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1 INTRODUCTION 
Industrial processes need to be maintained to prevent 
breakdown. Some years ago, maintenance activities 
were only deployed to repair process after the prob-
lem occurs. Nowadays, in an international market 
context, companies need to improve their productiv-
ity. In this context, maintenance strategies are in-
cluded in reliability engineering (Moubray 1997). In 
Phimister (Phimister et al. 2003), authors split main-
tenance into two kinds of activities: technical activi-
ties and management activities. More details can be 
found in (Wireman 2004). Figure 1 shows different 
kinds of maintenance policies. A review of different 
maintenance strategies can be found in Bérenguer 
(Bérenguer et al. 2004) and Cotaina (Cotaina et al. 
2000). In some specific cases, maintenance policy 
could be imposed, like it is the case for nuclear plant 
in France. 
 

 
Figure 1. Maintenance policies 

 

This field includes technological aspects, personal 
organization, logistic… Different kinds of mainte-
nance policy can be applied: preventive or corrective 
according to manager strategies.  
In case of preventive maintenance, different strate-
gies should be used like planned preventive mainte-
nance or condition-based maintenance. Planned ac-
tions would be program using feedback from 

experience which used statistical frequencies of de-
faults. Condition-based maintenance could use spe-
cific features extracted from the process like vibra-
tion sensors, oil analyzers… Then according to these 
indicators, maintenance actions can be performed. In 
many cases, defaults are preceded by specific series 
of events. Black smoke behind a car informs that 
engine could stop. Dark clouds indicate it will rain… 
Events which precede default could inform about 
imminence of it. Valdez-Florez (Valdez-Florez and 
Feldman 1989) survey researches on model optimi-
zation for repair, replacement, and inspection of sys-
tems subject to stochastic deterioration. Simeu-
Abazi (Simeu-Abazi and Sassine 1999) adopted a 
modular modelling approach, based on a cellular de-
composition of the system. They use stochastic Petri 
nets and Markov chains to implement various main-
tenance strategies in complex production workshops. 
A parametric decision framework (multi-threshold 
policy) is proposed to choose sequentially the best 
maintenance actions and to schedule future inspec-
tions, using on-line monitoring information on the 
system deterioration level (Castanier et al. 2003), 
(Dieulle et al. 2003). Deterioration of technical sys-
tems can often be classified into discrete states, and 
transitions between these states can be modelled us-
ing a Markov process. Instead of using an exponen-
tial distribution, it may be more realistic to assume 
that a general probability distribution describes stay-
ing time in one of these states (Welte 2008). Soro 
(Soro et al. 2010) proposed a model for evaluating 
availability, production rate and reliability function 
of multi-state degraded systems subject to minimal 
repairs and imperfect preventive maintenance. Sys-
tem status is considered to degrade with its use. 
These degradations may decrease system efficiency. 
It is assumed that the system can consecutively de-
grade into several discrete states, which are charac-
terized by different performance rates, ranging from 
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perfect functioning towards complete failure. Never-
theless, global performances are difficult to be con-
trolled because system environment changes. Oper-
ating modes are dependent on product flows, and 
ageing of components modifies continuously system 
characteristics. Thus today, most maintenance 
strategies are not well adapted to these requirements 
because purely reactive (fixing or replacing equip-
ment after it fails) or time-scheduled (Wang 2002).  
Ben Salem (Ben Salem et al. 2006) propose a model 
of the degradation of an n-component system. This 
modelling can be performed in two steps: 

- modelling degradation of the different system 
components, 

-  from these models, establish an overall degra-
dation model taking into account the functional 
dependencies between components. 

As in these studies, we show that a degradation level 
of a process can be proposed to the expert, from se-
ries of "field" events. In this study, we try to learn, 
without "a priori", this default signature. The origi-
nality of our work, is to use maintenance activities 
as an indicator (Figure 2). Works, presented in this 
paper, take part of condition monitoring systems. 
Using observations provided on the process, we try 
to generate an availability indicator which can be 
used by maintenance manager to plan actions dy-
namically (Figure 1 and Figure 2). According to sys-
tem availability, preventive maintenance could be 
scheduled to prevent uncontrolled stops of system. 
 

 
Figure 2. Works goals 

 

The replacement of components for which failure is 
thought to be imminent, can be performed when the 
component is strongly damaged according to differ-
ent use criteria, or when it has reached a critical con-
dition. The success of this approach depends on the 
ability to predict remaining life of the component 
and when to perform the replacement (Bérenguer 
2008), (Bouvard et al. 2008). 
Hidden Markov Models (HMM) have been used, 
with success, to model sequences of events like, for 
example, in speech recognition. To improve results 
of these methods, model parameters should be ad-
justed to match event characteristics (states, topol-
ogy…). In this study, we use the same strategy to 
learn events which can be observed on an industrial 

process. Model topology is configured to provide an 
availability explanation to our model. When system 
is started, model will indicate a high level of avail-
ability. When system is stopped by defaults, model 
will be in the "off" state (red state: it is too late to 
prevent default). Our new estimator is compared 
with "classical" degradation laws. These degradation 
laws are used as references.  
In the next part, we introduce maintenance strategies 
and our works are located in this context. In part 2, 
we recall some "classical" reliabilities laws. We give 
more details for Kaplan-Meier law and Cox model, 
which have been implemented. In part 3, our strat-
egy to use HMM for availability indicator imple-
mentation is presented. In the last part, we compare 
results of "classical" degradation laws with our 
HMM availability indicator on a synthesis model. 

2 RELIABILITY STUDY OF MAINTAIN 
PROCESS 

Reliability is often used by maintenance expert. In 
this section, some usual lifetime laws are presented. 
These laws can be used as well for medical studies 
as for industrial context. Main properties of these 
laws (probability density, reliability functions, fail-
ure rate) are defined and applied in reliability appli-
cations (Ebeling 1997), (Birolini 1994). Commonly, 
parametric models and nonparametric models based 
on proportional risk are used (Bertholon et al. 2006). 
Different classical laws of degradations exist: expo-
nential law, normal law (Laplace-Gauss), Log-
normal law (or Galton law), Weibull. We do not pre-
sent these laws in this paper. 
Efficient maintenance is related to a pertinent esti-
mation of components lifetime. This estimation is 
based on experience feedback. Lifetime study of 
each system can be split into two options which need 
a great analysis of this experience feedback:  

- System reliability is its ability to perform what it 
has to do in its usual conditions during a given 
time (N.F.E.N 13306X60-319 2001), (C.E.I 
1985). Reliability expert tries to plan new main-
tenance strategy using reliability evolution.  

- Durability is the ability for a system to perform 
its goals, given using and maintaining condi-
tions, until a limit state is reached (N.F.E.N 13-
306 2001). Durability expert tasks should con-
sist in estimation of remaining lifetime of work-
ing systems. This kind of study needs to take into 
account using conditions, parts replacement, to 
estimate system lifetime. 

2.1 Kaplan-Meier law 

The Kaplan-Meier method, used in cross-disciplinary 

field ((Brookmeyer and Crowley 1985), (Cheuk-Kit and 

Eng Wie 2007)), provides an estimation of survival func-

tions, with not necessarily regular time intervals, instead 
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of actuarial tables
1
. Survival curves can be used to ana-

lyse evolution of populations over the time. These tech-

niques (also called product limit estimators) are used for 

analysis of survival data, whether for persons (e.g. can-

cer) or products (wear tools resistance).  

S(t) is the survival function. According to data (y1,…yn), 

we can provide unbiased empirical Kaplan-Meier estima-

tor: 

{ }1,..., ,
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n i
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≠
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n: number of risk episodes (stop) 
Where δi = 1 if yi is an uncensored data (0 if cen-
sored data). Lo (Lo et al. 1989) and Bitouzé (Bitouzé 
et al. 1999) propose a definition of this estimator for 
a measure of concentration of according S(t) to real 
distribution, in a non-asymptotic context. 

2.2 Cox model 

Cox regression model is an useful method to study 
impact of variables on survival time of a process 
(Kalbfleisch and Prentice 2002), of patients 
(Breslow 1973), (medical study)... It is applied to 
survival data, i.e., time variables, censored variables 
and explanatory variables. This model is based on a 
maximum likelihood estimation, developed by (Cox 
1972). Principle of Cox model is to link event hap-
pening to explanatory variables. For example, in 
medical field, we try to assess impact of a pre-
treatment on the healing time of a patient. Cox 
model can be compared with classical regression 
models: events (modelled by date) should be linked 
with explanatory variables. Specificity of this ap-
proach is its ability to assess relationship between 
hazard and explanatory variables without assump-
tions on the shape of baseline hazard function. It 
contains real parameters and unknown functions 
(hence appearance of semi-parametric methods that 
take into account this double aspect). It is based on 
the proportional hazards assumption (instantaneous 
risk of event happening can be written as the product 
of a function that depends on time and a function 
that depends only on specimen features). It can be 
applied to any situation where event duration is stud-
ied. Cox is based on the assumption of proportional 
hazards. In proportional hazard models, the instanta-
neous risk is written: 
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With: 
1( ,... )TpZ Z Z= : a vector of covariates, 0α : ba-

sis risk, unknown, independent of Z, β : the regres-

                                                 
1 These methods combine observations by random or predefined intervals. 

It enables to estimate and to obtain a hazard rate representation. 

sion parameter, unknown, ( )f zβ : relative risk, inde-

pendent of time, T: random variable that character-

izes the time or the process is stopped. For example: 

risk ratio for two individuals is independent of time. 

Regressors 1,... pZ Z , quantitative or qualitative are 

called prognostic factors (age, sex, treatment, ...). In 

the Cox model, the instantaneous risk for an individ-

ual i is written: 
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0( )tα  is any function which depends only on time 

(basis risk is unknown and independent of iZ ), and 

1β , 2β ,…, pβ  are constants with: 0( )tα , 

1( , ... , )Tpβ β β=  is the unknown regression pa-

rameters. With:
,1 ,( ,... )i i i pZ Z Z= : a components vec-

tor. 0S  is the basic survival function associated with 

0α . In this case, we have the following relation-

ship: [ ]0( | ) ( ) exp( )T

i iS t Z S t Zβ= . This provides an 

estimate of S  knowing β  the estimation vector. To 

estimate the components of the vector β  from an 

ordered sample ( (1) ( ),... ny y ), we calculate the partial 

likelihood function of Cox (if no censored data): 
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Note: 
- exp(βi) relative rate of subjects for which Xj=1 
compared to those for which Xj = 0,  

- exp(βi) >1: harmful effect ; exp(βi) =1: no ef-
fect ; exp(βi) <1: positive effect. 

3 DECISION SUPPORT BASED ON HIDDEN 
MARKOV MODELS 

Stochastic models are representations of dynamic 
systems based on probabilities. Stochastic processes 
were firstly developed in the early 20th century by a 
Russian mathematician, Andrei Andreyevich 
Markov. His statistical study of language has led to 
the markovian hypothesis, which can be summarized 
as follows: "Future evolution of a system only de-
pends on its present state". This hypothesis implies 
that current state of a system contains all informa-
tion provided by its past. Therefore, it is a very im-
portant assumption. In practice, this condition is 
rarely satisfied. However, approximation by Mark-
ovian models could provide good modelling results 
(Hopp (Hopp and Wu 1998) proposes a maintenance 
model under Markovian deterioration is developed 
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in which maintenance and replacement actions are 
permitted and states are completely observable). 
Meier-Hirmer (Meier-Hirmer et al. 2009) proposes a 
model used for the maintenance of railway tracks. In 
this paper, semi-regeneration properties at the in-
spection times and associated Markov renewal tech-
niques are used in order to compute the long-term 
mean costs. 
Risk analysis of dynamical systems by classical 
markovian approaches considers only two states (On 
/ Failure (Stop)). Between perfect working condition 
and complete failure state, industrial systems gener-
ally have a large set of degraded states in which sys-
tem continues to provide service, even if it does not 
produce fully. "These degraded statements need to 
be taken into account to properly assess service 
level of industrial systems and this is especially true 
with regard to production systems (Innal et al. 
2008)". 
Hypothesis: events preceding a crash are often recur-
rent. Specific series of events should inform about 
the next failure. Some examples can illustrate this 
hypothesis. 

- In mechanical systems, noises, vibrations pre-
cede failure. Loss of performances reflects fail-
ures or technical defaults, 

- In computers, suspect pointer movements, loss 
of performances, application malfunctions like 
web browser may reflect virus presence on 
computer… 

Our approach tries to understand "this signature" us-
ing HMM. Hidden process will match system state 
(or subsystem state) and observations will be ob-
servable part of processes (Figure 3). Our works 
(Vrignat et al. 2010) show that it is possible to 
model degradation levels of a "continuous" process. 
Hidden process will fit to system or subsystem states 
(Run, Degradation level 1, ..., Degradation level N, 
failure) and observations will be information which 
can be collected on the system (Figure 3). 
Topology of the models used is shown in Figure 6. 
 

 
Figure 3. Visible and hidden layers (system states) 

 

In another transposable example, Figure 4 gives 
more details. In this example, the surfer and the old 
man can not see itself. After model training, the old 
man is able to report what the surfer makes, if the 
surfer sends a message. 

Section 4.1 provides more details on the model. 
 

 
Figure 4. The "language" of surfer 

3.1 HMM approach 

The aim of this paper is not to present exhaustively 
Hidden Markov Model. For readers interested in 
more details, we recommend to read papers Rabiner 
(Rabiner 1989) and Aupetit (Aupetit et al. 2008) 
which presents HMM general problems. In this pa-
per, we use the same notation for models. A model 

( , , )A Bλ = Π  is described by three matrices: 

{ }
1

( ) ; 1
N

ij j i ij

j

A a P S S a
=

= = =∑  (5) 

Corresponding to transition probabilities between 

hidden states. 

{ }
1

( ) ( ) ; ( ) 1
N

i T T i i j

j

B b o P o S b o
=
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Corresponding to probabilities of observations con-

sidering states. 

{ }
1

( ) ; 1
N

i i i

i

P Sπ π
=

Π = = =∑  (7) 

Corresponding to initial state probabilities. 

Learning Hidden Markov Model consist in estimat-
ing the parameter vector λ on the basis of a set of 
observation sequences. The learning algorithm most 
commonly used is the Baum-Welch algorithm 
(Baum 1972). This algorithm is derived from the 
EM algorithm (Expectation-Maximization). The 
Baum-Welch algorithm solves the problem of learn-
ing with the criterion of Maximum Likelihood. For a 
sequence of observations o , this criterion is to find 
the HMM λ* which has the highest probability of 
generating the sequence o  that is to say, maximizing 
P(O=o|λ). The Baum-Welch algorithm is a proce-
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dure which iteratively re-estimates matrices A, B and 
Π  from an initial HMM. Baum-Welch algorithm 
provides a local optimum of the likelihood function. 
By applying this learning with different initial mod-
els, it is possible to obtain either a global optimum 
or a near optimal model for the considered criterion. 
Among all the criteria used for learning HMM, the 
criterion of segmental K-means is different from 
others. For this criterion, we seek to maximize the 
probability P(O,S=Q*|λ), with Q* corresponding to 
the sequence of hidden states that most likely gener-
ates the sequence as calculated by the Viterbi algo-
rithm (Viterbi 1967). The segmental k-means algo-
rithm can adjust the model parameters iteratively 
from an initial model. Just as Baum-Welch algo-
rithm, this algorithm could provide a local optimum 
result.  
The two previous modes of learning have properties 
to preserve initial structure of models. When initial 
model probability is zero then the corresponding 
probability is zero in the learnt model. It is however 
important to note that a non-zero probability in the 
initial model may become zero in the learnt model. 
This phenomenon often occurs when certain sym-
bols are not observed in learning sequences. A single 
occurrence of a "missing" symbol in a new sequence 
will cause non-recognition by the HMM: probability 
will be zero. To handle this problem, we introduce a 
smoothing step after the learning step. For each 
probability, not forced to zero by the model struc-
ture, an epsilon is added. Constraints of stochastic 
matrices are obtained by normalizing sums to 1. This 
smoothing introduces a distortion of optimal learnt 
model. We therefore distinguish, in the following, 
non-smoothed and smoothed learning. 
Once the model is characterized either by the Baum-
Welch algorithm or the segmental k-means algo-
rithm, with or without smoothing, we seek to esti-
mate, the most likely sequence of statements on new 
observations sequences. 

For the learning’s with the Baum-Welch algorithm, 

we estimate most probable states at a given time us-

ing Forward variables (Rabiner 1989). Let αt (j) be 

the probability of generating the observation se-

quence O = {o1, o2,…,ot} and being in state qt at 

time t, that is to say: 1 2( ) ( , ... , )t t t jj P o o o Q sα λ= = . 

The most probable state at time t is defined by 

( )1..kj= targmax α j . 

For learning’s with the segmental k-means, we con-

sider the most probable state at a given time using 

the latest state of the optimal path given by Viterbi 

algorithm (Viterbi 1967). Considering the previous 

notation, the most probable state is defined by: 

( ) ( )1 1, 1 1 1
1, 1

... ... /...t t t t j tq
t

δ j = max P Q = q ,Q = q ,Q = S ,o , ,o λ,q − −
−

. 

Figure 5 summarizes methods adopted for different 

tests (HMM). 

 

 
Figure 5. Methods adopted for different tests 

3.2 Validation of a Hidden Markov Model with a 
synthesis model 

To describe algorithms used and HMM among three 
chosen models (Figure 6), we first conducted several 
tests on a synthesis model (Figure 7). 
 

 
Figure 6. Three topologies with four states 

 

The chosen models corresponds to a system, that can 
be degraded or can be repaired with 4 states (Figure 
7). 
Model 1 describes a topology without constraints 
(free topology). For example, state estimation can 
move from state S4 to S1 brutally. In this case, there 
is no possible warning for expert, before the stop 
situation. Model 2 describes a topology with con-
straints. Before ending in S1, there will be an obliga-
tory passage in S3 and S2. In Model 3, we removed 
one degree of freedom (probability of transition S1 
to S2). This model is more "absorbent" to S1 as the 
Model 2. 
Synthesis model that was chosen with Model 2 
(Figure 6). All numerical values of µ and λ as well 
as emissions of symbols are perfectly mastered 
(Figure 7: definition of benchmark for tests). We 
chose two different laws (physical/measurement as-
pects) for generation of symbols (observations) by 
the states. Uniform law and normal law are a good 
approximation of the real case. Then we used the 
8000 observations of the synthesis model for the 
qualification and ability to recognize a "priori" 
model with the HMM algorithms. 
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Figure 7. Synthesis model 

 

We have established the distribution of various stop 
(State 1 corresponded: Repair situation), different 
survival functions about our synthesis system 
(Figure 8 (a) and (b)). 
 

 
Figure 8: Survival functions by Kaplan-Meier and Cox 

 

First indicators are statistical reference informations. 
These informations can be used by the expert but the 
question remains:  
How to put the decision threshold for maintenance 
intervention (Figure 9)? 

 
Figure 9: How to put the decision ? 

 

To answer this question, we perform different tests 
on these HMMs algorithms used according to the 
three selected models (Figure 6). The results pre-
sented in Erreur ! Source du renvoi introuvable. 
correspond to a succession of tests. These tests are 
summarized in Figure 10. 
 

 
Figure 10: A slice of results from tests on the model 

 

Different tests show that model 2, is the better to as-
similate synthesis datas (Erreur ! Source du renvoi 
introuvable. (B)). Best results are: Generated states 
(Model 2: Uniform Law) / Learning: Baum-Welch / 
Decoding: Forward variables. Correlation rate be-
tween SM-SA is good (0,708). In other cases, errors 
percentage between SM and SA (%) is important. 
 
Table 1. Results between the 3 models 
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Our goal is to provide a S2 state which has a "high 
sense" for preventive maintenance (do not detect de-
fault, neither too late nor too early which could pro-
vide unnecessary or earlier interventions). S2 state is 
"on" only 1 hour before default occurs (Figure 11). 
Table 1 summarizes results of tests with both algo-
rithms used (learning HMM: Baum-Welch, states es-
timated: Variables Forward). In case (Figure 11), af-
ter 1 hour, failure is detected in 50% of cases (Table 
1). 
 

 
Figure 11: Test on a sequence sample 

 

Table 1. Failure probability provided by S2 state "on" – syn-
thesis model 

 
 

 
Figure 12: Triggering of "S2 state" 

 

Figure 12 shows additional information that is avail-
able to the expert. We also show that our approach is 
better than using degradation laws (Kaplan-Meier 
and Cox). Once the S2 state is detected, the expert 
should react. 

4 CONCLUSION  
In this paper, we propose a new method to evaluate 
availability level of a system based on observed 
events on this system or on maintenance activities 
applied on this system. This new indicator is based 
on HMM. 
To improve efficacy of this indicator, we use a syn-
thesis model, for which degradation levels were per-
fectly known. 
This model was chosen to provide progressive deg-
radation of a process (oriented model). 
With tests which have been made, we show that our 
model is able to follow "real" degradation level with 
enough accuracy. Tests were carried out offline, so 
we cannot assess the effects of scheduling dynami-
cally maintenance activities. Before considering im-
plementation in real-time situation, we will explore 
possibilities of process simulation for which we 
could apply dynamic scheduling of maintenance. 
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