Lê-Greuel type formula for the Euler obstruction and applications

Abstract : The Euler obstruction of a function can be viewed as a generalization of the Milnor number for functions defined on singular spaces. In this work, using the Euler obstruction of a function, we give a version of the Lê-Greuel formula for two germs of analytic functions with isolated singularity at the origin on a singular space. Using this formula and results of Loeser, we also present an integral formula for the Euler obstruction of a function, generalizing a formula of Kennedy.
Document type :
Journal articles
Advances in Mathematics, Elsevier, 2014, 251, pp.127-146
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00626791
Contributor : Nicolas Dutertre <>
Submitted on : Tuesday, September 27, 2011 - 10:02:45 AM
Last modification on : Friday, July 13, 2018 - 2:34:04 PM
Document(s) archivé(s) le : Wednesday, December 28, 2011 - 2:21:19 AM

Files

DutertreGrulha.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00626791, version 1
  • ARXIV : 1109.5802

Collections

Citation

Nicolas Dutertre, Nivaldo G. Grulha Jr.. Lê-Greuel type formula for the Euler obstruction and applications. Advances in Mathematics, Elsevier, 2014, 251, pp.127-146. 〈hal-00626791〉

Share

Metrics

Record views

317

Files downloads

158