G. Lanckriet, N. Cristianini, L. Ghaoui, P. Bartlett, and M. Jordan, Learning the kernel matrix with semi-definite programming, Journal of Machine Learning Research, vol.5, pp.27-72, 2004.

P. Gehler and S. Nowozin, Let the kernel figure it out: Principled learning of preprocessing for kernel classifiers, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.

X. Tan and B. Triggs, Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions, IEEE Trans. Image Processing, vol.19, issue.6, pp.1635-1650, 2010.
DOI : 10.1007/978-3-540-75690-3_13

URL : https://hal.archives-ouvertes.fr/inria-00548674

P. Bradley and O. Mangasarian, Feature selection via concave minimization and support vector machines, Proceedings of the fifthteen International Conference in Machine Learning, pp.82-99, 1998.

F. Bach, G. Lanckriet, and M. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, Twenty-first international conference on Machine learning , ICML '04, pp.41-48, 2004.
DOI : 10.1145/1015330.1015424

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

F. Lotte and C. Guan, Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms, IEEE Transactions on Biomedical Engineering, vol.58, issue.2, 2010.
DOI : 10.1109/TBME.2010.2082539

URL : https://hal.archives-ouvertes.fr/inria-00476820