli 1.893 | 1.987 0.489 0.499 0.499

3 Clarity and Fuzzy Polynucleotide Space

Definition 2. Let d be a metric in I", X = {z1,...,2,} a set and A =
(a1, ...,a,), where a; € [0,1], afuzzy set of X. The clarity of A, with respect
to the metric d, denoted by elarity,(A) is defined to be the number

1 — entropyq(A),

that is
claritys(A) = 1 — entropya(A).

Example 11. Let X = {1, 25} be a set, A = (0.4,0.8) a fuzzy set of X and
consider the metric space (I%,1'). Then, we have

clarityp (A) =1 — entropyp (A) =1 — 0.6 = 0.4.
Also, using the definition of clarity given in Sadegh-Zadeh K. (2000) we have:

3 4
clar(A) =1 —ent(A) =1 — == 0.5714.
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We observe that
clarityp (A) = 0.4 # clar(A) = 0.5714.
Theorem 3. Let X = {xy,....,x,} and A = (ay, ..., a,) a fuzzy set of X. Then,
the following statements are true:
1) entropya(A), clarity,(A) € [0,1].

2) entropyy(A) =1 — clarityy(A).

3) |
clarityn (4) = . E?C)C)
4) |
clarityp (A) = QZ(;?C)
5)
clarityp (A) = c(C) —Cziéz;l NA°)
6) ( |
(AL ML)
clarity,(A) = VR
7)

clarity,(A) = 1(A, C).

Proof. Follows by Theorems 1 and 2 and by fact that clarity,(4) = 1 —
entropyq(A).

Remark. According the Definition 2 and Theorem 3 we have a geometrical
interpretation of clarity as illustrated in Figure 1. The clarity of a fuzzy set
A is the Euclidean distance a = [?(A, C) divided by the distance b = I?(C, ),
that is a

clarityp (A, B) = 7

Example 12. (1) Let X = {21,252} be a set and A = (0,1), B = (1,0) two
fuzzy sets of X. Then

entropyq,(A) = entropyqs(B) = 0

and
clarityqy(A) = clarityy(B) = 1,
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where d = [' or d = [2. Also,

1
entropy(A) = entropy,(B) = 3

and

1 2
clarity,(A) = clarity,(B) =1 — 3= 3

(2) Let X = {2y,...,2,} be a set and A a fuzzy set of X such that A = C.
Then entropyqs(A) = 1 and clarityq(A) = 0.

(3) We consider the following polynucleotide sequences:
s1=UACUGU (tyrosine/cysteine)

s9=CACUGU (histidine/cysteine)

s3=CUCUGU (leucine/cysteine)

We have the following representations in the I?* space:

sy = (1,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0)
sy = (0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0)
s3 = (0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,0,0,0)

Using the distances {2, [' and [ for the clarity of s, 59, 53 € I?* we obtain the
results for entropy values that are summarized in Table 8.

Table 8. Calculated clarity values for sequences s;, s, and s3 using the metrics
I, 1" and /.

metric | S; | S | S3

2 1|11

It 1 1 1
l 0.8 1081038

The results are consistent with the fact that in the case of the I'2** space (in

this case of I?*) all above sequences are known with precision. However if we
use their representation in the I'? dimensional FPS results the results present
some differences.

Using the distances /2, I! and [ for the clarity of s, 55,53 € I'? we have the
results that appear in Table 9.:
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Table 9. Calculated clarity values for sequences s;, s, and s3 using the metrics
I, 1" and /?.

metric S1 S9 S3
1> ] 0.816497 | 0.707107 | 0.707107
It 0.66667 0.5 0.5
l 0.67385 0.5 0.5

Again, results indicate the degree of complexity necessary for the description
of the polynucleotides.

(4) We consider the following fuzzy set of frequencies of the genomes of
M.tuberculosis, E.coli, A.aeolicus. and M.pneumoniae. Using the distances 12,
I' and [ for the clarity the corresponding results are summarized in Table 10.

Table 10. Computed clarity for sequences M.tuberculosis, E.coli, A.aeolicus
and M.pneumoniae.

metric | M.tuberculosis E.coli A.aeolicus | M.pneumoniae
12 0.524124 0.511186 | 0.521231 0.57945
It 0.499967 0.500033 | 0.500083 0.500033
l 0.499967 0.500033 | 0.500083 0.50

4 Conclusions

We present results concerning the notions of fuzzy entropy and clarity of a
polynucleotide. We propose a new definition of entropy and we consider sev-
eral applications using different metrics in the case of I'2** space, where k
is the number of codons of the polynucleotide. We also examine the behavior
of these notions when those polynucleotides are projected in the I'? Fuzzy
Polynucleotide Space. We observe that in both cases we have a different in-
terpretation of the obtained results for entropy. While in the former case low
entropy means that we are close to a corner of the 12xk space in the latter
case it means that we have repetition of the same triplet or part of a triplet
all along the sequence of the polynucleotide. However, results in both cases
show, as expected, that entropy is related to the complexity of description of
the sequence. The value of entropy/clarity is representative of the complexity
of description of the polynucleotide. Similar entropy means similar degree of
complexity. We also apply the definition of probabilistic entropy in the case
of selected polynucleotides and we observe that the entropy based on metrics
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presents similar behavior with that of probabilistic nature.

Further studies are in progress in order to investigate in more detail the prop-
erties of these notions and their biological implications since it seems that the
use of FPS space can lead to a reduction of the necessary information and
the use of appropriate metrics can be used to differentiate the degree of their
complexity.
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Appendix 1

In[l]:=

. i] -0.5)? 12
y 2 (ali] ) , >hali] =3}, Rrray[a, {12}]]
73 2

HMaximize[{1-

Cut[1]=
(0.5, {a[l] = 0.25, a[2] - 0.25, a[3] =+ 0.25, a[4] = 0.25, a[5] »0.25, a[6] — 0.25,
a[7] = 0.25, a[8] - 0.25, a[9] = 0.25, a[l0] —0.25, a[ll] = 0.25, a[l2] = 0.25!1
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