On the Cohomological Crepant Resolution Conjecture for the complexified Bianchi orbifolds

Abstract : We give formulae for the Chen-Ruan orbifold cohomology for the orbifolds given by a Bianchi group acting on complex hyperbolic 3-space. The Bianchi groups are the arithmetic groups PSL_2(A), where A is the ring of integers in an imaginary quadratic number field. The underlying real orbifolds which help us in our study, given by the action of a Bianchi group on real hyperbolic 3-space (which is a model for its classifying space for proper actions), have applications in physics. We then prove that, for any such orbifold, its Chen-Ruan orbifold cohomology ring is isomorphic to the usual cohomology ring of any crepant resolution of its coarse moduli space. By vanishing of the quantum corrections, we show that this result fits in with Ruan's Cohomological Crepant Resolution Conjecture.
Type de document :
Pré-publication, Document de travail
2016


https://hal.archives-ouvertes.fr/hal-00627034
Contributeur : Alexander Rahm <>
Soumis le : lundi 5 décembre 2016 - 17:36:56
Dernière modification le : mercredi 7 décembre 2016 - 01:01:42

Fichiers

orbifold_cohomology_of_the_com...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

  • HAL Id : hal-00627034, version 3
  • ARXIV : 1109.5923

Collections

Citation

Fabio Perroni, Alexander Rahm. On the Cohomological Crepant Resolution Conjecture for the complexified Bianchi orbifolds. 2016. <hal-00627034v3>

Exporter

Partager

Métriques

Consultations de
la notice

3

Téléchargements du document

4