Integrating quantitative knowledge into a qualitative gene regulatory network.

Jérémie Bourdon 1, 2, * Damien Eveillard 2 Anne Siegel 1
* Corresponding author
1 SYMBIOSE - Biological systems and models, bioinformatics and sequences
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : Despite recent improvements in molecular techniques, biological knowledge remains incomplete. Any theorizing about living systems is therefore necessarily based on the use of heterogeneous and partial information. Much current research has focused successfully on the qualitative behaviors of macromolecular networks. Nonetheless, it is not capable of taking into account available quantitative information such as time-series protein concentration variations. The present work proposes a probabilistic modeling framework that integrates both kinds of information. Average case analysis methods are used in combination with Markov chains to link qualitative information about transcriptional regulations to quantitative information about protein concentrations. The approach is illustrated by modeling the carbon starvation response in Escherichia coli. It accurately predicts the quantitative time-series evolution of several protein concentrations using only knowledge of discrete gene interactions and a small number of quantitative observations on a single protein concentration. From this, the modeling technique also derives a ranking of interactions with respect to their importance during the experiment considered. Such a classification is confirmed by the literature. Therefore, our method is principally novel in that it allows (i) a hybrid model that integrates both qualitative discrete model and quantities to be built, even using a small amount of quantitative information, (ii) new quantitative predictions to be derived, (iii) the robustness and relevance of interactions with respect to phenotypic criteria to be precisely quantified, and (iv) the key features of the model to be extracted that can be used as a guidance to design future experiments.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00626708
Contributor : Damien Eveillard <>
Submitted on : Monday, September 26, 2011 - 6:27:38 PM
Last modification on : Friday, November 16, 2018 - 1:23:29 AM

Links full text

Identifiers

Citation

Jérémie Bourdon, Damien Eveillard, Anne Siegel. Integrating quantitative knowledge into a qualitative gene regulatory network.. PLoS Computational Biology, Public Library of Science, 2011, 7 (9), pp.e1002157. ⟨10.1371/journal.pcbi.1002157⟩. ⟨hal-00626708⟩

Share

Metrics

Record views

467