
Flexible Deviation Handling during Software Process Enactment

Marcos Aurélio Almeida da Silva, Reda Bendraou and Jacques Robin
LIP6

Paris Universitas, France
Email: first-name.family-name@lip6.fr

Xavier Blanc
LaBRI

Université de Bordeaux 1, France
Email: xavier.blanc@labri.fr

Abstract—Software process models formalize the way a
group of agents (e.g. developers, testers, managers etc) interact
in order to produce a desired outcome (e.g. a product, an
artifact etc). In this context, a “deviation” is a mismatch
between the process executed by the agents and the process
model. Existing approaches for deviation detection and han-
dling force the agents to either pursue a deviation-free process
execution, which is unrealistic; or to selectively ignore them,
which may be risky to the desired outcome of the project.
In this paper, we propose an approach that allows agents to
deviate from the process specification, but also allows them
to correct these deviations later in the process enactment.
Additionally, they are informed about the risks implied by
each non-handled deviation. During the correction phase, the
process agents are assisted by the means of a set of correction
plans that are automatically generated by the approach. These
plans aim at reducing the risk of non resolved deviations. This
paper presents a preliminary evaluation of this approach as a
prototype implementation.

Keywords-Process Enactment, Deviations, Consistency Man-
agement

I. INTRODUCTION

A Software Process Model (SPM) is an abstraction of the
partially ordered set of activities that should be performed
by agents to produce a desired outcome [13]. Such a model
is interpreted by a Process-centered Software Engineering
Environment (PSEE), that guides the agents throughout the
process enactment [4], [6]. PSEEs both make sure that agents
execute the process activities in the right order, and that
artefacts are produced and consumed as expected.

A deviation is an inconsistency between the SPM and the
execution as observed by the PSEE. They may be harmful
regarding the objectives of the process. This mainly depends
on the context in which the deviation occurs and on the
level of expertise of the agent that is deviating. Undeniably,
performing actions that are not compliant with what has been
planned introduces a risk for the success of the project.

Unfortunately, deviations are not exceptional events in
process enactment. This has been confirmed by the empirical
study conducted by Lanubile and Vissagio [11]. This study
has shown that agents do not follow 100% of an assigned
process. In fact, experts usually deviate and act opportunis-
tically, using the process as a guide without necessarily
reducing the quality of their work [19]. This implies that

the risk introduced by deviations can not be fully avoided
and has to be managed.

The main claim of this work is that managing the risk
of deviations should be part of the PSEE responsibilities.
A PSEE should both enforce the execution of the SPM
and manage the agent’s deviation. This claim contrasts
with what is currently supported [6], [10], [5], [1], [17].
Existing PSEEs poorly support agent deviations either by
ignoring them and continuing the process enactment, or by
automatically undoing the actions that have led to them.
In the former case, ignored deviations do represent a risk
regarding the process objectives [20]. In the latter case,
agents cannot act opportunistically, as they usually do. Both
cases are very counter-productive.

The main contribution of this paper lies in a process enact-
ment approach that supports agent deviations. In particular,
the following specific goals are addressed:

• Late Deviation Handling: Existing PSEEs that allow
process agents to selectively ignore deviations [10],
[5] suggest that some deviations may be left to be
handled later. Extra evidence for this hypothesis has
been provided by our previous experiments in compar-
ing consistency management techniques with process
enactment ones [7]. This experiment showed us that if
one allows agents to act opportunistically, most of the
inconsistencies will be naturally fixed in a later time
by the agents.

• Risk Assessment: Even though evidences suggest that
most deviations will be fixed in a later time by agents,
some will not. Since not all deviations have the same
impact on the continuity of the process [10], [20], [5],
the process agents need to have a clear picture of the
risk represented by these deviations. This way, they can
decide which ones will be handled next and which ones
will not.

• Correction Guidance: As suggested by existing work
in the field of model consistency management [9], [8],
[18], providing guidance in fixing inconsistencies be-
comes even more necessary as the number of inconsis-
tencies to be handled increases. This happens because
a correction for one inconsistency may generate other
inconsistencies.



The challenge in accomplishing these three goals is in
their interconnection. Allowing agents to delay deviation
handling means that the guidance offered to them should
take into account a larger number of deviations at the
same time. Additionally, associating different risk levels
to different deviations means that they must be handled
differently in terms of guidance. For example, guidance
provided to agents should prioritize correcting higher risk
deviations.

In this paper we deal with these challenges by proposing
an approach based on the so-called deviation rules. These
rules are logical formulas that detect deviations, their causes
and risks to the process objectives. This way, an agent can
have a global view of the deviations that have not yet been
addressed and of their impact to the process objectives (Risk
Assessment). The next step consists in using a planning
algorithm [8] to produce correction plans for the detected
deviations that are then suggested to the process agents
(Correction Guidance). On top of that, this approach does
not force process agents to repair deviations as soon as they
have been detected (Late Handling).

This paper is organized as follows. Section II describes
the problem of deviation handling during process enactment
along. Section III presents our approach and Section IV
describes the steps to be followed in order to apply it in a
process enactment context. Section V describes our prelimi-
nary evaluation of this approach by the means of a prototype
PSEE and its application to a software development process.
Finally, Section VI presents our related work and Section VII
concludes.

II. DEVIATION DETECTION & HANDLING DURING
PROCESS ENACTMENT

This section discusses the problem of deviation handling
during process enactment. The following development pro-
cess is used as an illustration throughout this paper.

Example 1: The software development process repre-
sented as a UML2 Activity Diagram in Figure 1 consists
of three activities that should be executed in order. During
the Use case modeling (ucm) activity the agent should
gather the system requirements and build a use case model
of the system. During the Class diagram modeling (cdm)
activity, the agent should build a UML Class Diagram with
the help of the use cases described in the previous activity.
Finally, during the Coding (code) activity, the agent should
implement the class diagram built in the previous activity
in the Java programming language. A postcondition of this
activity is that every class that appears in the class diagram
should be implemented as a Java class.

A process model encodes desired process outcomes. In
this example, the process outcome are the use case model,
the class diagram and the Java source code. We call such
desired outcomes the process goal.

Figure 1. Example Software Development Process

Deviation Detection. During process enactment, the
PSEE performs three kinds of verification for each activity.
First, when the agent launches the activity, the PSEE verifies
if the required artefacts are present and consistent with the
process model. Second, during the execution of an activity,
the PSEE verifies if the actions performed by the process
agents are consistent with the process model. Third and last,
when the agent finishes the activity, the PSEE verifies if the
produced artefacts are consistent with the process model.
When one of those verifications fails, we say that the process
agents are deviating from the process model. At this point
we propose the following definition of deviation:

Definition 1 (Deviation): A deviation is an inconsistency
between the process specification and the process as ob-
served by the PSEE.

Deviation Handling. After detecting deviations, a PSEE
should be able to guide the process agents into handling
them. We divide the general objective of handling deviations
into the following three ones:

Objective 1 (Late Handling): Supporting delayed devia-
tion correction.

Objective 2 (Risk Assessment): Assessing the impact of a
process deviation to the process objectives.

Objective 3 (Correction Guidance): Guiding the process
agents in finding a deviation correction plan.

An ideal deviation handling approach should allow agents
to delay the resolution of detected deviations. For example,
if the class diagram produced at the end of the second
activity (cdm) is not consistent w.r.t the UML meta-model,
this deviation could be handled by correcting the class
diagram during the third activity (code). This kind of support
is important in terms of flexibility because it allows the
agent to act opportunistically using the SPM as a guide.
Common deviations may be used as basis of further process
refactoring and improvement.

The impact of the detected deviations to the objectives of
the process should also be measured. This is accomplished



by Objective 2. It states that a deviation handling approach
should be able to assess the risk of each deviation according
to the process goals. For example, starting the second
activity (cdm) before the first one (ucm) would represent
a lower risk to the process goals than finishing the third
activity (code) without having implemented each UML class
as a Java class. This happens because making sure that all
classes have been implemented is part of the objective of
the process.

Furthermore, being able to guide the process agents in
reducing this impact is also important. This is accomplished
by Objective 3. This guidance is provided to the process
agent by the means of correction plans that are sequences
of actions to execute in order to correct or reduce the risk
represented by a set of deviations.

III. APPROACH FOR FLEXIBLE DEVIATION HANDLING

This section presents our approach for flexible deviation
handling. It consists in, provided that a set of deviations
has been detected, informing the process agent about the
risks of not fixing them immediately and in assisting her
in actually fixing them. The PSEE does that by proposing
sequences of actions that will correct deviations. The agents
just need to choose the sequence of actions that fit their
objectives and to perform them. When no solution that fixes
every deviation exists, the PSEE proposes partial solutions
to the process agent. These solutions are sorted from the
lower to the higher overall risk level.

This section is organized as follows: Section III-A for-
mally defines the problem of deviation detection and han-
dling. This formalization is reused throughout the discussion
of the approach. Sections III-B, III-C and III-D present our
approach for accomplishing respectivelly the objectives of
Risk Assessment, Guidance and Late Handling.

A. Background

In this section we formally define the problem of deviation
detection and handling. This formalization is based on
the one used to detect inconsistencies over sequences of
actions initially defined in [3] and is reused throughout the
presentation of our approach.

As a first step, we need to represent an observed process
state. Let us define s = a0, . . . , an a sequence of actions
observed by the PSEE during process enactment. The vo-
cabulary of actions must be able to represent every possible
action during process enactment. For now, let us focus on
the actions we call process enactment actions. For the sake
of simplicity, let us consider that this group is composed of
two kinds of actions. The action launch(a, u) represents the
beginning of the execution of the activity a by the process
agent u. The action finish(a, u) represents the end of the
execution of the activity a by the process agent u.

An inconsistency rule over a sequence of actions is a rule
R, written as the first order logic formula R(s) ≡ F (s)

that states that the inconsistency R is found in the observed
process s if and only if the logical formula F holds over s.
These rules can then be used to verify if an observed process
is consistent or not with the process model. A deviation R
is said to be present in an observed process s if and only if
the inconsistency rule R holds for s.

Let us analyze the following example of inconsistency
rule:

M ′(s) ≡ ∃u∃a ∈ s|a = launch(cdm, u)∧
¬∃a′ ∈ s|a′ = launch(ucm, u)

This rule states that a deviation exists in an observed
process if the cdm activity has been launched by u if she
has not launched ucm yet. This is a deviation because
the process model states that cdm must be executed after
ucm, and this implies that one cannot start cdm without
having started ucm. Consider the observed process state
s = launch(cdm, u). In this observed process state, the
deviation M ′ is detected because M ′(s) holds.

B. Risk Assessment

In our approach, the risk assessment is obtained by the
means of the deviation rules. We define a deviation rule as
a logical formula M(s, r, c) ≡ F (s, r, c) that means that
the deviation M is present in the sequence s if and only if
the logical formula F (s, r, c) holds. It extends the concept
of inconsistency rule with r, that is the risk represented by
this deviation and c, that represents its cause. The values
for r come from the enumeration low, medium or high
representing increasing risk levels.

Example 2: Let us consider the sample process in Exam-
ple 1. The model states that ucm should be executed before
cdm. This can be represented by the following deviation
rules:

M(s,low, c) ≡ ∃u∃a, a′ ∈ s

a = launch(cdm, u) ∧ a′ = finish(ucm, u)

∧ a <s a
′ ∧ c = a

M ′(s,medium, c) ≡
∃u∃a ∈ s|a = launch(cdm, u)∧
¬∃a′ ∈ s|a′ = launch(ucm, u)∧
∧ c = a

The first rule states that a deviation happens if, at some
point in the sequence s, the process agent u started the
activity cdm before the end of the activity ucd. It constitutes
a low risk deviation and its cause is the action a that launches
the cdm activity. The second rule, M ′, represents another
deviation related to the same statement in the process model:
it states that starting the cdm activity without having done
the ucm activity constitutes a medium risk deviation and the
cause of this deviation is the action a that launched the cdm
activity.



The risk associated to a deviation indirectly encodes the
objective of the process. In the present example, executing
ucm and cdm in any order may still lead to correct model,
whereas creating the class diagram without the associated
use case diagram is much less satisfactory. That is why
the first deviation has a lower risk value than the second.
Notice that it is up to the process modeler to decide the risk
level and the cause that should be associated to each kind
of deviation.

This deviation rule can now be evaluated in an observed
process. Let us consider that the action create(o, t) repre-
sents the creation of an artifact o of type t. Consider the
following sequence:

s =launch(cdm, u), create(c, class), finish(cdm, u),

lauch(ucm, u), create(u, usecase), finish(ucm, u)

This sequence represents an observed process in which
the process agent u executed the cdm activity before the
ucm activity. Since M(s, low, launch(cdm, u)) holds, a
deviation has been detected.

C. Correction Guidance

In our approach, a planning algorithm is used to compute
the set of possible correction plans that are then presented
to the process agent to guide her. A correction plan is a
sequence of actions that when executed fix the deviations
found in the observed process. Computing these plans is an
inherently incomplete process, because there is an infinite
number of potential sequences to be considered as correction
plans.

The present approach reuses the algorithm defined in [8]
to explore these possibilities. The overall risk represented by
the deviations present in a sequence is used to heuristically
classify all possible correction plans. We consider that one
solution is better than another if it has less high risk devia-
tions. If both have the same number of high risk deviations,
the one with less medium risk deviations is better. If both
have the same level of high and medium risk deviations,
the one with less low risk deviations is better. They are not
comparable otherwise1.

This algorithm proceeds in three steps. In the first step,
a set of deviation rules is used to detect deviations, their
causes and risks. In the second step, a set of potential cor-
rection plans for fixing each cause of deviation is computed
by the means of the so called generator functions. Finally,
in the third step, the potential correction plans computed in
step two are composed into final correction plans that are
then presented to the process agent.

1Notice that this is just an heuristic we have adopted in the current work.
In an specific context other strategies for comparing proposed correction
plant may be more suitable.

Generator functions define a mapping from observed
processes and deviation causes to correction plans. Given a
sequence s and cause of deviation c, the expression G(s, c)
represents the set of correction plans for c in s. This function
is defined in the form of logical rules expressed each one
by a formula E =⇒ sc ∈ G(s, c), where E is a logical
expression and sc is a correction plan. The meaning of such
rule is, if E holds, sc is a correction plan for c in s.

An example of generator function follows:

∃b,activity(b) =⇒
(finish(a, u), launch(b, u)) ∈ G(s, launch(a, u))

This function states that every time a deviation has been
caused by launching an activity a (represented by the action
launch(a, u)), finishing this activity and launching another
activity b may fix the deviation. Every possible activity b
in the process model is going to be tried by the planning
algorithm but only the ones that reduce the overall risk level
will be presented to the agent.

Example 3: Let us take the Example 2. Using the gener-
ator function over the detected deviation we obtain:

G(s, launch(cdm, u))

= {(finish(cdm, u), launch(ucm, u)),

(finish(cdm, u), launch(cdm, u)),

(finish(cdm, u), launch(code, u)),

(cancel(launch(cdm, u)))}

This indicates that, from that source of deviation, finishing
the current activity and starting another and simply canceling
the action that launches the offending activity are possible
solutions to this deviation.

D. Late Handling

The late handling objective is achieved by our approach
by simply allowing the process agents to continue process
enactment even after a deviation has been detected. This
can be done because, once the Risk Assessment objective
has been fulfilled, the process agent knows which deviations
have been detected, their risk to the process objectives and
their causes. Once the Correction Guidance objective has
been achieved, the PSEE can guide the agent into performing
the actions that are needed to reduce the overall risk to
process objectives.

IV. ADOPTION PROCESS

In the present approach the following workflow is im-
posed:

1) The process modeler defines the process model.
a) The process modeler defines the deviation rules

to be used during enactment.
b) The process modeler associates a risk level and

cause to each rule.



c) The process modeler defines the generator func-
tions that should be used to provide guidance to
process agents in deviation scenarios.

2) The process agent enacts the process model by the
means of the PSEE.

3) The PSEE continuously displays the set of currently
detected deviations and their associated risks.

4) The process agent may ask the PSEE to compute
a correction plan to guide her into fixing detected
deviations.

The first step consists in defining a process model. In
fact, our approach does not mandate any specific process
model language, but in order to detect and handle deviations,
the notion of what is allowed or not by the process model
should be translated into a set of deviation rules (Step 1-a).
This example will take into consideration process models
represented as UML2 activity diagrams. Suppose that the
precedes(a, b) predicate means: the activity a precedes the
activity b in the software process. The following deviation
rule P encodes the fact that if a1 precedes a2 one should
not start a2 without having executed a1:

P (s,medium, c) ≡ precedes(a1, a2)∧
∃u∃a ∈ s|a = launch(a2, u)∧
¬∃a′ ∈ s|a′ = launch(a1, u)∧
c = a

This is an example of rule that does not depend on the
actual process model being enacted. That means that it could
be automatically generated without any extra overhead to the
process modeler.

The next step (Step 1-b) would be assigning a risk level
and a cause to each rule. In the case of the P rule, this has
already been done, by stating that the risk represented by
this deviation is medium and that its cause is the action a
that launched the activity a2 before launching the activity
a1. Different risk level and cause may be more appropriate
in different contexts.

Step 1-c consists in defining the set of generator functions
to be used to provide guidance during process enactment.
The following example of generator function states that if c
is a cause of deviation during activity a a correction plan is
canceling c, finishing the current activity and starting one in
which c is allowed:

activity(a) ∧ activity(b) ∧ precedes(a, b) =⇒
(cancel(c), finish(a, u), launch(b, u), c) ∈ G(s, c)

Notice that Steps 1-a b and c do not represent a burden to
the process modeler but bring more flexibility to the whole
process. A library of generic deviation rules and generator
functions could be defined in advance for each process
model language. The work of the process modeler would be
reduced to choosing the rules that she would like to apply

for a given process, customizing their parameters and writing
process specific rules ones, if necessary.

The Steps 2-4 are automatically executed by the PSEE.
In Step 2, it allows the process agent to enact the process
model; in Step 3, it detects violations to deviation rules and
displays the list of detected deviations and associated risks;
and in Step 4, it computes correction plans for the current
set of deviations.

The essential difference between this workflow and the
classic one is that in the second one the process agent may
delay the handling of deviations as long as she wants to
(Late Handling). The detected deviations are also priori-
tized according to the risks they represent to the process
objectives as defined by the process modeler in Step 1 (Risk
Assessment) and guidance is optionally provided in order to
assist the process agent into fixing the detected deviations
(Correction Guidance).

V. PRELIMINARY EVALUATION

In this section we present our preliminary evaluation of
the approach described in the previous section. It has been
prototyped as a PSEE that allows a process agent to enact
a process, get the list of the currently detected deviations,
their risks and get correction plan proposals. Furthermore, a
process enactment scenario based on the process presented in
Figure 1 was executed. The prototype, the complete source
code for the presented scenarios and other ones are available
for download in the website of the prototype2.

A. Process Implementation

Even though the considered process (Figure 1) has only
three activities, it allowed us to represent different kinds of
deviation rules and generator functions with a conveniently
small number of rules. Figure 2 overviews the nine deviation
rules we implemented as part of this experiment.

Five of them are completely independent of the pro-
cess model. They verify inconsistencies on the use of the
launch and finish actions (the four rules whose name
start with wfr, which stands for Well-formedness Rule) and
the order in which the actions were enacted in the observed
process when compared to the process model (the rule
called order). The other four rules implement additional
constraints that are not directly part of the activity diagram
but come from the natural language description of each
activity. Three of these rules define, for each activity, which
actions may be performed by the agents during each activity
(the rules called ucm, cdm and code). The last rule verifies
the postcondition of the code activity: it makes sure that
every UML class is implemented by at least one Java class
(the rule called codep).

We also needed to associate each rule to a risk level.
The associations we present here only represent a possible

2http://lip6.fr/Marcos.Almeida/



Rule Name Description Risk Level
wfr1 Makes sure that every launch starts an activity that was not in execution High
wfr2 Makes sure that every finish finishes an activity that was under execution. High
wfr3 Makes sure that no activity can be launched more twice by the same agent High

at the same time.
wfr4 Makes sure that every artifact modification action happens during the enactment Medium

of some activity.
order Makes sure that the activities are executed in the order defined by the process model Low
cdm Makes sure that only actions that create or modify a class diagram are allowed Medium

during the cdm activity.
ucm Makes sure that only actions that create or modify a use case diagram are allowed Medium

during the ucm activity.
code Makes sure that only actions that create or modify the source code are allowed Medium

during the code activity.
codep Makes sure that by the end of the code activity every class High

in the class diagram has a Java implementation in the source code.

Figure 2. Description of Deviation Rules.

Rule# Cause Proposed Correction
1 Any Finish current activity and start another one in which this event is allowed.
2 Any Cancel cause.
3 launch(a,u) Start another activity.
4 launch(a,u) Finish current activity.
5 create(c, uml_class) Create missing Java classes.

Figure 3. Description of Generator Functions.

scenario. Four rules detect high risk level deviations: wfr1,
wfr2, wfr3 and codep. That was done because when one
of the first three kinds of deviation is detected that means
that the current observed process state is meaningless (e.g.
it makes no sense to finish an activity that has not been
started yet). The last one is marked as a high risk level one
because it encodes part of the process objective: obtain the
set of Java classes that implements the requirements and the
class diagram.

Four rules detect medium risk level deviations: wfr4,
cdm, ucm and code. That was done because these rules
detect actions that were executed when they were not
expected to (e.g. during the wrong activity). Even though
this constitutes a deviation, we consider it as a lower risk
level deviation when compared to not producing an imple-
mentation for every class in the class diagram. It happens
because, executing actions when they were not expected is
not necessarily an obstacle to the process objective.

Finally, one rule detects low level deviations: order.
This rule makes sure that the activities in the process
model were executed in the correct order. We consider that
executing all activities is much more important in the present
process model than executing them in the specified order.

Six Prolog rules implement the Generator Functions for
this process. Two of them propose plans based on canceling
the deviating action (rules 1 and 2). Two others propose
plans based on changing the current activity, e.g. finishing
the current activity and starting another one (rules 3 and 4).
One of them proposes a mixed plan, based on canceling and

changing current activity, and, finally, the last one proposes
a fix to a structural deviation concerning the postcondition
of the code activity: if a UML class is not reflected as a
Java class, it proposes creating the missing class (rule 5).

B. Sample Execution Scenario

This section shows how our approach accomplishes our
three goals for flexible deviation handling in a sample
execution scenario. This scenario has been chosen because,
even though it is very short, it is representative of a case
in which deviations were ignored from the beginning of the
process enactment, and still can be fixed later. It contains
many different kinds of deviations and depicts a particular
case in which the solution for one deviation also fixes
another one. The output of our sample PSEE is presented at
each step of the deviation handling process.

Late Handling. The tested scenario consists in 9 actions
presented below:

Timestamp Event
1 launch(cdm,u)
2 create(controller,uml_class)
3 finish(cdm,u)
4 launch(ucm,u)
5 create(model,uml_class)
6 finish(ucm,u)
7 launch(code,u)
8 create(helper,java_class)
9 finish(code,u)

The first action consists in the user u starting the cdm
activity. She then creates the UML class controller and
finishes the activity. At timestamp 4 she launches the activity



ucm and creates the UML class model and finishes the
activity. Finally, she launches the code activity and creates
the helper Java class. Notice that the process agent is able
to execute her actions without being forced to deal with the
eventual deviations when they are first detected.

Risk Assessment. At any point the list of currently
detected deviations can be consulted. This list at timestamp
9 is as presented below:

Timestamp Action Rule Risk Level
2 create(controller,uml_class) codep high
5 create(model,uml_class) codep high
5 create(model,uml_class) ucm medium
1 launch(cdm,u) order low

This table displays the list of detected deviations ordered
first by decreasing risk level and then chronologically. In
the present scenario, four deviations have been detected.
The first two lines point out that the code activity has
been finished but the controller and the model UML
classes still have not been coded into Java classes. The third
deviation points out that the model class was created during
the ucm activity and finally, the fourth deviation states that
the agent launched the cdm activity before the ucm activity
in timestamp 1.

Correction Guidance. The agent is now able to obtain
a list of possible plans to reduce the risk level by fixing
some of these deviations, the result of this computation is
provided below:

Searching for plans...
2 solutions found...

Correction Plan
====== ====

cancel(9)
create(controller,java_class)
create(model,java_class)
finish(code,u)
launch(cdm,u)
cancel(5)
create(model,uml_class)
finish(cdm,u)
launch(code,u)

Risk assessment at the end: 0,0,0

...

This printout shows that 2 solutions were found. Both of
them reduce the risk level to what is indicated by 0,0,0
which means 0 high risk deviation, 0 medium risk deviation
and 0 low risk deviation. The presented solution starts by
canceling the last action, that finishes the code activity and
then creating the two missing Java classes: controller
and model. tmodel class in the correct activity. Finally, the
cdm activity is finished and the code activity is initiated
again.

C. Discussion

This section discusses the merits and the limits of our
approach from the viewpoints of the two stakeholders related
to this context: the process agent, and the process modeler.
From the process modeler’s viewpoint, our study showed
that a process containing three activities was implemented
as a set of 14 rules: 9 deviation rules and 5 generator
functions. At first sight, this could appear to be a lot, but
one needs to take into consideration that most of them (64%)
are independent from the process model. These rules could
therefore be reused as a library or be automatically generated
to be applied to another process model. The remaining 5
rules are specific to this process model. That means that
our prototype would still be fully functional without them.
It would be able to verify that the process activities were
executed in the correct order and with the correct artifacts.

From the process agent’s viewpoint, our results show
that our approach is implementable in a PSEE and that it
is able to support enactment scenarios in which process
agents are able to deviate from the process specification
while accomplishing the three objectives of this work. As
we suggested in the introduction, these features provided by
our approach are more appropriate to the opportunistic way
of working employed by process agents. However, since we
only executed scenarios with only our approach; we could
not assess if our approach would be perceived as more useful
by process agents when compared with a scenario using a
different approach. This has been left as future work.

VI. RELATED WORK

To the best of our knowledge, no current approach in
software process enactment fully accomplishes the three
objectives of our approach: Late Handling, Risk Assessment
and Correction Guidance. These approaches can be divided
into three groups. The first group does not allow any
deviation during process enactment [17] and therefore does
not support any of the objectives. The second group allows
deviations during process enactment [5], [10], assess their
risk but are not able to provide any correction guidance
or late handling. Finally, the third group [20] realizes an
à posteriori analysis of a log of the actions executed by the
process agents to detect each deviation and assess their risk.
Correction guidance is however left to process agents.

These objectives however have been separatedly ad-
dressed in the Business Process Management domain before.
Business Process are more general then software processes,
that describe the services provided by a set of agents (most
of them not human) [12]. These services are also structured
into activities whose ordering constraints are defined by the
process model. Works like [2], [14] define languages for
expressing deviation rules and generator functions and there-
fore can automatically generate correction plans for devia-
tions. However they focus on mostly automatized processes
executed by WebServices, and they do not provide then



late handling and risk assessment during process enactment.
Other works focus on business processes mostly executed by
humans [16]. They focus on identifying and assessing the
risks of deviations during process enactment. They usually
provide late handling handling for these deviations, but do
not offer any correction guidance.

VII. CONCLUSION

In the present work, the deviation rules are used to
formally specify deviations in such a way that: (i) they may
be fixed afterwards (Late Handling); (ii) they provide pieces
of information necessary to estimate the risk of the current
observed process (Risk Assessment) and (iii) they may be
used as input to planning algorithms that derive correction
plans that assist the process agents in reducing this risk
(Correction Guidance). The present approach is process
model independent and was prototyped and evaluated in a
set of enactment scenarios. Our preliminary results show that
it accomplishes the three desired goals, however a deeper
evaluation is still necessary. In order to accomplish that, as
perspectives of this work, we are studying the validation
of our prototype in the context of a bigger case study in
an industrial use case provided by our industrial partners.
This use case should include the integration of our current
prototype into an industrial environment.

REFERENCES

[1] S. C. Bandinelli, A. Fuggetta, and C. Ghezzi. Software
process model evolution in the spade environment. IEEE
Trans. Softw. Eng., 19(12):1128–1144, 1993.

[2] L. Baresi, S. Guinea, and P. Plebani. Policies and aspects
for the supervision of bpel processes. In J. Krogstie, A. L.
Opdahl, and G. Sindre, editors, CAiSE, volume 4495 of
Lecture Notes in Computer Science, pages 340–354. Springer,
2007.

[3] X. Blanc, A. Mougenot, I. Mounier, and T. Mens. Detecting
model inconsistency through operation-based model construc-
tion. In Robby, editor, Proc. Int’l Conf. Software engineering
(ICSE’08), volume 1, pages 511–520. ACM, 2008.

[4] A. G. Cass and L. J. Osterweil. Process support to help
novices design software faster and better. In D. F. Redmiles,
T. Ellman, and A. Zisman, editors, ASE, pages 295–299.
ACM, 2005.

[5] G. Cugola. Tolerating deviations in process support systems
via flexible enactment of process models. IEEE Trans.
Software Eng., 24(11):982–1001, 1998.

[6] M. A. A. da Silva, R. Bendraou, X. Blanc, and M.-P.
Gervais. Early deviation detection in modeling activities of
mde processes. In Petriu et al. [15], pages 303–317.

[7] M. A. A. da Silva, A. Mougenot, R. Bendraou, J. Robin, and
X. Blanc. Artifact or process guidance, an empirical study.
In Petriu et al. [15], pages 318–330.

[8] M. A. A. da Silva, A. Mougenot, X. Blanc, and R. Ben-
draou. Towards automated inconsistency handling in design
models. In Proceedings of the 22st International Conference
on Advanced Information Systems, CAISE’10, volume 6051
of LNCS, pages 348–362. Springer, June 2010.

[9] A. Egyed, E. Letier, and A. Finkelstein. Generating and
evaluating choices for fixing inconsistencies in UML design
models. In Proc. ACM/IEEE Int’l Conf. Automated Software
Engineering (ASE ’08), pages 99–108, New York, NY, USA,
2008. ACM.

[10] M. Kabbaj, R. Lbath, and B. Coulette. A deviation man-
agement system for handling software process enactment
evolution. In Q. Wang, D. Pfahl, and D. M. Raffo, editors,
ICSP, volume 5007 of Lecture Notes in Computer Science,
pages 186–197. Springer, 2008.

[11] F. Lanubile and G. Visaggio. Evaluating defect detection
techniques for software requirements inspections, 2000.

[12] A. Lindsay, D. Downs, and K. Lunn. Business processes–
attempts to find a definition. Information & Software Tech-
nology, 45(15):1015–1019, 2003.

[13] J. Lonchamp. A structured conceptual and terminological
framework for software process engineering. In In Proceed-
ings of the Second International Conference on the Software
Process, pages 41–53. IEEE Computer Society Press, 1993.

[14] K. Mahbub and G. Spanoudakis. A framework for requirents
monitoring of service based systems. In Proceedings of the
2nd international conference on Service oriented computing,
ICSOC ’04, pages 84–93, New York, NY, USA, 2004. ACM.

[15] D. C. Petriu, N. Rouquette, and Ø. Haugen, editors. Model
Driven Engineering Languages and Systems - 13th Interna-
tional Conference, MODELS 2010, Oslo, Norway, October 3-
8, 2010, Proceedings, Part II, volume 6395 of Lecture Notes
in Computer Science. Springer, 2010.

[16] S. Sadiq, G. Governatori, and K. Namiri. Modeling control
objectives for business process compliance. In Proceedings
of the 5th international conference on Business process man-
agement, BPM’07, pages 149–164, Berlin, Heidelberg, 2007.
Springer-Verlag.

[17] T. J. Sliski, M. P. Billmers, L. A. Clarke, and L. J. Osterweil.
An architecture for flexible, evolvable process-driven user-
guidance environments. ESEC/FSE, ?:33–43, 2001.

[18] G. Spanoudakis and A. Zisman. Inconsistency management
in software engineering: Survey and open research issues.
In IN HANDBOOK OF SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING, pages 329–380. World Sci-
entific.

[19] W. Visser. More or less following a plan during design: Op-
portunistic deviations in specification. International Journal
of Man-Machine Studies, 33(3):247–278, 1990.

[20] N. Zazworka, V. R. Basili, and F. Shull. Tool supported detec-
tion and judgment of nonconformance in process execution.
In Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement, ESEM
’09, pages 312–323, Washington, DC, USA, 2009. IEEE
Computer Society.


