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ABSTRACT:  Prediction of physical particular phenomenon is based on knowledge of the phenomenon. 
This knowledge helps us to conceptualize this phenomenon around different models. Hidden Markov 
Models (HMM) can be used for modeling complex processes. This kind of models is used as tool for fault 
diagnosis systems. Nowadays, industrial robots living in stochastic environment need faults detection to 
prevent any breakdown. In this paper, we wish to evaluate relevance of Hidden Markov Models param-
eters, without a priori knowledges. After a brief introduction of Hidden Markov Model, we present the 
most used selection criteria of models in current literature and some methods to evaluate relevance of sto-
chastic events resulting from Hidden Markov Models. We support our study by an example of simulated 
industrial process by using synthetic model of Vrignat’s study (Vrignat 2010). Therefore, we evaluate output 
parameters of the various tested models on this process, for finally come up with the most relevant model.

literature are the AIC: Akaike Information Crite-
rion (Akaike 1973), the BIC: Bayesian Information 
Criterion (Schwarz 1978).

In this work, the emphasis is on measuring 
relevance of Hidden Markov Models (HMM) 
parameters, based on several criteria used in cur-
rent literature. Then, we try to evaluate best HMM 
topology. The structure is as follows: in section 2, 
we outline hidden Markov model and define its 
parameters. We present criteria used to evaluate 
relevance of HMM parameters (Shannon’s entropy 
(Shannon 1948), likelihood, AIC and BIC), in 
section  3. Finally, we use our synthetic model to 
compare several HMM topologies, from among 
a candidate set, with previous criterion and try to 
give the best one, in section 4.

2  HIDDEN MARKOV MODEL

Hidden Markov Model (Rabiner 1989), (Fox et al. 
2006) is an automaton with hidden states which 
consists of unobservable variable. This one repre-
sents the system status to be modeled. Only output 
variable is observable. Then we get observations 
sequence from output of the automaton; from 
now, we rename observations sequence as symbols, 
representing these observations (see an example 
of model figure  1). This is precisely relevance of 

1  INTRODUCTION

According to (Vrignat et al. 2010), we find two 
keywords in maintenance definition: maintain and 
restore. The first one refers to preventive action. 
The second refers to corrective action. Thus, main-
tenance optimization for reliability determines 
“optimal” preventive maintenance. Events preced-
ing a problem in maintenance activities are often 
recurrent. Special events series should inform us on 
next failure. For example, in mechanical systems, 
noises, vibrations precede failure. The loss of per-
formances reflects failure or technical faults. Our 
works (Vrigna et al. 2010) show that it is possible to 
model degradation levels of a process and results 
show that our approach combined with work of 
(Zille, Bérenguer, Grall, Despujols, & Lonchampt 
2007) can provide decision support for industrial 
maintenance. We also show (Vrignat et  al. 2010) 
that our model provides a good failure prediction. 
With this, we make a reference model, named syn-
thetic model, which fits to real industrial processes. 
Our research consist here to evaluate three different 
Hidden Markov Models topologies, with parame-
ters outcome from this synthetic model. According 
to (Lebarbier and Mary-Huard 2004), problems 
of model selection (i.e. which model gives best 
failure prediction) are based on the minimization 
of penalty criterion. First criteria which appear in 
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these symbols that we attempt to evaluate. Hidden 
Markov Model is characterized by the following:

•	 State number;
•	 Number of distinct observation symbols per 

state, observation symbols corresponding to the 
physical output of the system being modeled;

•	 Distribution probability of state transitions;
•	 Distribution probability of observation symbols;
•	 Initial state distribution.

2.1  Markov Assumption

States prediction is not made more accurate by 
additional priori knowledge information, i.e. all 
useful information for future prediction is con-
tained in present state of the process.

	 (1)

2.2  Definitions for discrete Hidden Markov 
Model

Let us describe variables for HMM:

•	 Let N, the number of workable hidden states 
and E = {E1,E2,…,EN}, the set of this variable. 
Let qt, the value of this variable at time t;

•	 Modeled process, must match to first-order 
Markov assumption (§2.1);

•	 Let T, the full number of observation symbols 
and let X = {x1,x2,…, xT}, observations sequence 
of the modeled process;

•	 Let A  =  {aij}, distribution probability of state 
transitions with:

	 (2)

•	 Let B  = {bj(m)}, distribution probability of 
observation symbol in j state, with:

	 (3)

with Xt, value of observation variable at time t.

•	 Let π = {πi}, initial state distribution with:

	 (4)

•	 Hidden Markov Model will be set as: (A,B,π), 
•	 λi is failure rate and µi is repair rate.

3  CRITERIA USED FOR EVALUATION

A lot of criteria in model selection are proposed in 
literature. We try to evaluate the best Hidden Markov 
Model topology proposed in (Vrignat 2010), by using 
Shannon’s entropy (Shannon 1948), especially maxi-
mum entropy principle used in (Chandrasekaran 
et al. 2007). Calculation is made with states and obser-
vations: symbols productions of synthetic HMM §4. 
To emphasize our analysis, we also use some criteria 
which penalize likelihood value, in order to over-
come over-parameterization models, like (Akaike 
1973) and Bayes (Chen and Gopalakrishnan 1998) 
criteria.

3.1  Shannon’s entropy

We now study notions of Shannon’s entropy. It is 
a mathematical function which calculate the infor-
mation rate contained in an information source. 
This source can be a text written in any language, 
an electrical signal or an unspecified electronic 
file...

3.1.1  Entropy definition
Shannon’s entropy is defined in (Cover and Tho-
mas 1991) as follows:

	
(5)

Pi is the average probability to find the i symbol 
in S.

3.1.2  Formal properties of Shannon’s entropy

•	 Entropy value should be minimal if  only one 
symbol is represented (uncertainty is null when 
there is only one event).

	 (6)

•	 On the other hand, entropy value should be max-
imal if  all symbols are equiprobable (uncertainty 

RUN

S1 S2 S3 S4

Symbols production
1:SEC
2:OT
3:NTR
4:OBS
5:...

Symbols production
HMM

Figure 1.  Four states Hidden Markov Model.
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is highest when all possible events are equipos-
sible). For further information, reader will refer 
to (Beirlant et al. 1997) which present a state of 
the art about methods for entropy estimation 
and their properties.

3.1.3  Maximum entropy principles
The two principles of entropy’s maximization in 
(Jaynes 1957) are the following:

•	 Principle of probabilities assignment to a distri-
bution when we haven’t enough informations on 
it;

•	 For all probability distributions that satisfy the 
constraints, we choose the one which has the 
maximum entropy according to Shannon.

Chandrasekaran in (Chandrasekaran et al. 2007) 
uses this 2nd principle for models selection, and 
(Arminjon and Imbault 2000) for building even 
more accurate models, by adding information. Our 
step consists in comparing the average entropies for 
various models. Value of average entropy would be 
then maximum for the most relevant model.

3.1.4  Entropic filter
We now introduce “Entropic Filter” concept. 
According to the 2nd principle of entropy stated in 
§3.1.3, we choose the model whose average entropy 
is maximum. On the other side, outliers values 
can generate miscalculation in real entropy value 
of the model. Especially NTR symbols (Nothing 
To Report) which are not useful for evaluation 
(entropy is maximum). SP (Stop Production) sym-
bols have likewise been eliminated (entropy is null). 
Indeed, they are totally discriminated for S1 state 
of HMM. To improve calculation of entropy, it 
is therefore better to eliminate these values. This 
approach is used through ID3 (Quinlan 1979) 
and C4.5 (Quinlan 1993) algorithm when creating 
decision tree, removing recursively attribute with 
zero entropy. In order to improve the calculation 
of entropy, we propose to eliminate discriminated 
symbols of zero entropy and the most representa-
tive symbols, where entropy is maximum. This 
operation will be named “Entropic Filter”. We then 
calculate the average entropy of models to assess 
relevance of observation sequences. Best model is 
the one which has the best average entropy, after 
entropic filtering.

3.2  Maximum likelihood

Let us now turn to studying maximum likelihood 
principle. Let Pα, a statistical model, and X, an 
observation sequence, the probability to see X  
according to P can be measured by f(X, α) function 
which represents the density of X when α appears. 
Since α is unknown, it seems natural to promote 

values of α where f (X, α) is maximum: it is the 
notion of likelihood of α for observation X.

– Expression of likelihood V:

	
(7)

α is mathematical expectation,
A strictly increasing transformation does not 

change a maximum. Maximum likelihood can also 
be written as:

	 (8)

Then

	
	 (9)

−	 For a discrete sample:

	 (10)

�Pα(X = xi) represents discrete probability where 
α appears,

−	 Maximum likelihood for a discrete sample Pα(xi) 
representing the discrete probability where α 
appears:

	
	

(11)

Actually, we maximize the logarithm of likeli-
hood function to compare several models. Accord-
ing to (Olivier et al. 1996), principle of maximum 
likelihood results in over-parameterization of the 
model to have good performances. Penalization of 
likelihood value can overcome this disadvantage. 
Most famous penalized log-likelihood criterion is 
the AIC (Akaike 1973), even if  it is not completely 
satisfactory: it improves maximum likelihood prin-
ciple but also led to an over-parameterization. 
Other traditional criteria, BIC and HQC, ensure a 
better estimation by penalizing oversizing models.

3.3  Akaike information criterion

According to (Ash 1990), entropy of a random 
variable is a regularity measurement. We can eas-
ily extend this concept to a model having several 
random variables. In the literature, Akaike Infor-
mation Criterion (AIC) is often associated with 
another known criterion, called Bayes Informa-
tion Criterion (BIC). In his report, (Lebarbier and 
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Mary-Huard 2004) describe all assumptions neces-
sary to its implementation.

	 (12)

k is the number of free parameters, 2k is the pen-
alty, V is the likelihood.

Best model is the one which has the weak-
est AIC. This criterion uses maximum likelihood 
principle seen in (11). It penalizes models with too 
many variables, and avoids over-learning models.

3.4  Measurement of bayesian information 
criterion

AIC criterion is often presented with Bayesian 
or Schwarz criterion: BIC, which more penalizes 
over-parameterized models. BIC criterion was 
introduced in (Schwarz 1978) and is different for 
the correction term:

	 (13)

k is the number of free parameters of Markov Model 
(Avila 1996), n is the number of data, k1n(n) is the 
penalty term.

Like AIC, best model is the one who gets the 
minimum value of BIC. Choosing between these 
two criteria is to choose between a predictive 
model and an explanatory model (Lebarbier and 
Mary-Huard 2004). It checks the validity of a par-
ticular model but it is mainly used to compare sev-
eral models together. AIC criterion is less relevant 
than BIC for over-learning models.

4  SIMULATED INDUSTRIAL PROCESS

Nowadays, every industrial factory is using preven-
tive maintenance. Maintenance agents can consign 
their actions and observations in a centralized 
database (see table 1). For example, symbols “PM, 
OT, SP, …” could characterize maintenance activi-
ties carried out on industrial process. We recall the 

meaning of selected symbols resulting from obser-
vations, in table 2. “SP” symbol corresponds to a 
stop of production units: process state = “STOP” 
in table 2. It is a critical condition that our research 
tries to minimize. Process state  =  “RUN” when 
production units are running without failure. We 
study here this kind of maintenance by using syn-
thetic model (§4.1) to simulate real industrial envi-
ronnement. We choose “λi” (failure rate) and “µi” 
(repair rate) of HMM parameters (Vrignat 2010), 
to match as possible, with maintenance consigna-
tion (table 1).

4.1  Synthetic model

We make our synthetic model with Matlab by 
using four states oriented model 2 presented in 
fig. 3(b). We use this model feature because it has 
good performance in maintenance activities (Vrig-
nat et al. 2010). Then, we build sequences of data 
(also named “signature”) using this model as the 
reference model, by injecting “stochastic” symbols 
in this HMM. We use these symbols sequences as 

Table 1.  Example of recorded events.

Name Date Ope. Cd IT N° Code

Dupond 11/01/2007 Lubrication PM 20 1 9
Dupond 11/01/2007 Lubrication PM 20 2 9
Dupond 12/01/2007 Lubrication SEC 30 3 5
Dupond 12/01/2007 Lubrication PM 30 4 5
Dupond 13/01/2007 Padlock PM 10 5 6
Dupond 13/01/2007 Padlock NTR 30 6 5
Dupond 13/01/2007 Padlock NTR 30 7 5
Dupond 16/01/2007 Lubrication SP 90 8 1
Dupond 19/01/2007 Padlock OT 10 9 3

Table 2.  Symbolic coding system of maintenance 
interventions.

Process state

RUN
STOP

Interventions type
1 SP (Troubleshooting/Stop Production)
2 SM (Setting Machine)
3 OT (Other)
4 OBS (Observation)
5 PM (Preventive Maintenance, Production not 

stopped)
6 SEC (Security)
7 PUP (Planified Upgrading)
8 CM (Cleaning Machine)
9 PMV (Preventive Maintenance Visit)
10 NTR (Nothing to report)

Label 1

Stop

Estimating 
rate of 
system 

degradation

Run 
with 

degradation 
level 

Estimating - system 
degradation 

2 3 4 5 6 7 8 9 10

N  Obs 10
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10
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5
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5
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C

5

PM

5

PM

10

N
TR

 

N11

10

N
TR

 

12

1

SP
 

Figure 2.  Degradation of process.
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Markov chain (see table 3), to model degradation 
level of a process (example in figure 2). These sim-
ulated symbols, according to real industrial process 
(Vrignat et al. 2010), are obtained by using uniform 
and Gaussian distribution. We inject these symbols 
into three different HMM topologies, described in 
figure 3, by using two different learning and decod-
ing algorithms:

•	 Baum-Welch learning (Baum et al. 1970), decod-
ing by Forward (Rabiner 1989),

•	 Segmental K-means learning (Juang and Rab-
iner 1990), decoding by Viterbi (Viterbi 1967).

About 1000 symbols were produced by refer-
ence model (distribution in figure 8 and 9). Each 
sequence ends with a stop of production (symbol 
SP in red) see fig. 2. We get 11  sequences in our 
1000 simulated symbols. You can see distribution 
symbols/states for the first sequence: HMM  1, 
HMM  1/Baum-Welch and HMM  1/Segmen-
tal K-means algorithms, in figure  10. Finally, we 
obtain states sequences for each HMM outside. 
Later, these states are used to make comparisons 
between HMM, studied in section  3, see results 
in section 4.2. Diagram of this process is given in 
figure 4.

4.2  Results

Without a priori knowledge we can give the most 
relevant model in the way of Shannon. Namely, 

Table 3.  Sequence of a message from maintenance 
database.

PM PM SEC PM PM NTR NTR SP . . .

RUN

S1 S2 S3 S4

Symbols production
1:SEC
2:OT
3:NTR
4:OBS
5:...

Symbols productionHMM1

(a) Model 1

RUN

S1 S2 S3 S4

Symbols production
1:SEC
2:OT
3:NTR
4:OBS
5:...

Symbols productionHMM2

(b) Model 2

RUN

S1 S2 S3 S4

Symbols production
1:SEC
2:OT
3:NTR
4:OBS
5:...

Symbols productionHMM3

(c) Model 3

Figure 3.  Hidden Markov Models.

Synthetic model
Hidden Markov

Model2
(reference)

Symbols
generated

by Uniform
distribution

Symbols
generated

by Normal
distribution

Hidden Markov Models 1, 2 & 3

–Shannon’sentropy,
–AkaikeInformationCriterion.

Sequenceanalysisof3HMMs

Give the most
relevant model

Estimation of HMM Decoding sequences

Baum–Welch

Segmental
K–means

Foward
variable

Viterbi

Symbols
generated

by Uniform
distribution

Symbols
generated

by Normal
distribution

Baum–Welch

Segmental
K–means

–Shannon’s entropy,
–Maximum likelihood, AIC, BIC.

Sequences analysis of 3 HMMs

Figure  4.  Matching model method, using synthetic 
model.
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we verify that the best model (which provides 
the better estimation of degradation level (Vrig-
nat et al. 2010)) obtains a good “entropic” score 
through entropic filter, illustrated in figure 5. The 
best model is model 2 with Baum–Welch learning, 

where entropy is maximum. It also highlight the 
best learning algorithm recommended in (Vrignat 
et al. 2010): Baum–Welch with Forward variable 
decoding, whatever distribution of symbols (uni-
form or normal).

We evaluate likelihood (or probability) of 
observations sequences given by synthetic HMM. 
Results of maximum likelihood and BIC are Symbols generated by HMM reference (Uniform distribution)
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Figure 5.  Average entropy of models.
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(a) HMM–Reference

(b) Baum–Welch

(c) SegmentalK–means

presented respectively in figure  6 and 7. Our 
results highlight the most relevant model: HMM 
2, fig. 3(b). That corroborate (Vrignat et al. 2010) 
results. On the other side, our results don’t show 
clearly, differences between algorithms, we can 
not conclude for the best learning and decoding 
algorithm. Nevertheless, with Segmental K–means 
algorithm, in figure 10(c), the reader can see a bad 
distribution of symbols. AIC does not penalize our 
1000 data, thats why BIC is more suitable, because 
of “k1n(n)” term of equation 13.

5  CONCLUSIONS

In our study, we presented a way for evaluating rel-
evance on Hidden Markov Models based on three 
different criteria. We have successfully applied this 
method to three different models. The first one, 
uses Shannon’s entropy and entropic filter. Given 
set of observations sequences simulated by our syn-
thetic model, we verify that the most relevant model 
obtains a good “entropic” score. That corroborates 
(Vrignat et al. 2010) results which show that model 
2 is the one which comes closest to real industrial 
process. This criterion also shows that Baum–Welch 
learning algorithm with Forward variable decoding 
gives best results. Second and third criterion (Maxi-
mum likelihood and BIC) emphasis that HMM 2 is 
the best model, whatever distribution of symbols. 
Unfortunately, these criteria are too near each other 
to make conclusions about learning algorithm.

Without a priori knowledge, we illustrated that 
topology model 2 (fig.  3(b)) with Baum–Welch 
learning algorithm and Forward variable decod-
ing is the best one. We also show that model 2 is 
a good model with Log-likelihood and AIC crite-
rion. Unfortunately, theses methods can’t give us 
the best learning algorithm.

In further work, we will try some statistics 
tests like Bartlett or Aspin-welch. We also try the 
Kolmogorov-Smirnov fit test of distribution of 
two samples. Our research, is to be able to validate 
a reel choice of a model: topology, symbol,…with-
out a priori knowledge on results.
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