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Marcus-Lushnikov processes, Smoluchowski’s and Flory’s
models

Nicolas FOURNIER* and Philippe LAURENCOTT

Abstract

The Marcus-Lushnikov process is a finite stochastic particle system in which each particle
is entirely characterized by its mass. Each pair of particles with masses x and y merges into
a single particle at a given rate K(x,y). We consider a strongly gelling kernel behaving as
K(z,y) = 2%y + zy® for some « € (0,1]. In such a case, it is well-known that gelation occurs,
that is, giant particles emerge. Then two possible models for hydrodynamic limits of the
Marcus-Lushnikov process arise: the Smoluchowski equation, in which the giant particles are
inert, and the Flory equation, in which the giant particles interact with finite ones.

We show that, when using a suitable cut-off coagulation kernel in the Marcus-Lushnikov
process and letting the number of particles increase to infinity, the possible limits solve either
the Smoluchowski equation or the Flory equation.

We also study the asymptotic behaviour of the largest particle in the Marcus-Lushnikov process
without cut-off and show that there is only one giant particle. This single giant particle
represents, asymptotically, the lost mass of the solution to the Flory equation.

Keywords : Marcus-Lushnikov process, Smoluchowski’s coagulation equation, Flory’s model, gela-
tion.

MSC 2000 : 45K05, 60H30.

1 Introduction

We investigate the connection between a stochastic coalescence model, the Marcus-Lushnikov pro-
cess, and two deterministic coagulation equations, the Smoluchowski and Flory equations. Recall
that the Marcus-Lushnikov process [7, 8] is a finite stochastic system of coalescing particles while
the Smoluchowski and Flory equations describe the evolution of the concentration c¢(t,z) of par-
ticles of mass x € (0,00) at time ¢ > 0 in an infinite system of coalescing particles. Both models
depend on a coagulation kernel K(x,y) describing the likelihood that two particles with masses
x and y coalesce. When K increases sufficiently rapidly for large values of x and y, a singular
phenomenon known as gelation occurs: giant particles (that is, particles with infinite mass) appear
in finite time (see Jeon [6], Escobedo-Mischler-Perthame [3]). There is however a clear difference
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between the Smoluchowski and Flory equations: for the former, the giant particles are inert, while
for the latter, the giant particles interact with the finite particles.

When K(x,y)/y — 0 as y — oo for all x € (0,00), it is by now well-known that the Marcus-
Lushnikov process converges to a solution of the Smoluchowski equation when the number of
particles increases to infinity (see, e.g., Jeon [6] and Norris [9]). On the other hand, it has been
shown in [5] that, if K(z,y)/y — l(z) € (0,00) as y — oo for all € (0,00), then the Marcus-
Lushnikov process converges to a solution of the Flory equation.

Our aim in this paper is to study more precisely how this transition from the Smoluchowski
equation to the Flory equation arises in the Marcus-Lushnikov process. For a coagulation kernel
K of the form K(z,y) ~ zy® + =%y for some a € (0,1], we consider a Marcus-Lushnikov process
starting with n particles, with total mass m,, where coalescence between particles larger than
some threshold mass a,, is not allowed. We show that, in the limit of large n, m,, and a,, this
Marcus-Lushnikov process converges, up to extraction of a subsequence, either to a solution of
the Flory equation or one of the Smoluchowski equation, according to the behaviour of a,,/m,, for
large values of n.

We also study the behaviour of the largest particles in the Marcus-Lushnikov process without
cut-off, and show that, in some sense, the total lost mass of the Flory equation is represented by
one giant particle in the Marcus-Lushnikov process. Aldous [1] proved other results about giant
particles for some similar (but more restrictive) kernels. We in fact obtain a much more precise
result about the size of the largest particle after gelation, but we are not able to extend to our
class of kernels his result about the largest particle before gelation.

2 Main result

Throughout the paper, a coagulation kernel is a function K : (0,00)? + [0, 00) such that K(z,y) =
K(y,z) for all (z,y) € (0,00)?. We denote by M}L the set of non-negative finite measures on
(0,00). Let us first recall the definition of the Marcus-Lushnikov process.

Definition 2.1 Consider a coagulation kernel K, and an initial state po = m™*> 1 | 85, with
n>1, (x1,....,2,) € (0,00)" and m = x1 + ... + ©,. A cadlag M}L-wlued Markov process (pt)i>o0
is a Marcus-Lushnikov process associated with the pair (K, o) if it a.s. takes its values in

k k
1
S(nvm) = {E Z‘Syn 1 S k S n, (yi)lﬁigk € (Oa OO)k,Zyi = m} (21)

i=1 i=1
and its generator is given by

K (yi,vj)

2m

LI p(g0) = 30 [ ™ Gty = 0y = 80,)] = w14}
7]

for all measurable functions v : ./\/l;? — R and all states p =m™1! Zle 3y, € S(n,m).

This process is known to be well-defined and unique, without any assumption on K, see, e.g.,
Aldous [2, Section 4] or Norris [9, Section 4].



We now describe the Smoluchowski and Flory coagulation equations and first introduce the class of
coagulation kernels to be considered in the sequel. As already mentioned, we will deal with kernels
of the form K(z,y) ~ z%y + axy® for some « € (0,1]. More precisely, we assume the following:

Assumption (A4,): The coagulation kernel K is continuous on (0,00)? and there are a € (0,1],
1 € C((0,00)), and positive real numbers 0 < ¢ < C' < oo such that

lim K(z,y)/y = (z),

Y—0o0

and
c (% +ay”) < K(z,y) <C (% + 2y”) (2.3)

for all (z,y) € (0,00)?. This implies that ¢ z® < [(x) < C z“ for all z € (0, 00).

For such coagulation kernels, weak solutions to the Smoluchowski and Flory coagulation equations
are then defined as follows:

Definition 2.2 Consider a coagulation kernel K satisfying (Ay) for some a € (0,1] and pg € M}L
such that (po(dz),1 4+ x) < 00. For ¢ : (0,00) — R, set

Ap(x,y) = bz +y) — d(z) — d(y). (2:4)
A family (p)e>o0 C M'}' such that t — (p(dx),x) and t — (u(dx),1) are non-increasing is a

solution to:
(i) the Smoluchowski equation (S) if

) = {osd) 4 [ nn(do)pe (). Ko, Ao(e. ) ds (2.5)

for all ¢ € C.([0,00)) and t > 0;
(i1) the Flory equation (F) if

) = 0.+ [ (o)) Ko, )Ao(e. ) ds
- [ (). @) Guolde) (). ) s (2.6

for all ¢ € C.([0,00)) and t > 0. Here and below, C.([0,00)) denotes the space of continuous
functions with compact support in [0, 00).

Note that the assumptions on K, (u;)¢>0 and ¢ ensure that all the terms in (2.5) and (2.6) make
sense.

Applying (2.5) (or (2.6)) with ¢(x) = = (which does not belong to C.(]0,00))) would clearly give
(e, @) = (uo, @) for all ¢ > 0. Hence the total mass (u(dx), x) is a priori constant as time evolves.
However, for coagulation kernels satisfying (A, ), the gelation phenomenon (that is, the loss of
mass in finite time, or, equivalently, the appearance of particles with infinite mass) is known to
occur [3, 6], which we recall now, together with other properties.



Proposition 2.3 Consider a coagulation kernel K satisfying (Ay) for some o € (0,1] and po €
M}' such that {uo(dx), 1) < oo and (uo(dx),z) = 1. For any solution (i)i>o0 of the Smoluchowski
or Flory equation, the gelation time

Tyer :=inf{t >0 : (p(dz),z) < {uo(dz),z)} (2.7)
is finite with the following upper estimate (here c is defined in (Ay))

<u0(dx),xl_o‘>

T <
9l = T 1 = 2-e)c

If (ue)i>0 solves the Flory equation, then t — (u(dx),x) is continuous and strictly decreasing on
(Tgelv OO):

oo

lim (u:(dz),z) =0 and / {ps(dz),z'T*) ds < o0
t—o00 Tyer+e

for all e > 0.

The proof that gelation occurs is easier under (A,) than the general proof of Escobedo-Mischler-
Perthame [3], and we will sketch it in the next section. This result expresses that particles with
infinite mass appear in finite time. Observe next that equations (S) and (F') do not differ until
gelation. The additional term in equation (F') represents the loss of finite particles with mass x,
proportionally to I(z) and to the mass of the giant particles (uo(dz) — ps(dz), z).

Note that we are not able, and this is a well-known open problem, to show that ¢ — (u:(dx),x) is
continuous at ¢ = Tge;.

We finally consider a converging sequence of initial data.

Assumption (I): For each n € N\ {0}, we are given pff = m, ' > " | 6, for some (27, ..., z]!) €
(0,00)™ and my, = 2 + ... + z'. We assume that there exists po € ./\/l}r such that (uo(de),z) =1
and lim,, (uf, @) = (1o, @) for all ¢ € Cp([0,0)), Cp([0,0)) denoting the space of continuous and
bounded functions on [0, 00). In addition,

lim Sup (16 M(g,e) =0.

We will actually not use explicitly all the assumptions in (I) and (A4,): some are just needed to
apply the results of [5]. We now state a compactness result which follows from [5].

Proposition 2.4 Consider a coagulation kernel K satisfying (As) for some a € (0,1] and a se-
quence of initial conditions (ul)n>1 satisfying (I). For each a > 0 and n > 1, we put K, =
K N g,a)x(0,q) and denote by (uy"*)e>0 the Marcus-Lushnikov process associated with the pair
(Ka,pd). The family {(p"")e>0}n>1,a>0 5 tight in ID)([0,00),M;), endowed with the Skorokhod

topology associated with the vague topology on ./\/l}|r

This proposition is proved in [5, Theorem 2.3-i] (with the choice of the subadditive function ¢(x) =
V2C(1 + x), for which K (x,y) < ¢(z)¢(y)). Actually, it is stated in [5] without the dependence
on a, but the extension is straightforward.

Notice here that, if a > m,,, the Marcus-Lushnikov process (p;"“);>0 reduces to the standard
Marcus-Lushnikov process associated with (K, ug).



We next recall that the space D([0, 00), M}L) is endowed with the Skorokhod topology associated
with the vague convergence topology on M}L (see Ethier-Kurtz [4] for further information), and
denote by d a distance on M}r metrizing the vague convergence topology.

We may finally state our main results. Recall that we assume the total mass of the system to be
initially (uo(dz),z) = 1.

Theorem 2.5 Consider a coagulation kernel K satisfying (Ay) for some a € (0,1] and a se-
quence of initial conditions (uf)n>1 satisfying (I). Consider also a sequence (an)n>1 of positive

real numbers such that lim, a,, = oc. For each n > 1, let (,u?’a")tzo be the Marcus-Lushnikov
process associated with the pair (K, ,pg) where K, == K 1(04,1x(0,a,] and consider the weak

limiat (pg)i>0 in D([0, oo),/\/l}') of a subsequence {(u?k’an" )tzo}k>1' Then (w)i>o belongs a.s. to

C([O,oo),/\/l;f), and using the Skorokhod representation theorem, we may assume without loss of
generality that a.s.

lim sup d(u; " “"™* ) =0 for all T >0.
k—o0 [0,7]

1. Assume that a,, = m,,.
(1) Then (pe)i>o0 solves a.s. the Flory equation with coagulation kernel K and initial condition
Ho-
(i1) Denote by M{*(t) > M (t) > ... the ordered sizes of the particles in the Marcus-Lushnikov
process (p""" )0, and define the (a priori random) gelation time Tye; of (pt)e>0 as in (2.7).
Then for alln > 0 and 8 > 0,

sup M—(l—wt(dwm)” 0, (2.8)

t€[Tyer+m,00) | Mny,

lim F

k—o0

* 1
lim limsup P / D M (s) 1y 0) (M (5)) ds | > B| =0. (2.9)

b—o00 k—o00 Tgel mnk i>2

Furthermore, there is a positive constant L depending only on K such that, for alln > 0 and

b>1,
M (t
lim £ sup M@ 0, (2.10)
k—o0 t€0,Tyer—n) Mng
Toet ) pim 2 L
limsup F / <u5 ' ""(dx),x]l[boo)(x)> ds| < —. (2.11)
k—oo 0 ’ be

2. Ifan/m, — 0 asn — oo, then (p;)i>0 solves a.s. the Smoluchowski equation with coagulation
kernel K and initial condition p.

8. If an/myu — v € (0,1) as n — oo, then (u¢)iejo,r,) solves a.s. the Flory equation with
coagulation kernel K and initial condition pg where

Ty :=inf{t >0 : 1— (u(dx),x) >~} (2.12)



Point 1-(i) is proved in [5, Theorem 2.3-ii]. Remark that (2.10) is almost obvious while (2.11) gives
an estimate on the tail of the mass distribution before gelation. The most interesting estimate
is of course (2.8) which shows that, for ¢ > Ty, the largest particle in the Marcus-Lushnikov
process without cut-off occupies a positive fraction of the total mass of the system with a precise
asymptotic. Finally, (2.9) quantifies the fact that there is only one giant particle after gelation:
the other particles are rather small. Other results about the largest particles for the kernel

2(xy) T

((E + y)l-i-oz _ xl-i—oz _ yl—i-a ’

K(:E,y) =

which satisfies (A, ), were obtained by Aldous [1]. He however did not show that, after gelation,
the size of the largest particle is of order em,,.

Point 2 seems to be new, and quite interesting. Indeed, we allow arbitrary cut-off sequences (a,,)
which increase more slowly than (my,).

Finally, Point 3 can be explained in the following way: assume that a, = ym,, for all n > 1 and
some v € (0,1) and that there is only one giant particle in (u;"""");>0. In that situation, we
then clearly have (1" )iejo,rn) = (111" )eejo,rp), where T{* is the first time at which the giant
particle has a size greater than ym,, i.e., it occupies a fraction v of the total mass of the system.
Thus, (""" )¢efo,rp] should converge to (ut)iejo,r,), Where p solves the Flory equation, and Ty
is the first time for which the giant particle occupies a fraction v of the total mass in the Flory
model.

The proof of Theorem 2.5 is given in Section 4, after establishing some properties of solutions to
the Smoluchowski and Flory coagulation equations in the next section. The final section of the
paper is devoted to numerical illustrations.

3 Properties of solutions to (S5) and (F)

Throughout this section, K is a coagulation kernel satisfying (A4,) for some a € (0,1] and po
belongs to M}r with total mass (uo(dz),z) = 1.

Proof of Proposition 2.3. Let (u:):>0 be a solution to the Smoluchowski equation (S) or the
Flory equation (F'), and define T,¢; € (0,00] by (2.7). Classical approximation arguments allow
us to use (2.5) and (2.6) with ¢(x) = 2!~?. Indeed, it suffices to approximate ¢ by a sequence of
functions in C.(]0,00)) and to pass to the limit, using the first inequality in

min(z,y)! " > 27 + ¢y — (2 +y)' T > (2 - 217%) min(z,y)' ", (3.1)

which warrants that K(z,y)|A¢(x,y)| < 2Czy by (A,). We deduce from (2.5), (2.6), and the
second inequality in (3.1) that, for all ¢ > 0,

(pe(de), =) < (po(dz),z'~*)

_¥/0 <,us(dx),us(dy),K(z,y)min(m,y)17°‘> ds.

By virtue of (2.3), K(z,y) min(z,y)!™® > cxy, whence

(1 _QQ)C/O (us(dz),x)? ds < {po(dz), z'~*) (3.2)



for all t > 0. Since (us(dx), z) = (uo(dx),z) =1 for all s € [0, Tye), we realize that

Tyel
(=2 = (1=2 [ G fdo).a)? ds < (u(de).a =)

whence
{po(dx),z' =)
(1-279¢
It also follows from (3.2) that ¢t — (u.(dx),z) belongs to L?(0,00) which, together with the
monotonicity and non-negativity of ¢t — (u:(dz), z) implies that (u:(dz),z) — 0 as t — oco.

qul <

We now assume that (u)i>0 solves the Flory equation (F') and prove that, for all € > 0,
/ {pe(da), x'T) dt < oc. (3.3)
Tgel+5

To do so, we apply (2.6) with the choice ¢ 4(x) = min(z, A) for some positive real number A. Since
A¢p 4 is non-positive, we get

(1, pa) < (po, Pa) —/0 (s (de), min(z, A)l(x)) (1 = (s (dx), 2)) ds.

Since 1 = (uo(dx), x) > (us(dx), x) we may let A — oo and t — oo in the above inequality and use
the Fatou lemma to deduce that

| tnelde),al(@) (1 = {pe(do) ) ds < 1 (3.4)
0
Let € > 0. On the one hand, putting

0c = tZ:lFIglchJra {1 = fueld), )}

it follows from the definition (2.7) of Tye; and the monotonicity of ¢t — (u¢(dx), ) that 6. > 0. On
the other hand, zl(z) > cz'*® by (A,). We therefore infer from (3.4) that

e 1
ps(dx), ') ds < — |
Agel“ri < > 065

whence (3.3).
We now check that ¢ — (u,(dx),z) is continuous on (Tye;,00). Using once more (2.6) with the
choice ¢4(x) = min(z, A), we obtain for Ty < s <t

1

o= sa6) = 5 [ (Ao (). K (2. 9) A0 ) dr

—/ (ur(dz), pa(2)l(2)) (1 = (pr (dz), ) dr.

Clearly A¢ga(z,y) — 0 as A — oo for all (z,y) € (0,00)? while (4,) warrants that

K(z,9)|Ada(z,y)| < C(z*y + zy®) min(z, y) < C(z" ¥y + zy' ).



Using (3.3) and the Lebesgue dominated convergence theorem, we obtain

(o) ), 2) = = [ Gueldo). al(a) (1 = el ) dr. (3.5)

Using again (3.3) and that | (u,(dz), zl(z)) (1 — (u-(dz),2))| < C (ur(dx),z*T*) by (As), we
conclude that t — (us(dx), x) is continuous on (Tger, 00).

It remains to check that ¢ — (u¢(dx),z) is strictly decreasing on ¢t € (Tger,00). According to
(3.5) this is true as long as p, # 0 for Ty < s < 7 < t: it thus suffices to show that pu; # 0
for all ¢ > 0. For this purpose, we take ¢(z) = x1 (o, 4)(2) in (2.6) where A > 0 is chosen so that
{po(dz), x1 o aj(x)) > 0 (such an A always exists as (uo(dz),z) = 1). Thanks to (2.3), we get

— (e, ) > — (e (da) pe (dy ), K (2, y)2 1 0,1 (2)) — (pe(dir), 2l(x) 1o, 47 ()

> —C (puldw)pe (dy), (x°F 1y + 2y Lo ay (@) — C (e (d), Lo ay ()

> —C(A™ + A) (s, ¢) (pe(da), z + 2%) — CA* (g, §) . (3.6)
Since t — (ue(dx),x) and t — (u¢(dz), z*) are non-increasing and (uo(dzx),x + %) < oo, we
conclude that

p (e, @) > =Ca (14 (uo(dx), ) (s, ¢) > —Ca o (1e, D)

for all ¢ > 0 for some constant Cy ,, > 0. Consequently, (i, ¢) > 0 for all ¢ > 0 as the choice of
A warrants that (ug, ¢) > 0, and the proof of Proposition 2.3 is complete. O

Next, as a preliminary step towards the proof of Theorem 2.5 Point 1-(ii), we show that solutions
to the Smoluchowski and Flory coagulation equations do not coincide after the gelation time.

Corollary 3.1 Let (w)i>0 and (v)i>0 be solutions to the Smoluchowski equation (S) and the
Flory equation (F), respectively, (with the same coagulation kernel K and initial condition pyg),
and assume further their respective gelation times coincide, that is,

Tyer :=inf{t >0 : (u(de),z) < (po(dzr),xz)} =inf{t >0 : (v (dz),z) < {(po(dz),z)}.
Then, for each € > 0, there exists s € (Tyer, Tger +€) such that ps_ # vs,.

Proof. Consider € > 0.

Either ¢ — (p;(dz),2'™*) does not belong to L' (Tye; + (£/2), Tyer + €) and pi; cannot coincide
with vy on (Tye + (£/2), Tyer + €) since t — (vy(dz), z*7*) belongs to L' (Tye + (¢/2), Tyer + €)
by Proposition 2.3.

Or ¢t — (p¢(dx),z' ™) belongs to L' (Tye; + (£/2), Tyer + €) and it is not difficult to check that
this property and (2.5) entail that (u;(dx),z) = (pr,,,+(c/2)(dx), x) for t € [Ty + (/2), Tyer + €]:
indeed, take ¢4 (z) = min(z, A) in (2.5) and pass to the limit as A — oo using that A¢a(z,y) = 0
and the time integrability of ¢ — (u¢(dx),'™). Owing to the strict monotonicity of ¢ —
(vi(dx), z) established in Proposition 2.3, the previous property of p; excludes that u; = v, for all
t € (Tyer + (€/2), Tyer + €) and completes the proof of Corollary 3.1. O



4 Proof of the main results

We fix a coagulation kernel K satisfying (A,) for some a € (0,1] and a sequence of initial data
(15 )n>1 satisfying (I). Next, for a > 0 and n > 1, we put Ko(z,y) := K(2,9)1(0,q)x(0,a] and
denote by (uy"*)t>0 the Marcus-Lushnikov process associated with the pair (Kg, pfy). According
to Definition 2.1 we may write

n,a 1 . n,a n,a n,a
= m—zzsw,a(t) with M (t) > M (t) > M (t) > ... (4.1)

forallt >0,n>1,and a > 0.
Marcus-Lushnikov processes have some martingale properties, which are immediately obtained
from (2.2), see also [9, Section 4].

Lemma 4.1 For all ¢ € Li2.(0,00) and t > 0, we have

loc

(i, 8) = (ug, @) + O (6)

! / S Ko (M (5), M () Ag (M (5), M (s)) ds
iFJ

2
2m2

+

= (4 0) + 077(0) + 5 | (2 (o (), Ko, )Mo ) s
0

o [ ). Koo )G, 0) s (12)

where A is defined in (2.4), and O™%(¢) is a martingale starting from 0 with (predictable)
quadratic variation

O™ @), = o /0<uz’a<dx>u:7“<dy>,Ka@c,y)[A¢(a:,y>12> ds

2m,

_2;% /Ot <M?’a(dw),Ka(:c,:c) [Aqb(;c,;p)]2> ds.

Furthermore, if ¢ : (0,00) — R is a subadditive function, that is, ¢(x + y) < ¢(x) + P(y) for
(z,y) € (0,00)2, then t — (", @) is a.s. a non-increasing function.

We carry on with some easy facts.

Lemma 4.2 Let (an)n>1 be a sequence of positive numbers. Then any weak limit (p¢)i>o0 of
the sequence {(1;""")i>0},>, belongs a.s. to C([O,oo),/\/l;{), and both t — (i (dx),z) and t —
(ue(dx), 1) are a.s. non-increasing functions. Furthermore,

n,an

supsup (s, (dx),1 + ) = K = sup (pg (dx), 1 + x) < oo, (4.3)
n>1t>0 n

and for all ¢ € Cc([0,00)) and T > 0,

t
lim E | sup / (uy" " (dz), Kq, (z,2)Ag(z, x)) ds] =0, (4.4)
oo te[0,T] | 4Mn Jo
lim E | sup (O (¢))*| = 0. (4.5)
n—00 t€[0,T




Proof. First, if ¢ € Cy([0,00)), the jumps of (u;""", ¢) are of the form m,, *A¢(z,y) and clearly
converge to zero as n — oo since m,, — co. Hence any weak limit (u;);>0 belongs to C([0, 00), M}')
a.s.

Consider next a family (A3)p>0 of continuous non-increasing functions on (0, co) such that &y (z) =
1 for x < band Ay(x) = 0 for x > b+ 1, and a non-negative subadditive function ¢. Then, on
the one hand, ¢} is also subadditive and Lemma 4.1 ensures that ¢ — (""", $X3) is a.s. non-
increasing for all n > 1. On the other hand, since ¢X}, € C.([0,0)), it follows from the definition

of (ut)e>o0 that there is a subsequence (ng)g>1, nr — 00, such that {(<u?k’a"’“,¢é’(b>)t>o}
20) k>1
converges in law towards ({(ju, pX3))s>0 for each fixed b > 0 as k — co. Therefore, t — (uz, pXp)
is a.s. non-increasing for each b > 0. Since ({1, pX3)),~ converges to (i, ¢) as b — oo for each
t > 0, we conclude that ¢ — (u¢, @) is a.s. non-increasing. Applying this result to ¢(x) = 1 and
¢(x) = x, we obtain that both ¢ — (u:(dz), z) and t — (u(dx), 1) are a.s. non-increasing functions
of time.
Next, since = + 1 + z is subadditive, Lemma 4.1 implies that we have a.s. (u;"*"(dz),1+ z) <
(uf(dz),1+z) for n > 1 and ¢ > 0, and (u{(dz),1 + z) is bounded uniformly with respect to n
by assumption (7).
Consider finally ¢ € C.(]0,00)) with support included in [0, R] for some R > 0. By (2.3),
| Ko, (z,2)Ad(x, 2)| < 6C||¢|| L R, whence

[{u*" (dz), Ko, (2, 2) Ad(z,2))| < 6CK[4]L R as.

by (4.3), from which (4.4) readily follows since m,, — co. By a similar argument, we establish that
E[(O™(¢)),] — 0 as n — oo, which implies (4.5) by Doob’s inequality. d

We now prove a fundamental estimate which provides a control on the large masses contained in
n,a
Hyooe

Lemma 4.3 There ezists a positive real number L depending only on ¢ and « in (Ay) such that

> 1 n,a n,a n,a n,a
E /0 S M )M () (M (3)) g (M (5)) s | < 2 (4.6)

" it]
foralln>1,a>0, and b € (0,a), the M;"" being defined in (4.1).

Proof. To prove this estimate, we use (4.2) with ¢(z) = 2!~ min (z, )" for some b € (0,a). We
first notice that (uf, @) < (uf(dz),z) =1 and (u;"*, @) > 0 for all t > 0 and n > 1. In addition, ¢
is subadditive so that A¢(x,y) is always non-positive and we infer from (2.3) and (3.1) that

Ka ({E, y)A(b(:Eu y) < _(2 - 217Q)Cbaxy]l[b,a] (‘T)]l[b,a] (y)

for (z,y) € (0,00)%. Taking expectations in (4.2) and using the above inequalities, we obtain

ba K 1 n,a n,a n,a n,a
0<1-—F /OWZMZ.’ ()M (8) Ly, q) (M (5)) Lppa) (M]7%(s)) ds

iy
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for all t > 0, with 1/L := ¢(1 — 27*). We conclude the proof by letting ¢ — oo in the previous
inequality. ([

We now turn to the proof of Theorem 2.5 and first recall that Point 1-(i) is included in [5, Theo-

rem 2.3-ii] as (u;"""" )1>0 is the standard Marcus-Lushnikov process associated with (K, uf).

Proof of Point 2 of Theorem 2.5. Let (a,)n>1 be a sequence of positive real numbers sat-
isfying a, — oo and an/m, — 0 as n — oo. We consider the limit (u¢)i>0 of a subsequence

{(u:k’a"’“ )tZO}k>l in the sense that a.s.

lim sup d(; " ) =0 forall T >0. (4.7)
k—o0 [O,T]

We now aim at showing that (u¢)i>0 solves a.s. the Smoluchowski equation (S) and proceed in
two steps.
Step 1. We first deduce from Lemma 4.3 that

L an

Blf i (0, 21 ) 2 dt] < (7 (48)

forall b>0,n > 1, and T > 0. Indeed, we have a.s., for all t > 0,

1 TN,An n,an n,an n,an
m2 Z Mi ’ (t)Mj (t)]l[b,an] (Mi (t)) ]l[b,an] (Mj (t))
i)
n,an n,an 1 n,an
= (pg" " (daw) " (dy), ey Ly, () Ljp,a,) (1)) — — (p® (dz), 2L 0,1 (2))

(e (de), 2l 0, (2)) — m— (i (dx), ) (4.9)
(

N,y 2
oy (dx)7x]l[b,an]($)> -

hence (4.8) after integrating over (0,7"), taking expectation, and using Lemma 4.3 (with a = ay,).

Step 2. By Lemma 4.2, we already know that ¢ — (u:(dz),z) and ¢ — (ui(dx),1) are a.s. non-

increasing functions. Consider now ¢ € C,(]0,00)). The convergence (4.7) and the assumption
N Qn

(I) ensure that <ut ,¢> — (s, ¢) a.s. for all ¢ > 0 and (ug*, ¢) — (o, ) as k — oo.

Recalling (4.2), (4.4), and (4.5), we realize that (u);>0 solves (2.5) provided that we check that
By (t) — B(t) (for instance in L) as k — oo for all ¢ > 0, where

8]
ol
—

~+
~

(e el ) Ko (o 9) M) ) s
B = [ o)) Ko Ad(o.u) ds.

For this purpose, we consider a family (X})p~0 of continuous non-increasing functions on [0, o)

11



such that Ay(z) =1 for = € (0,b] and &(z) =0 for x € [b+ 1,00), and put

By (t, b)

B(t,b)

t
(e o ), K (o) S ) ) ) s,

/0 (s (s (dy), K () A, )Xo () Ao () .

On the one hand, it follows from (A, ), the boundedness of ¢, the bounds z* < 1 + z and

igg <,U't(d$)7 1+ ‘T> = <,U'O(dx)a I+ I> )

and the Lebesgue dominated convergence theorem that

On the other hand, for each b € (0, 00), we have K, (z,y)X)(2)X(y) = K (2, y) X ()X (y) for all
(z,y) € (0,00)? as soon as b+ 1 < a,,, the latter being true for k sufficiently large. Consequently,
since (z,y) — K(z,y)X ()X, (y)Ad(z,y) belongs to C.([0,00)?), the convergence (4.7) entails
that By (t,b) — B(t,b) for all t > 0 a.s. as k — oco. Thanks to (4,) and (4.3) we may apply the

lim B[|B(t,b) = B(1)]] = 0.

Lebesgue dominated convergence theorem to obtain that

klim E[|By(t,b) — B(t,b)]] =0 for each b>0.
—00

Finally, owing to (2.3), we have for k sufficiently large (such that a,, >b)
E[|By(t,b) — Bi(t)]]

< 8ol | [ (0 A ). K (0) (- )20 ]

< 60§~ E
< 6091~ E
+6C) ||~ E [

<6C|9llL~E

6C1 9l =

=" g

bl—a

r
(=)

B ), 50, (Wi, )

(™ ™ ), 2, (), ) ]

s (da), (1 + :c)]l(o7ank](:17)> <u" (dy), yﬂ[b,ank](y)> ds}

) 8 0,()) G () 0 ) ds] |

We then infer from (4.3), the Cauchy-Schwarz inequality, and (4.8) that, for b > 1,

E[|By(t,b) — Bi(t)]]

IN

t
1260~ | [ (1" ) 1, (0)) ]
0

1/2

IN

t 2
126C||¢||Lt'/*E [/ <ugk’a"’“ (dw),:v]l[byank](x)> ds]
0

IN

I . 1/2
126C||¢|| Lo t'/? (— +ta—’“> :

b My,

12

ps™ O (da) s (dy), 2y 0,0, () (0,0, ) () (1 = Xb(:v)?fb(y))> dS}



Since a,/m, — 0 as n — oo, we may first let kK — oo and then b — oo in the previous inequality
to conclude that

lim limsup E[|Bg(t,b) — B(t)|] = 0. (4.12)
b—=0oo koo
Combining (4.10), (4.11), and (4.12) ends the proof. O

We next complete the proof of Point 1 of Theorem 2.5.

Proof of Point 1-(ii) of Theorem 2.5. Recall that we are in the situation where a,, = my,

so that (p"*")i>0 = (""" )+>0 is the classical Marcus-Lushnikov process associated with (K, uf)

for each n > 1. Let (u¢)i>0 be the limit of a subsequence {(u?k’m"’“)po} in the sense that a.s.
= =1

lim sup d(u, """, u;) =0 forall T >0. (4.13)
k—o0 [0,T]
We already know from [5] that (u;)¢>0 solves a.s. the Flory equation. We define the (a priori
random) gelling time Tye; of (114)1>0 by (2.7) and write

N, Mn 1 . n n n
p = Z‘SM?“) with M (t) > My (t) > Mt) > ... (4.14)

forallt >0 and n > 1.

As before we denote by (X3)p>0 a family of continuous non-increasing functions such that Ay (z) = 1
for x € [0,b] and Ap(x) = 0 for z > b+ 1. We start with the proof of (2.10) which is almost
immediate. Since t — M7(t)/my, is a.s. non-decreasing and bounded by 1, it suffices to check that
P[M*(Tyes — ) > dmy, ] — 0 as k — oo for all n > 0 and 6 > 0. For this purpose, fix b > 0.
Since 1 — & > 0, it follows from (4.14) that

A () (1= (M 1))

Ny Miny, . >
(k" (da), 2 (1 = X)) = ™ ,
Nk ,Mnp Mnk,mnk t N, M,
1-— <utk k(dw),:v)(b(:v)> > 1m7()]l[b+l’°°) (Ml R (t)) .
N
For k large enough we have édm,, > b+ 1 and thus
Ny Ming, M]’flk’m"k (qul - 77) Ty Ming,
E {1 - </J’Tgez—77 (dx)7x)(b(‘r)>} > B m l H[Jmnk,oo) (Ml (Tgel - 77))
n

> P M (Ty —n) = 6] -
Now, thanks to the compactness of the support of X} and (4.13), the sequence
((rt o (d), () )

converges a.s. to (ur,,,—y(dz), zX,(x)) and is bounded by (4.3). We may then let k — oo in the
above inequality to obtain

k>1

E[1 - (ur,,—n(dz),2X,(2))] > §limsup P [M{"™*(Tge; — 1) > 6] -

k—o0
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Next, owing to the definition of Ty, the sequence ({ur,.,—y(dz), zX, (x)>)b>0 converges towards
{p1,. —n(dz),z) =1 as b — oo and is bounded by 1. Passing to the limit as b — oo in the previous
inequality entails that P [M{"*(Tye; —n) > dmy, ] — 0 as k — oo, which is the claimed result.
The limit (2.10) then follows.

We now turn to the proof of (2.11). Let b > 0. Since a,, = m,, — 00 as n — oo, we have a,, > b
for k large enough and it follows from Lemma 4.3 (with a = a,) by an argument similar to (4.9)
that (recall that all the particles represented in u?k’m"’“ are smaller than m,, by construction, see
Definition 2.1)

Tget T 1T 2
E /0 <ut k(dw),x]l[bm)(ac)> dt
L [ [ Toer 1 ng,m
< — R 2
< e +E /0 o <ut (dz),z ﬂ[b,oo)($)> dt]
L [ Tget M7 (t ng,m
< tE / L ()<ut’“’ "’“(da:),a:> dt]
0 Nk
Lo [ T M
< —+F / M) dt] . (4.15)
be 0 My,

Since M7{™*(t) < my, and T,e is a bounded random variable by Proposition 2.3, we easily deduce
from (2.10) that £ { JFoet (M7 (8) f 10 ) dt} —+0as k — oo. Thus (2.11) follows from (4.15).

We next establish (2.8) and (2.9) and split the proof into five steps. In the first two steps we show
that, for ¢ > T, at least one particle has a size of order ém,, for some § > 0. Since such a particle
is very attractive, we deduce in Step 3 that no other large particle can exist and obtain (2.9). We
then conclude in the last two steps that, for ¢ > T, this single giant particle is solely responsible
for the loss of mass and obtain (2.8).

Step 1. Let (ap)n>1 be any sequence of positive numbers such that «,/m, — 0 as n — oo. The
aim of this step is to show that

klim PM"*(Tyes +€) > ap, ] =1 forall €>0. (4.16)
—00

For this purpose, we introduce the stopping time
T=1nf {t >0 ¢ M (t) > an,},

and notice that we may assume that «,, — 0o as n — oo without loss of generality. Owing to the
time monotonicity of M7, it suffices to prove that xy := Pl > Tger + 6] — 0 as k — oo for all
e > 0 to establish (4.16).

First observe that, for each k£ > 1, it is clearly possible to couple the Marcus-Lushnikov processes
(""" )0 and ("™ )¢50 in such a way that they coincide on [0,7;). Assume next for con-
tradiction that there are 6 > 0 and (k;); such that k; — oo and xx; > d for j > 1. As the triple
Lty ™"y ™ V>0 e is tight by Proposition 2.4, we infer from the Skorokhod represen-
tation theorem and Lemma 4.2 there are a subsequence (k;,); and (v4)¢>0 € C([0, 00), M}') such

14



that a.s.

Mk, My Mg, sQny,
Hm supld(u, ' ) +d(e, )] =0 forall T >0
l— o0 [O,T]

(here we may have to change the underlying probability space and the processes, but the law of
Nk yMn, . Nk, On,y, .
the triple (ue, 1, ' i T i )t>0 remains the same for each [ > 1).

By Theorem 2.5 Points 1-(i) and 2, we deduce that (1;);>0 solves the Flory equation, while (v;)i>0
solves the Smoluchowski equation. Furthermore, introducing €2 := {lim sup, Thy, = Tyei+e} we have
PIQ] > 6 > 0. Since (u; """ )s>0 and (p; """ )t>0 coincide on [0,73) for each k > 1, we easily

deduce that (iit)ic(o,1,0+c/2) = Vi)i€(0,T,+e/2) On Q. In other words, (fit)ie(o,1,.,+e/2) SOlves
simultaneously the Flory and Smoluchowski equations on [0, Tye; + £/2) with positive probability,
which contradicts Corollary 3.1.

Step 2. We now deduce from Step 1 that

%irr(l) li%ian [M{"* (Tge1 +€) > dmy, ] =1 forall £>0. (4.17)
—

Assume for contradiction that there is € > 0 for which (4.17) fails to be true. Then there exists
v € [0,1) such that liminfy, P [M]"* (Tye; + €) > dmy, | < v for all § > 0. We may thus find a strictly
increasing sequence (k;);>1 such that P {Mfkl (Tger +€) > My, /l} <~ for every [ > 1. We then
put ay, = mp, /lfor 1 >1 (and e.g. an = my/? if n ¢ {ny, : 1 > 1}). Then a,/m, — 0 as
n — oo and the assertion (4.16) established in Step 1 warrants that P [M{"* (Tyer +¢€) > ap, ] —> 1
as k — 0o0. But P | M, (Tye) +¢) > ankl] <« <1foralll>1, hence a contradiction.

Step 3. We are now in a position to prove (2.9) which somehow means that the other particles are
small in the sense that

X7(5,0) = 3 M)y (M)

" i>2

lim limsup P
b—0o koo

/00 X" (s,b) ds) > ﬂ] =0 (4.18)

Tgel

for all 8 > 0 with the notation

First note that a.s., for all s > 0 and n > 1, we have

S M) M ()W 7 (6)) Wy (M7(5) = S, () X5,

. . n
iy

since M*(s) < my, for all s >0 and ¢ > 1. By Lemma 4.3 (with a = m,,), we obtain

E

> Mp(s N N L
/ 7;( >]1[b,oo) (M (s)) X™(s,b) ds| < R (4.19)
Tgel n

We next fix 8 > 0,7 > 0, and b > 0. By (4.17) thereis § > 0 such that lim infy, P[M{"* (Tye1+3/2) >
0my, ] > 1 —mn. Recalling that ¢ — M7 (t) is a.s. non-decreasing and X" (s,b) <1 for all s > 0 a.s.,
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we have for k sufficiently large such that dm,, > b,

(/TOO X" (s,b) ds> > (/TOO s X" (s,b) ds) > 6/21

< P[M™(Tyer + /2) < dmi,]

p ( / Mj ’“<§qel O ) (M Tyt + B/2)) X7 (5, 1) ds) > 6/2]
L Tgel‘i’ﬁ/z mnk

< 1= P[M{*(Tye + B/2) > 6my, ]

+P </Oo M) Ly 00) (M7 (5)) X" (s, D) dS) 2 55/21

frgel“l’ﬁ/2 mnk
<1—P[M{*(Tye + 8/2) > dmy, ]

P <P

n 2L
b8’

the last inequality being a consequence of (4.19). Letting k — oo in the above inequality, we

obtain, thanks to the choice of J,
& 2L
X" (s,b)ds | > B| <n+ .
( | xms ) ] 1 s

limsup P

k—o0 gel

Now, we first pass to the limit as b — oo and then as 7 — 0 in the above inequality to obtain
(4.18), i.e. (2.9).

Step 4. Set v :=1— <uTgel+t(d$),$> and By (t) := M{"* (Tye; +t)/mp, for t >0 and k > 1. Our
aim in this step is to prove that

lim F

k—o0

T
/ | Bk (t) — ] dt] =0 forall T>0. (4.20)
0

As before let (Xp)p>0 be a family of continuous non-increasing functions such that Xj(z) = 1 for
x € ]0,b] and Xp(z) = 0 for x > b+ 1. We then put

Ny My,

W= 1= (. o(de), 2 (@) and AP =1 = (upt T (de), e X))

for b> 0,k >1,and t > 0. On the one hand, we have a.s. that vf — v as b — oo for all t > 0.
Since |y¢| + |7?| < 2, we deduce from the Lebesgue dominated convergence theorem that

lim F
b—o0

T
/ e — | dt] =0. (4.21)
0

On the other hand, owing to the compactness of the support of Xj, we infer from (4.13) that
AP — 4P as. forallb>0and ¢t > 0. As |72+ |72F| < 2, we use again the Lebesgue dominated
convergence theorem to obtain that

T
/ Iy — Al dt] =0 foreach b>0. (4.22)
0

lim F
k— o0
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But /2% = Ay 4 (t) + Bi(t) — Cyi(t) a.s., where

1 Nk, Mp Nk, Mn
Apil) = ——= S M (T + 1) (1= R (M (T + 1))
My, i>2
M (T + 1) S b+ 1
t) = - Xp(M,"7 R (Tyer + 1) < .
Co.(t) p— b (M, (Tger +1)) < o
Clearly,
T
lim E / Cpi(t) dt| =0 foreach b>0, (4.23)
k— o0 0
while, since 0 < Ay (1) < X" (Tye; +t,0) <1 aus.,
T
lim limsup F / App(t) dt| =0 (4.24)
b—00 koo 0

by (4.18) and the Lebesgue dominated convergence theorem.
Now, since By(t) — v = Cpr(t) — Apr(t) + (0" —A2) + (7 — ) for b> 0, k > 1, and t > 0, it

follows from (4.22) and (4.23) that
T T
[ A ae| +£| [ 1=t dt}
0 0

for all b > 0. Letting b — oo and using (4.21) and (4.24) give (4.20).
Step 5. To complete the proof of (2.8), it remains to show that, for all € > 0 and 1 > 0, we have

limsup £ + E

k— o0 k—o0

T
/ | Bi(t) — el dt] <limsup &
0

lim P
k—o0 t€[n,00)

sup |Bg(t) — | > 5] =0. (4.25)

Indeed, (4.25) clearly implies (2.8) by the Lebesgue dominated convergence theorem since By (t) < 1
and y; < 1fort >0 as.

We thus fix € > 0 and 1 > 0. Since (p;)¢>0 solves the Flory equation (F) by Theorem 2.5 Point 1-
(i), it follows from Proposition 2.3 that ¢ — ; is a.s. increasing and continuous on |1, 00) and
v —> 1 as t — oo a.s. It is also straightforward to check that ¢ — By (t) is a.s. non-decreasing on
[n,00) with By(t) — 1 as t — oo a.s. As a consequence of the a.s. monotonicity and boundedness
of t — ~; and Bg(t), we have for ¢t > T

|Bi(t) —v¢| = max{Bk(t) —yr+vr —ve,% —vr + v — Be(T) + Br(T) — Bi(t)}
< max{l —vyp,1 —yr+yr — Br(T)}
< 1 —r+max{0,vr — Bp(T)},

hence

sup |Br(t) —vi| <1—~7r +|Bp(T) —yr| forall T >0. (4.26)
te[T,00)

To go further we will use the following result which resembles Dini’s theorem.
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Lemma 4.4 Let T > 0 and f € C([0,T]) be a non-decreasing function. If (fx)k>1 i a sequence
of non-decreasing functions on (0,T) such that fi — f in LY(0,T) as k — oo, then fr — f in
L (6, T — 0) as k — oo for every § € (0,T/2).

Let T > 7. By (4.20) and Proposition 2.3, (By)r>1 is a sequence of non-decreasing functions that
converges to the continuous and non-decreasing function ¢t +— ~; in L'(0,7 + n) a.s. and we use
Lemma 4.4 to conclude that

lim P | sup |Bg(t) — vl >¢/2

=0. (4.27)
k—o0 _tG[n,T]

We now infer from (4.26) and (4.27) that

P| sup [Bi(t)—vw|>¢e| < P| sup [Bi(t)—v|+[1—7r|>¢
t€[,00) | ten.T]
< Pl—~r>¢/2]+P| sup |Bk(t)_’7t|25/2]7
te[n,T]
limsup P | sup [Bi(t)—w|>¢e| < P[l—rr>¢/2].
k— o0 t€[n,00)

The above inequality being valid for any T' > 7, we may let T — oo to deduce (4.25) since yp — 1
as T — oo a.s. O

We finally turn to the proof of the last statement of Theorem 2.5.

Proof of Point 3 of Theorem 2.5. Here (ay),>1 is a sequence of positive real numbers such
that a, — oo and a,/m, — v € (0,1) as n — oo. We consider the limit (yu¢):>0 of a subsequence

{(u?k’a"k )tZO}k>l in the sense that a.s.

lim sup d(p; """ ) =0 forall T >0. (4.28)
k—o0 [O,T]

We then introduce
Ty :=inf {t >0 : (uo(dx) — pe(dz),z) >~} ,

and aim at showing that (u:)¢cjo, 1) solves a.s. the Flory equation (F).
For n > 1, we set
TP :=inf{t > 0; (u"*" L(a, 00)) > 0},

which represents the first time that a particle of size exceeding a,, appears in the Marcus-Lushnikov
process (py """ )¢>0. For each n > 1, it is clearly possible to build a classical Marcus-Lushnikov
process (py""" )i>o (i.e. without cut-off) such that p;""" = p"“" for t € [0,7}'] a.s. In particular
we have also 77 = inf{t > 0 : {(p""""(dz), 1(4, ) > 0} a.s. Denoting by M{'(t) the size of the
largest particle at time ¢ in the process (""" )¢>0, we clearly have T7* = inf{t > 0 : M{(t) > a,}
a.s.
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By the tightness result of Proposition 2.4, Lemma 4.2, and the Skorokhod representation theorem,
we may assume that, after possibly extracting a further subsequence (not relabeled), (u?k’mn" )t>0

converges a.s. to (vt)¢>o in C([0, 00), ./\/l}') that is, we have a.s.

lim sup d(p, """, 1) =0 forall T >0. (4.29)
k— o0 [0,T]

We refer to Step 1 in the proof of Theorem 2.5 Point 1-(ii) for a similar argument. By Theorem 2.5
Point 1-(i), (v4)¢>0 solves a.s. the Flory equation (F'). Introducing

Sp:=1inf {t >0 : (uo(dx) — v (dx),z) >~}

we claim that
klim P[|S1 —T{"| >¢]=0 forall €¢>0. (4.30)
— 00

n,an

Taking (4.30) for granted, we deduce that p; = vy for ¢t € [0,57) as. since """ = py
for t € [0,77'] a.s. for all n > 1. This implies that S; = Ti a.s., because the subset {7 €
./\/l;?; {(po(dx) — m(dz),z) > v} = {m € MT; (n(dx),z) < 1 — 4} is closed in ./\/l;cr endowed
with the vague topology, and both ¢t — pu; and t — 1, are a.s. continuous for that topology by
Lemma, 4.2. Therefore, (i1)ic[o,r,) solves a.s. the Flory equation.

We are left with the proof of (4.30). To this end we will use (2.8) and (2.10) (with the weak
limit (14)¢>0 of the classical Marcus-Lushnikov process (u?k’m"k)k> ). Introducing the (random)
= >1

gelling time Sye; of (14)¢>0 given by
Sger :=1nf{t >0 : (n(dz),z) < (uo(dz),z)},

we recall that a.s. the map ¢ — (v;(dx), z) is constant and equal to 1 on [0, Sge;) and continuous
and decreasing on (Sge, 00) by Proposition 2.3. In the proof of (4.30), we have to handle separately
the events Sy < 51 and Sy = S, the latter being not ruled out a priori due to the possible
discontinuity of t — (14(dx), x) at t = Sger.
Fix € > 0 and write

PHSl —T1nk| > E] = P[Uk] —I—P[Vk] +P[Wk]

with
Up = {S4e1 <81 <Sger+e/2, Ti"™ <S8 —¢},
Vi = V{1 <8 —¢}, VO:={S,u+e/2<58:},
Wy, = {Sgel <51, Tlnk >S1+¢e}.

First, on Uy, we have a,, < M (S1 —¢) < M{*(Sget —€/2), so that
M Gt /), o]

— 0

k—o0

Mp, Mp,y,

PI < PIMT(Sp — £/2) 2 0] = P |

by (2.10) since ay/my, — v > 0 as n — 0.
Next, introducing 7 := S; —¢/4 (clearly, 7 > 0 on V°) and Z := (v, (dz),z) — 1+, it follows from
the a.s. strict monotonicity of t — (1(dx), ) on (Sger, 00) and the definitions of 77" and S that
M n
VOc{Z>0} and Vi C {17(7) — (1= (v (da),z)) > o —7+Z} :
m

N mnk
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Let n > 0. For k large enough we have |y — ay, /mn, | < n/2 and since 7 > Sy +¢/4 as.

o - o}
> Bty (MO0 )| 2 i (24 2 5)| 2 Blnz - w2
> 1By 1y00(2)] = 4 B [lu Loy (2)] = 3 PV = nPVen{Z € (0.n)}]
> I PVl =PV n{Z e (0},

Multiplying the above inequality by 2/n and letting k& — oo with the help of (2.8) give

limsup P[Vi] < 2P[V'N{Z € (0,1)}] foralln>0.

k—o0
As VO c {Z > 0}, the right hand side of the above inequality converges to zero as n — 0.
Consequently, P[V;] — 0 as k — oo.

Similarly, introducing o := S; +¢ and Y := 1 — (v,(dz), z) — v, the a.s. strict monotonicity of
t — (v (dz), ) on (Sger, 00) and the definitions of 77" and S; warrant that

Y >0 as. and ch{(1—<yg(dx),x>)—M1 () 27_ﬂ+y}.

My, My,

Arguing as for Vi, we have for all n > 0 and k large enough

E

Sup {M —(1- <Vt(dx),x>)}] > g P[Wi] =nP[Y € (0,n)].

te[Sger+e,00) My,

We then proceed as before to deduce from (2.8) and the a.s. positivity of Y that P[Wy] — 0 as
k — oo and thus complete the proof of (4.30). O

5 Numerical illustrations

We consider the monodisperse initial condition pg = 01 and the multiplicative kernel K (x,y) = xy.
Under these conditions, there is an explicit solution to the Smoluchowski equation (.S) given by

kk72
Ttkileikt fOI' t S [O, 1] y
fu(dz) = é(t, k)ok(dw) with &t k) := '
=1 A
Tt e for t>1.

For the same initial condition, the Flory equation (F') has also an explicit solution given by

kk—2
pe(dx) = Zc(t, k)ok(dz) with c(t, k) := Ttk_le_kt for t>0.
k>1 ’
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Figure 1: n =m,, = 104, a, = 102 Figure 2: n =m,, = 104, a, = 10%
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Before proceeding to simulations, let us point out that (u;(dx),xz) = 1 for ¢ € [0,1], while
(pe(dx),z) = t*/t for t > 1, where t* € (0,1) is the unique solution to t*e=*" = te~*in (0,1). Easy
computations show that

In(1 —~)

Ti(y) :=inf{t > 0; (uo(dx) — p(dz),z) > v} = — for v€(0,1).

In Figures 1 to 5, the plain, dashed, and dotted lines represent p;"*"({2}), c(¢,2), and é&(t,2),
respectively, as functions of t. We observe that, as explained by Theorem 2.5,

n

(i) for a, < my, p“" approximates the solution to the Smoluchowski equation, see Figure 1,

n

(i) for a, = my,, ;""" approximates the solution to the Flory equation, see Figure 2,

n,an

(iii) for a, = ymy, with v € (0,1), ;" approximates the solution to the Flory equation until
the time T1(7y), and then changes its behaviour: see Figure 3 (y = 0.5, 71(0.5) = 1.386),
Figure 4 (v = 0.8, T1(0.8) = 2.012) and Figure 5 (v = 0.33, T1(0.33) = 1.21). Note that
Figure 5 shows that the behaviour of u;"*" bifurcates at least twice on t € [0, 3]. The second
bifurcation certainly corresponds to the time where a second giant particle with size 10°
appears.

Acknowledgements: We thank the referee for helpful remarks.
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Figure 5: n =m,, = 3.105, a, = 10°.
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