N
N

N

HAL

open science

A data and code model for reproducible research and
executable papers

Konrad Hinsen

» To cite this version:

Konrad Hinsen. A data and code model for reproducible research and executable papers. In-
ternational Conference on Computational Science, Jun 2011, Singapour, Singapore. pp.579,

10.1016/j.procs.2011.04.061 . hal-00626032

HAL Id: hal-00626032
https://hal.science/hal-00626032

Submitted on 23 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00626032
https://hal.archives-ouvertes.fr

A data and code model for reproducible research
and executable papers

Konrad Hinsen

Centre de Biophysique Moléculaire (UPR4301 CNRS)
Rue Charles Sadron 45071 Orléans Cedex 2
France

Synchrotron SOLEIL
Division Expériences
B.P. 48, Saint Aubin
91192 Gif-sur-Yvette Cedex
France

E-Mail: konrad.hinsen@cnrs-orleans.ir
http://dirac.cnrs-orleans.fr/~hinsen/

1 June 2011

Abstract

This proposal describes how data, program code, and presentation can be
stored together in a single file suitable for electronic publication and permitting
the reproduction of computational results.. Universality, efficiency, platform-
independence, automated verifiability, and provenance tracking are the major
design criteria. Existing and well-tested technology is used as much as possible,
the two major building blocks being the Hierarchical Data Format for storage
and the Java Virtual Machine for platform-independent code representation and
secure execution.

1 Introduction

One of the hallmarks of science is reproducibility: a scientific study must be
documented to the point that another researcher can follow the same steps and
obtain the same results. Computational science currently falls short of this
goal because the programs and the input data sets for a computation are rarely



published. Recent efforts to improve this situation by creating suitable tools
and awareness of the problem in the scientific community have been conducted
under the somewhat provocative label “reproducible research” [1]. Executable
papers carry this idea one step further: a single published digital object should
contain an article describing a scientific study and its results as well as all the
data and program code necessary for repeating the calculations and visualizing
the results. Furthermore, this digital object must be suitable for long-time
archival and for inspection on a large variety of computing platforms, present
and future.

The work described here concentrates on the infrastructure required for mak-
ing computational research reproducible and publishable. It addresses the ques-
tion of how data, code, and human-readable text can be combined and stored
efficiently in a single file that can be used on current and future computer archi-
tectures. The proposal uses already available technology as much as possible,
pointing out where shortcomings of these technologies are likely to require im-
provements in order to make the proposed executable paper format suitable for
production use in a wide range of computational science domains. Key features
of the proposed format are

e platform independence through virtual machine technology

e automatic verification of all computational results for which code is pro-
vided by the authors, and authentication by electronic signatures of the
results for which no code is provided

e protection against viruses and other malicious code

e provenance tracking for computational and experimental data with op-
tional electronic signatures

e references to items in other executable papers allow re-use of previously
published data and code

An aspect not addressed by this proposal is user interfaces, because it is
important to clearly separate data representation and user interfaces. User in-
terface choices depend on both personal preferences (e.g. some people prefer
graphical user interfaces, others command line interfaces) and the hardware
being used (a desktop computer and a smartphone have very different require-
ments). Data representation, on the contrary, must be as uniform and precisely
defined as possible to guarantee portability and longevity of electronic docu-
ments.

A key design principle behind this proposal is the notion that “code is data”.
There is in fact no fundamental difference between executable programs and
other data items: they are stored in memory or in files and can be transformed
or analyzed by other programs. For both code and other data, clarity, porta-
bility and long-term usability require well-defined and carefully designed data
models. The core of this proposal is exactly that: a data model for reproducible



research and for executable papers. The next section discusses the most im-
portant choices to be made: how to represent code and other data, and how to
package data and metadata to make an executable paper.

2 Representation of data, code, and text

2.1 File storage

For reasons of integrity and for simplifying automated treatment, an executable
paper must consist of a single file. The file format chosen must thus be able to
accommodate raw data (including potentially very large data sets), metadata
(for provenance tracking and for use in data models), executable code, text
including markup for equations etc., and machine-treatable references to other
executable papers (for corrections, updates, comments, etc.).

The Hierarchical Data Format 5 (HDF5) [2] fulfills all these requirements.
It is a format specifically designed for scientific computing and addresses is-
sues specific to this domain, e.g. the prevalence of large homogeneous data sets
such as arrays. HDF?5 is already widely used for implementing data models for
experimental data (e.g. NeXus [3], used in neutron and X-ray scattering) or
computational results (e.g. CGNS [4, 5], used in Computational Fluid Dynam-
ics).

An HDFS5 file has an internal tree structure that resembles a file system as
used by conventional operating systems, with group nodes playing the role of
directories and datasets (leaf nodes) storing the actual data. Data sets can be
simple values but more typically are arrays or tables of values. Data sets can be
of fixed or variable size and use optional features such as compression. Individual
values are defined by their data type, which can be a built-in standard type such
as “16-bit unsigned integer” or “variable-length character string” or a user-
defined (compound) type. There is also an “opaque” type for storing arbitrary
byte sequences which is suitable for storing binary code representations. The
wide range of data types and dataset types provides the flexibility required for
storing any kind of data and choose a suitable representation that is the right
compromise between file size, access time, and convenience.

Each group and dataset in an HDF5 file can have metadata attached in the
form of named attributes. Attribute values can be of any HDF5 data type. A
data type of specific interest for attribute values is the reference type, which
stores a pointer to a dataset. Reference-type attributes can be used to store
dependency information between datasets.

The HDF5 format is implemented as a highly portable library written in the
C language. It is developed and maintained by the HDF Group, located at the
University of Illinois. Interface layers for C++, Fortran, and Java (using the
Java Native Interface (JNI)) are provided by the HDF group as well. Interface
layers for a large number of other programming languages are available from
other sources. A large number of generic tools for transforming and visualizing
data stored in HDFS5 files is available from the HDF Group and others.



Two important more recent developments are worth mentioning here because
they ensure the utility of HDF5-based formats on future computing platforms. A
parallel-1/O version of HDF5, available from the HDF Group, allows its efficient
use in supercomputing environments. The OPeNDAP software [6] provides
remote access to datasets stored in HDF5 (and other) files. Remote access is
important for handling very large datasets that cannot be transferred completely
to every user’s computer, but also for browsing tools on portable devices such
as smartphones and tablet computers.

2.2 Domain-specific data models

Many kinds of scientific data require non-trivial and non-obvious representa-
tions. For example, storing the configuration of a protein implies storing the
positions of all atoms as well as sufficient information about the chemical struc-
ture of the protein to be able to identify the structural role of each atom as well
as its most important chemical properties. The correct interpretation of such
data relies on a well-defined data model.

Data models are necessarily domain-specific, and therefore cannot be part
of a universal format for executable papers, with the exception of simple and
frequently used data models e.g. for time series or mathematical equations.
Each dataset or group of datasets has a metadata tag (an HDF5 attribute
whose name is fixed by convention) indicating the data model to be applied.

It is expected that each electronic journal will select a set of data models
relevant for its community and apply verification tools for those data models
upon submission of an electronic paper. It is also expected that domain-specific
support libraries will emerge that facilitate the use of HDF5-based data models
and spare scientists and scientific software developers the effort of using the
rather complex HDF5 programming API directly.

2.3 Dummy data sets

If a dataset can be reconstructed from other information in an executable paper,
why store it at all? The main reasons are

e Time: recalculation of the data may be feasible, but too slow for interac-
tive browsing.

e Space: the data set may be too big to be stored in memory, requiring
on-disk storage prior to visualization.

e Simplicity of access: analysis or visualization software may not have the
functionality to recompute the data.

In these situations, the explicit presence of a dataset is a form of caching. For
long-term storage, where data size is the most prominent criterion, it may be
preferable to delete such data sets and replace them by dummy data sets that
retain only the metadata, permitting recalculation at a later time.



2.4 Executable code

The representation of code inside an executable paper is the most difficult as-
pect because of conflicting requirements. A suitable code representation must
be platform-independent and stable over very long time spans in order to permit
its use on future computer systems whose characteristics are still unknown. It
should rely on a run-time system that can block erroneous or malicious behav-
ior. It should have an unambiguous specification of the outcome of arbitrary
computations. It should admit a wide range of programming languages, current
and future. It should not stand in the way of efficient program execution on
a wide range of computer architectures. Finally, it should permit the re-use of
existing scientific software as much as possible. In the following I will examine
existing code representations according to these criteria.

2.4.1 Source code

The availability of source code for computational procedures in an executable
paper is highly desirable because it is the most precise documentation of the
algorithms, and it permits readers to explore modifications. However, source
code is not a good choice as the primary code representation in an executable
paper. First of all, there is a very large number of programming languages in
use, of which many have machine- or vendor-specific dialects. An executable
paper format based on source code would have to allow only a well-defined (and
thus fixed) set of programming languages, which would be an obstacle to future
progress in software development. Moreover, many programming languages
are intentionally ambiguous, leaving the precise meaning of some constructs
undefined in order to allow compilers to apply machine-specific optimizations.
Floating-point arithmetic is particularly concerned by this problem. As a conse-
quence, the same source code compiled on different machines can yield different
results, which violates the reproducibility requirement. Finally, the use of source
code would require a runtime system for working with executable papers to in-
clude compilers or interpreters for all allowed languages.

2.4.2 Machine code

Machine code has the advantage of being unambiguous and able to exploit all
features of a computer at maximum performance.. However, it is also inherently
unportable, being specific to a processor or a processor family and in practice
also to an operating system or even a precise version of an operating system.
Machine code also poses security problems as it is very difficult to prevent
malicious behavior.

Some of these problems can be circumvented by making a complete software
installation, including the operating system, available through virtualization
technology and run it in a secure environment. Moreover, emulators can be used
to execute machine code for one machine on a different machine. However, both
approaches lead to performance loss (which is severe in the case of emulators)



and are not suited for long-term archival because computer architectures will
inevitably change in the future.

2.4.3 Virtual machine bytecode

Virtual machines executing bytecode (also called p-code) provide an intermedi-
ate representation between source code and machine code that is both portable
and unambiguous. They also make it easy to restrict access to resources such
as local files for security reasons. The main disadvantage of using a virtual
machine is the loss of performance compared to optimized machine code. How-
ever, Just-In-Time (JIT) compilers have reduced the performance gap between
virtual machines and native code, and this trend is likely to continue.

There are at the moment two widely used virtual machines that have good
enough performance and sufficient programming language support to be candi-
dates for use in an executable paper format: the Java Virtual Machine (JVM)
[7] and the Common Language Infrastructure (CLI) [8]. In the following I will
concentrate on the JVM because I am more familiar with it. However, the CLI
might well be an equally good or even better choice.

The JVM is not an optimal choice for scientific computing. It wasn’t de-
signed for this field and therefore has a couple of shortcomings. It lacks value
types (types whose data fields are inlined into a parent object or an array and
don’t require a separate object allocation with the associated garbage collection
overhead), which would make many scientific data items (complex numbers, ge-
ometric data such as points or triangles, ...) more efficient in terms of memory
use and CPU time. The JVM’s handling of floating-point arithmetic has been
criticized frequently because of its lack of some important IEEE 754 features.
In modern JVMs, floating-point arithmetic is not platform-independent unless
“strict math” is explicitly requested by the program; this feature was introduced
mainly for improving performance on the popular Intel x86 architecture.

Perhaps the most significant obstacle to rapid adoption of any JVM-based
infrastructure for executable papers is the lack of production-quality compilers
for the most popular scientific programming languages (Fortran, C, C++) that
produce JVM bytecode. However, proof-of-concept compilers for C [9] and
Fortran [10, 11] already exist. The use of an x86 emulator such as JPC [12] may
be of interest as a temporary solution for running legacy software, in spite of
the significant performance cost.

Considering the numerous advantages of virtual machines (portable binary
representation, portable mixed-language programming, automatic memory man-
agement, code optimization based on run-time information) and the fact that
modern JIT compilers have almost eliminated their performance overhead, I
expect the scientific computing community to adopt virtual machines in the
long run for most computational tasks. FExecutable papers may well be one
important motivation to move in this direction. New compilation tools such as
LLVM [13] and VMKit [14] are an important technological innovation for such a
move. They blur the frontier between native machine code and virtual machine
bytecode, allow a better integration between the two worlds, and facilitate the



design and implementation of virtual machines. In the not-too-distant future,
scientists will generate portable bytecode for publication and highly optimized
native code for their supercomputer from the same source code.

2.4.4 Source code compilation

Even with virtual machine bytecode as the primary code representation in an
executable paper, it is highly desirable for its users to have access to the source
code as well, because it is the only complete description of the algorithms being
used. This raises the question of ensuring that source code and bytecode are
equivalent such that readers can trust that the source code they read corresponds
to the computations they run.

The problem is exactly the same one as for dependencies between data sets,
and it can be solved using the same approach: bytecode datasets are tagged
with a reference to the source code dataset from which they can be recovered by
compilation. This requires only that compilers be integrated into the executable
paper ecosystem in the same way as computational software is, i.e. compilers
(and associated tools) must be available in the form of virtual machine bytecode.
A few JVM-based compilers already fulfill this requirement (see e.g. [15], [16],
[17]), and T expect their number to grow. There is also a unified compilation
API for the JVM [18]. Once again, the adoption of a virtual-machine-based
executable paper framework is likely to create the necessary motivation for
writing compatible compilers.

2.4.5 Scripts

The above discussion has concentrated on the traditional way of writing scientific
programs: source code is translated to bytecode or machine code, which is then
run. Another mode of operation has been gaining popularity recently: the use
of scripting languages at the highest levels of problem specification, making use
of libraries written in lower-level languages for efficiency. Examples of popular
scripting languages in scientific computing are Matlab, Python, and R. These
languages are typically interpreted, with the interpreter proposing an interface
to compiled low-level code.

In the proposed framework for executable papers, a scripting language can be
made portable and unambiguous by including its interpreter (usually in the form
of a reference, see section 2.7) in the paper itself as JVM bytecode. The use of
scripting languages should even be particularly encouraged, because it makes the
higher-level algorithmic logic of the computation clearer and easier to modify
by the reader. Browsers for executable papers should include a script editor
that permits readers to explore the influence of parameters and of algorithmic
choices.



2.5 Text, tables, and figures

A traditional print-based scientific publication has as its prime ingredients text
(including mathematical formulas), tables, and figures. Tables and figures are
replaced by dynamically generated table views (i.e. code) and visualization
scripts in executable papers. As for text, several useful representations are
already in use, and tools for working with them are widely available. The
transition to executable papers requires only one new feature: the possibility to
include a reference to datasets and executable programs. This feature is readily
provided by established hyperlink mechanisms.

The choice of a suitable text representation depends mainly on issues outside
of the scope of this article: the needs of authoring tools and browsers. An ob-
vious criterion is the suitability of the representation for algorithmic treatment,
which excludes purely visual formats such as PDF. Candidates are light-weight
content-oriented markup languages such as reStructuredText [19] or Markdown
[20], complemented by an equation language, XML-based formats such as Doc-
Book [21], or traditional typesetting languages such as TEX [22].

An aspect that deserves a special discussion is the representation of math-
ematical equations, which are widely used in many branches of science. Often
they are used exclusively for the benefit of the human reader, for defining quanti-
ties and for documenting computational methods. They then have the same role
as text and should be included in the latter using suitable markup. Equations
that correspond directly to a program should be accompanied by a reference
to the latter. It is, however, unrealistic to try to establish a direct correspon-
dence between a program and an equation that documents it. In most practical
situations, a program is described by more than one equation plus a context
(definition of the quantities) provided in text form. Moreover, the algorithm
implemented in the program usually deviates from the written equations for
reasons of efficiency or data representation.

Mathematical equations take a more active role in publications in which
their manipulation (in the form of symbolic computation) is an essential part of
the paper’s content. They should then be considered data and represented by
a domain-specific data model just like other data. Their graphical display is a
special case of visualization, to be handled by visualization scripts. It should be
noted that the World Wide Web Consortium’s MathML markup language [23]
recognizes the two distinct roles of mathematical equations by defining separate
markup languages for the display and the semantics of mathematical equations.

2.6 Visualization scripts

The most general specification for a visualization (defined here as any dynam-
ically generated data display, i.e. including tables) is a program, meaning that
the executable paper specification does not need to provide any special visu-
alization features. However, it would be inconvenient to leave the choice of
visualization routines fully to the authors of an executable paper. This would
represent a burden for the authors and lead to a lack of coherent user inter-



face for readers. Visualization should be handled by the run-time system for
working with executable papers (see section 4) and by its domain-specific ex-
tensions. Ideally, the run-time system provides a special scripting language for
visualization which is then used in papers to specify interactive data displays.

2.7 References

In traditional print publishing, papers cite other papers using human-readable
text, usually following some formatting convention. Such citations are noto-
riously difficult to treat electronically because of format variations. With the
advent of electronic publishing, Digital Object Identifiers (DOIs) have replaced
text-based references for use in databases and other electronic resources [24].
A DOI is a character string that uniquely identifies an electronic object. An
organization issuing a DOI is responsible for maintaining access to the object
and its associated metadata. DOIs are not limited to readable documents; for
example, the DataCite consortium [25] promotes the use of DOIs for access to
scientific data. DOIs are clearly a suitable way to refer to executable papers as
well.

However, executable papers should permit more fine-grained references than
DOIs in order to target specific datasets inside another executable paper. Such
a mechanism permits the re-use (with proper attribution) of data and code
published earlier. It can also be of interest to publish an executable paper
explicitly in several pieces, i.e. to facilitate sharing of very large data sets
among several publications. Since inside an HDF5 file, every dataset is uniquely
identified by its path (the sequence of groups to be traversed in order to reach
the dataset), which can be represented by a character string, a reference into
another executable paper consists of two character strings: the DOI of the paper,
and the path of the dataset inside the paper.

2.8 Provenance tracking

Data sets that are computed via code provided in an executable paper itself
need no provenance information, as they can be recomputed at any time for
verification. However, every paper must include information that cannot be
regenerated automatically, as otherwise the paper would be of no interest. At
the very least, a paper contains program source code and presentation text
that are original work of its authors. Experimental data and input parameters
for computations also fall into this category. Another category of data that
cannot be reproduced is data taken over from legacy sources (print publications,
databases) that cannot be referenced directly. Finally, there are data items that
could in principle be reproduced but with means not easily available to every
reader. This category covers computations that require a supercomputer, but
also results obtained from proprietary or legacy software that cannot be included
in an executable paper.

All the data items cited above should be accompanied by provenance infor-
mation, and provenance information should be verifiable. A suitable verification



scheme for all the cases cited is an electronic signature, i.e. a digital fingerprint
of the data encrypted using a public-key infrastructure. In the case of original
work, the electronic signature identifies the authors, whereas non-reproducible
computational results could be signed automatically by the batch processing
system of a supercomputing center, using a signature identifying the computer
system being used.

The digital fingerprints from the signatures can also be used to set up a
database of published datasets, indexed by fingerprints, and consulted to detect
basic forms of plagiarism. However, more sophisticated detection systems for
plagiarism will be required, as it is rather straightforward to copy someone else’s
dataset and modify it slightly such as to change the fingerprint.

3 Executable papers

Experimental
dataset |

dataset 2 dataset

Experimental | Computed

Script o, -

'
'

'

'

~ :
Bytecode | _,

library | E

'

'

'

'

Module 2 |~

Module 3 |=——p B_YtECode .
library 2
Visualization

script

duil

non-recomputable data | recomputable data

Figure 1: Data dependencies in an executable paper. The items on the left of
the dashed line have no incoming arrows and cannot be recomputed. The script
uses the bytecode libraries, but does not depend on them. However, data items
that depend on the script indirectly also depend on the bytecode libraries.

In the preceding sections, I have explained the important design choices
of my proposal for an executable paper format, but less relevant details were
intentionally left out. In this section, I briefly present a concrete data layout
to convey a clearer impression of what an executable paper looks like. Figure 1
illustrates the dependencies between data items in an executable paper.

10



An executable paper consists of a single HDF5 file. Published executable
papers are identified by a Digital Object Identifier (DOI) and contain their own
DOI in their metadata, permitting automated authenticity checks.

The file’s root group contains three subgroups “data”, “code”, and “text”.
The “data” group contains groups and datasets that each have a metadata
tag (HDF5 attribute) specifying the domain-specific data model they respect.
Other attributes contain provenance information (for non-recomputable data),
or references to dependencies plus a reference to the program (in the “code”
subgroup) that re-calculates the dataset from its dependencies. There can also
be a “legend” attribute pointing to a plain-text explanation for human readers.

The “code” subgroup contains any number of HDF5 opaque datasets storing
a jar file per dataset. Attributes of these datasets store relevant metadata:
provenance, reference to the source code, reference to the compilation script
run to rebuild the jar file. The “code” subgroup also contains any number of
scripts. A script is a character-string dataset whose attributes store references
to the jar files making up the interpreter, and the JVM command for running
the interpreter. Finally, the “code” subgroup can contain any number of source
code files and groups containing source code files. A source code file is stored
in a character-string dataset with provenance information in the metadata.

The “text” subgroup contains any number of character-string datasets rep-
resenting text using a markup language. Each dataset has provenance infor-
mation in its metadata. One dataset must be called “main” and contains the
main presentation text that is shown to the reader upon opening the executable
paper. References (hyperlinks) in each text can refer to other text items or
to scripts/programs that produce visualizations. References can also point to
datasets in the “data” section, allowing the user to open a data browser window
for a specific dataset.

It is important to recall that references can point to items in previously
published executable papers, using a combination of the DOI and the data
item path inside the file. In fact, executable papers cover a much wider range
of publishable items than traditional printed papers. Some important special
cases of executable papers are:

e Raw data sets, usually from experiment or observation. Such papers con-
tain data and text (for documentation), but no code.

e Program libraries, containing code and text (for documentation) but no
data.

e Comments on published papers, containing only text and optionally visu-
alization scripts.

Such items, which currently do not fit into the scientific publication system, be-
come normal publications that have authors, a publication date, and which can
be cited. They are automatically integrated into the archival systems operated
by scientific publishers, ensuring their long-term conservation in unmodified

11



form, and thus the reproducibility of other papers that refer to them. Pub-
lishing such items separately also provides a means of asserting authorship on
important contributions even if they are not in themselves scientific results.

4 Software infrastructure

Working with executable papers requires a variety of software tools. For suc-
cessful adoption of an executable paper format, it is essential that it can be
integrated into as many existing tools as possible, including

e interactive scientific computation environments

e workflow managers

e authoring environments for composing electronic papers
e software development environments

e visualization software

In addition, new functionalities are required that can be either integrated into
existing tools or provided by new tools:

e interactive browsers for desktop computers that let readers explore the
text and data as well as re-run the computations and modify parameters

e server-side tools with the same functionality, accessed via a standard
browser interface by the user working on a desktop computer or a less
powerful device such as a smartphone

e automatic verification tools that re-run all computations in the paper and
compare the results to the ones supplied by the authors

e authentication tools that verify the electronic signatures

The current proposal is based on two existing and well-established tech-
nologies: the HDF5 format and library for data storage, and the Java Virtual
Machine for code execution. The HDF5 format is already widely supported
by scientific computing tools. The JVM has found its niches in scientific com-
puting, but cannot be considered popular yet. This is partially due to its real
or perceived defaults (see section 2.4.3), but mostly due to a lack of scientific
libraries and compilers for the most popular scientific programming languages.

The most important support software that needs to be written for using
executable papers is a run-time system for executing the code stored in such
a paper. This run-time system must obviously include a JVM and the HDF5
library. It must be able to run programs from a paper in a secure environment
in which access to local resources on the user’s computer is limited to reading
data from executable papers and writing data to a single HDF5 file specified

12



by the user. In addition, a good run-time system should provide support li-
braries for data management, visualization, etc. The generic run-time system
would in practice be complemented by domain-specific extensions that handle
domain-specific data models and access to domain-specific resources such as
public databases.

5 Related work

The literate programming and reproducible research features [26] in Emacs org-
mode [27] were a major inspiration for this work. They permit the storage of
text, code, and data in a single plain-text file and provide an interface between
code sections written in different languages. Org-mode is limited, however, by
its plain-text representation; data sets cannot become very large and the code
contained in such a file necessarily depends on external software (compilers and
interpreters, usually also libraries) that cannot be included in the same package.

The SHARE system [28] also uses virtual machine technology (coupled with
network access through a browser) to provide platform-independent and secure
access to research code and data. It differs in using system virtualization to store
the researcher’s entire working environment, including the operating system, the
whole file structure, and programs in the form of machine code. The obvious
advantage of this approach is the possibility to use existing software and data
formats. On the other hand, system-level virtual machines are impractical for
long-term storage because of their size and their narrowly defined hardware
requirements. Moreover, data and code stored in this way are not reusable in
other work.

Various existing scientific computing tools, including workflow managers
such as VisTrails [29] or Kepler [30], interactive scientific computation envi-
ronments such as Matlab [31] or Spyder [32], or automated logging systems
such as Sumatra [33], handle much of the dependency information that makes
the difference between a collection of code and data and an executable paper.
Another interesting approach to dependency handling that also permits the uni-
fication of code and data is the use of software build tools for computation. An
example is the use of SCons [34] in the Madagascar tool suite [35]. All of these
tools could probably be modified easily to work with the data model described
in this work.

6 Conclusion

The preceding sections propose a data and code representation model that sup-
port reproducibility in computational science and the publication and archival
of reproducible computational results. It addresses many of the open issues in
the design of executable papers:

Executability The proposed system permits authors to provide the full code
implementing their computational procedures with their publication. It

13



also permits the publication of code libraries that other papers can build
on.

Short and long-term compatibility The use of a virtual machine (JVM)
ensures code portability on current and future platforms. The HDF5
library ensures the portability of data storage. The long-term compatibil-
ity of the format relies on the long-term maintenance of the JVM and the
HDF5 library, or on translation mechanisms for converting first-generation
executable papers to an eventual future format. Long-term archival by sci-
entific publishers of all data and code guarantees long-term reproducibility
of results.

Validation The proposed format permits an automatic validation of all results
for which code is provided, and the automatic verification of electronic
signatures for all other data.

Universality Domain-specific data models and domain-specific extensions to
the run-time system ensure the applicability to all domains of computa-
tional science. The use of virtual machine bytecode as the principal code
representation admits a wide range of programming languages.

Use of supercomputers Results that cannot be easily reproduced due to ex-
ceptional system requirements (i.e. the use of supercomputers) are treated
like experimental data: they are supplied with provenance information
and an electronic signature certifying their origin. Program code for re-
producing them can still be supplied and used in the future if the required
computing power becomes more easily available.

Data size The HDF5 library can handle large datasets efficiently and provides
support for parallel I/0O. Large datasets can be published separately and
accessed from analysis papers through references. Remote access to sub-
sets of a large dataset stored on a server eliminates the need to transfer
large datasets completely to every user’s computer.

Provenance The origin of each data item can be documented by provenance
metadata and certified by an electronic signature. Computational steps
are documented by their program code and can be reproduced at any time.

Security The use of a virtual machine (JVM) permits the execution of code
contained in a paper in a secure run-time environment that protects users
against viruses, trojans, and spyware.

The biggest obstacle to the rapid adoption of this proposal is the requirement
for all computational code to be based on a virtual machine, which excludes
many currently popular programming languages and tools. However, there is
no fundamental difficulty with writing the required tools, and the adoption
of executable papers by major scientific publishers is likely to encourage such
developments.

14



The implementation of the basic run-time system requires only a modest
development effort because most of the technology already exists. Implementing
domain-specific extensions represents a much larger effort, because of the large
number of domains with specific requirements, and also because many domains
of computational science did not yet develop well-defined data models.

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (Contract
No. ANR-2010-COSI-001-01).

References

[1] Sergey Fomel and Jon F. Claerbout. Guest editors’ introduction: Repro-
ducible research. Computing in Science & FEngineering, 11(1):5-7, JAN-
FEB 2009.

[2] The HDF Group. Hierarchical data format version 5. http://www.
hdfgroup.org/HDF5.

[3] P Klosowski, M Koennecke, JZ Tischler, and R Osborn. NeXus: A com-
mon format for the exchange of neutron and synchrotron data. Physica B,
241:151-153, DEC 1997. International Conference on Neutron Scattering,
Toronto, Canada, Aug 17-21, 1997.

[4] D. Poirier, S. R. Allmaras, D. R. McCarthy, M. F. Smith, and F. Y.
Enomoto. The CGNS system. American Institute of Aeronautics and
Astronautics Paper 98-3007, 1998.

[6] CFD general notation system (CGNS). http://cgns.sourceforge.net/.

[6] OPeNDAP: Open-source Project for a Network Data Access Protocol.
http://www.opendap.org/.

[7] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Prentice Hall, 1999.

[8] ECMA Standard 335: Common Language Infrastructure CLI.
http://www.ecma-international.org/publications/standards/
Ecma-335.htm.

[9] David Given. Clue: an ANSI C compiler targeting high level languages.
http://cluecc.sourceforge.net/.

[10] G Fox, XM Li, QA Zheng, and ZG Wu. A prototype of Fortran-to-Java
converter. Concurrency - Practice and Experience, 9(11):1047-1061, NOV
1997. Simulation and Modelling Workshop II - Java for Computational
Science and Engineering, Las Vegas, NV, Jun 21, 1997.

15



[15]

[16]

[17]

f2j, a Fortran to Java compiler). http://icl.cs.utk.edu/f2j/.

Tan Preston, Rhys Newman, Jeff Tseng, Chris Dennis, Guillaume Kirsch,
and Mike Moleschi. Pure Java x86 emulator. http://jpc.sourceforge.
net/.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for life-
long program analysis & transformation. IEEE/ACM International Sym-
posium on Code Generation and Optimization, 0:75, 2004.

N. Geoffray, G. Thomas, J.Lawall, G. Muller, and B. Folliot. VMKit: a
substrate for managed runtime environments. In Virtual Ezecution Envi-
ronment Conference (VEE 2010), pages 51-62, Pittsburgh, USA, March
2010. ACM Press.

Arno Unkrig and Matt Fowles. Janino, a super-small, super-fast Java com-
piler. http://docs.codehaus.org/display/JANINO/Home.

Groovy, an agile dynamic language for the Java platform. http://groovy.
codehaus.org/.

Rich Hickey. Clojure, a dynamic programming language that targets the
Java Virtual Machine. http://clojure.org/.

The Apache Software Foundation. Apache commons JCI, a Java compiler
interface. http://commons.apache.org/jci/.

reStructuredText. http://docutils.sourceforge.net/rst.html.
Markdown. http://daringfireball.net/projects/markdown/.

The OASIS consortium. The DocBook schema version 5.0. http://docs.
oasis-open.org/docbook/specs/docbook-5.0-spec.html.

Donald Ervin Knuth. The TeXbook. Addison-Wesley, London, 1984.

The World Wide Web Consortium. Mathematical Markup Language
(MathML). http://www.w3.org/Math/.

The International DOI Foundation. The DOI system. http://www.doi.
org/.

The DataCite consortium. http://www.datacite.org/.

Eric Schulte and Dan Davison. Active documents with org-mode. Com-
puting in Science & Engineering, 13(4):in print, 2011.

Carsten Dominik and et al. Org-mode for emacs. http://orgmode.org/.

Pieter van Gorp and Paul Grefen. Supporting the internet-based evalua-
tion of research software with cloud infrastructure. Software and Systems
Modeling, pages 1-18, 2010. 10.1007/s10270-010-0163-y.

16



VisTrails. http://www.vistrails.org/.
The Kepler Project. https://kepler-project.org/.
The MathWorks, Inc. MATLAB. http://www.mathworks.fr/.

Pierre Raybaut. Scientific PYthon Development EnviRonment (Spyder).
http://packages.python.org/spyder/.

Andrew Davison. Sumatra, a tool for managing and tracking projects based
on numerical simulation or analysis. http://neuralensemble.org/trac/
sumatra/.

Steven Knight, Chad Austin, Charles Crain, Steve Leblanc, and Anthony
Roach. Scons software construction tool. http://www.scons.org/.

Madagascar, an open-source software package for multidimensional data
analysis and reproducible computational experiments. http://www.
reproducibility.org/wiki/Main_Page.

17



