Développements récents en analysee des correspondances multiples

Résumé : Depuis une dizaine d'années, la taille des données croit plus vite que la puissance des processeurs. Lorsque les données disponibles sont pratiquement infinies, c'est le temps de calcul qui limite les possibilités de l'apprentissage statistique. Ce document montre que ce changement d'échelle nous conduit vers un compromis qualitativement différent dont les conséquences ne sont pas évidentes. En particulier, bien que la descente de gradient stochastique soit un algorithme d'optimisation médiocre, on montrera, en théorie et en pratique, que sa performance est excellente pour l'apprentissage statistique à grande échelle.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00625921
Contributor : Brigitte Le Roux <>
Submitted on : Friday, September 23, 2011 - 12:03:28 AM
Last modification on : Friday, September 20, 2019 - 4:34:02 PM

Identifiers

  • HAL Id : hal-00625921, version 1

Collections

Citation

Jean Chiche, Brigitte Le Roux. Développements récents en analysee des correspondances multiples. La revue de Modulad, Modulad, 2010, 42, pp.110-117. ⟨hal-00625921⟩

Share

Metrics

Record views

182