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Abstract

In this paper, we are interested in finding explicit numerical formulas for the defaultable

bonds prices of firms which fit well with real financial data. For this purpose, we use a default

intensity whose values depend on the credit rating of these firms. Each credit rating corresponds

to a regime of the default intensity. Then, this regime switches as soon as the credit rating

of the firms also changes. This regime switching default intensity model allows us to capture

well some market features or economics behaviors. We obtain two explicit different formulas to

evaluate the conditional Laplace transform of a regime switching Cox Ingersoll Ross model. One

using the property of semi-affine of this model and the other one using analytic approximation.

We conclude by giving some numerical illustrations of these formulas and real data estimation

results.

Keywords: Defaultable bond; Regime switching; Conditional Laplace Transform; Credit rat-

ing; Markov copula.

MSC Classification (2010): 60H10 91G40 91G60 91B28 65C40

Introduction

In an economic crisis situation where the credit ratings of countries or firms have a big impact

in the general financial market, we need to understand and capture the change of these ratings in

the dynamic of a the firm bond price. Moreover, we also have to model the contagion risk due

to a bad rating of a firm on other one. For example, the Bond of countries in the Euro zone are

affected by the Greek bad rating. In the literature, models for pricing defaultable securities have

been introduced by Merton [23]. It consists of explicitly linking the risk of firm default and the

value of the firm. Although this model is a good issue to understand the default risk, it is less

useful in practical applications since it is too difficult to capture all the macroeconomics factors

which appear in the dynamics of the value of the firm. Hence, Duffie and Singleton [9] introduced
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the reduced form modeling, followed by Madan and Unal [22], Jeanblanc and Rutkowski [20] and

others. The main tool of this approach is the ”default intensity process” which describes in short

terms the instantaneous probability of default. To deal with contagion risk, the most popular

approach is copula. The credit rating of each firm is modeled by a Markov chain on which we will

construct our copula. In this regard, we use a continuous time Markov chain called credit migration

process studied by Bielecki and Rutkowski in [4]. Hence, our copula which depends on the credit

ratings will affect the dynamic of the default intensity. In fact, we define default intensity process

by a Cox-Ingersoll-Ross (CIR) model whose parameters values depend on this copula.

The Cox-Ingersoll-Ross model was first considered to model the term structure of interest rate

by Cox and al. in [7]. The study of this class of processes was caution by the fact that it allows us

a closed form expression of Laplace transform (see Duffie and al. [8]) and model well the default

intensity (Alfonsi and Brigo [1]). Moreover, Choi in [5] shows that regime switching CIR process

captures more short term interest rate than standard models. In a econometric point of view,

regime switching model were introduced by Hamilton in [16].

In this framework, we obtain explicit formulas to evaluate defaultable bond prices. More pre-

cisely, we obtain two different formulas to evaluate the Laplace transform of defaultable intensity.

In a first time, we use the semi affine property of the regime switching Cox Ingersoll Ross model and

then solve a system of Riccati’s equations. In a second time, we extend the analytic approximation

found in Choi and Wirjanto [6]. Indeed Choi and Wirjanto in [6] give an analytic approximation

of the value of bond price with constant CIR parameter and with constant time step model dis-

cretization. We extend this result in three ways: firstly to evaluate conditional Laplace transform

of a regime switching Cox Ingersoll Ross, secondly to evaluate defaultable regime switching bond

price and thirdly in the case of non uniform deterministic time step model discretization (in our

case, the time step model discretization depends on the regime switching stopping time). We apply

these two formulas to price defaultable bond. We illustrate the efficiency of our new modelization

of regime switching intensity firstly by comparing the computing time of each formulas, secondly

by showing (using real historical data based on the Greece spread CDS) that our model estimates

well data and that each regime captures well some market features or economics behaviors.

In Section 1, we introduce the Markov copula, the credit migration process and the regime

switching Cox-Ingersoll-Ross model. In Section 2, we give the two formulas to evaluate the con-

ditional Laplace transform in this framework. Finally, in Section 3, we show some simulations to

compare the formula results, illustrate the model and then we give some estimation on real data.

1 The defaultable model

1.1 Credit migration model

Let T > 0 be a fixed maturity time and denote by (Ω,F := (F t)[0,T ],P) an underlying probability

space.

Definition 1.1. A notation is a label given by an entity which measures the viability of a firm.

This graduate notation goes from 1 to K. 1 for the best economic and financial situation and K for

the worst. We will call an indicator of notation a continuous time homogeneous Markov chain on

the finite space S = {1, . . . ,K}.
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Let A and B be two firms with their own indicator of notation (XA)t∈[0,T ] and (XB)t∈[0,T ].

Hence XA and XB are Markov chains with generator matrix ΠA and ΠB. We recall that the

generator matrix of C ∈ {A,B} is given by ΠC
ij ≥ 0 if i 6= j for all i, j ∈ S and ΠC

ii = −
∑

j 6=i Πij

otherwise. We can remark that ΠC
ij represents the intensity of the jump from state i to state j.

Moreover, we denote by FAt := {σ(XA
s ); 0 ≤ s ≤ t} and FBt := {σ(XB

s ); 0 ≤ s ≤ t} the natural

filtrations generated by XA and XB.

1.1.1 Markov Copula

Let denote by X the bivariate process X = (XA, XB), which is a finite continuous time Markov

chain with respect to its natural filtration FX = FA,B. We recall now the Corollary 5.1 of Bielecki

and al. [2], applied to our case, which gives the condition that the components of the bivariate

processes X are themselves Markov chain with respect to their own natural filtration.

Corollary 1.1. Consider two Markov chains XA and XB, with respect to their own filtrations FA

and FB, and with values in S. Suppose that their respective generators are ΠA
ij and ΠB

hk with i, j, h

and k are in S. Consider the system of equations in the unknown ΠX
ij,hk where i, j, h, k ∈ S and

(i, h) 6= (j, k):∑
k∈S

ΠX
ij,hk = ΠA

ij ∀h, i, j ∈ S, i 6= j and
∑
j∈S

ΠX
ij,hk = ΠB

hk ∀i, h, k ∈ S, h 6= k (1.1)

Suppose that the above system admits a solution such that the matrix ΠZ :=
(

ΠZ
ij,hk

)
i,j,h,k∈S

with

ΠX
ii,hh = −

∑
(j,k)∈S×S,(j,k) 6=(i,h)

ΠX
ij,hk (1.2)

properly defines an infinitesimal generator of a Markov chain with values in S × S. Consider, the

bivariate Markov chain X = (XA, XB) on S×S with generator matrix ΠX . Then, the components

XA and XB are Markov chains with respect to their own filtrations, their generators are ΠA and

ΠB.

Hence we can now formulate the Definition of a Markov copula.

Definition 1.2. A Markov copula between the Markov chains XA and XB is any solution to

system (1.1) such that the matrix ΠX , with ΠX
ii,hh given in (1.2), properly defines an infinitesimal

generator of a Markov chain with values in S × S.

Moreover, the infinitesimal generator process of X which is a matrix with N := K2 rows and

columns, since the cardinal of the state of notation is K, can be written as

ΠX =


π(1,1) . . . π(1,K)

π(2,1 . . . π(2,K)
...

...

π(K,1) . . . π(K,K)


Then the possible states are N couples which are given by

E := {(1, 1), (1, 2), . . . , (1,K), (2, 1), (2, 2), . . . , (2,K), . . . (K, 1), (K, 2), . . . , (K,K)}
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1.1.2 Markov copula in the hazard rate framework

We denote by F := (Ft)t∈[0,T ] the filtration such that Ft = F t∨FXt . Let τA and τB be the two

default times of firms A and B. Let define for all t ∈ [0, T ]:

HA
t = 1{τA≤t} and HB

t = 1{τB≤t} (1.3)

We define now some others filtrations

GAt = Ft ∨HBt , , GBt = Ft ∨HAt and Gt = Ft ∨HAt ∨HBt

where HA (resp. HB) is the natural filtration generated by HA (resp. HB) and we will denote

G := (Gt)t∈[0,T ], GA :=
(
GAt
)
t∈[0,T ]

and GB :=
(
GBt
)
t∈[0,T ]

. Let now consider λi := λi(X), for i ∈
{A,B} two F-progressively non-negative processes defined on (Ω,G,P) endowed with the filtration

F. We assume that
∫∞

0 λi(Xs)ds = +∞ and we set:

τ i = inf

{
t ∈ R+,

∫ t

0
λi(Xs)ds ≥ − ln(U i)

}
, i ∈ {A,B}.

where U i are mutually independent uniform random variables defined on (Ω,G,P) which are inde-

pendent of λi. The stopping times τA and τB are totally inaccessible and conditionally independent

given the filtration F, moreover the (H)-hypothesis is satisfied (i.e. that every local F-martingale

is a local G-martingale too). The process λi is called the F-intensity of the firm i and we have that

M i
t = H i

t −
∫ t∧τ i

0
λi(Xs)ds

are G-martingales. In general case, processes λi are F∨G(i)-adapted which jump when any default

occurs. This jump impacts the default of the firm and makes some correlation between the firms.

In our case, the correlation is constructed using the F-Markov chain X = (XA, XB). Since from

the explicit formula of the intensity given the survey probability for each i ∈ {A,B}:

λit = − 1

P(τ i ≥ t|Git)
dP(τ i ≥ θ|Git)

dθ

∣∣∣
θ=t

we can find, from Bielecki and al. [3] (Example 4.5.1 p 94), that the formula of the conditional

survey probability is given by:

P(τ i ≥ θ|Gt) = 1{τ i≥t}E
[
e−
∫ θ
t λ

i(Xs)ds|Ft
]

(1.4)

for i ∈ {A,B}. The Markov chain X will explain how the curve of the default bond moves with

different states (regimes) of the financial market.

1.1.3 Construction of the Markov chain

We are now going to present the canonical construction of a conditional Markov chain X,

based on a given filtration F and a stochastic infinitesimal generator ΠX . This construction can

be found in Bielecki and Rukowski [4] or Eberlein and Ozkan [10], which we follow closely in
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the exposition. Each component ΠX
ij : Ω × [0, T ] → R+ are bounded, F-progressively measurable

stochastic processes. We recall that for every i, j ∈ S, i 6= j, processes ΠX
ij are non-negative

and ΠX
ii (t) = −

∑
j 6=i ΠX

ij(t). The process X is constructed from an initial distribution µ and the

F-conditional adapted infinitesimal generator ΠX by enlarging the underlying probability space

(Ω,F ,PT ) to a probability space denoted in the sequel by (Ω,F ,QT ). The new probability space

is obtained as a product space of the underlying one with a probability space supporting the initial

distribution µ of X and a probability space supporting a sequence of uniformly distributed random

variables, which control, together with the entries of the infinitesimal generator ΠX , the laws of

jump times (τk)k∈N of X and jump heights. We denote by F its trivial extension from the original

probability space (Ω,F ,PT ) to (Ω,F ,QT ). We refer to [4] or [13] for details of this construction.

However an important step of this construction is that they construct a discrete time process

(Xk)k∈N which allows us to construct the credit migration process X as

Xt := Xk−1 for all t ∈ [τk−1, τk[, k ≥ 1 (1.5)

where τk are the jump times. An important result is that the progressive enlargement of filtration

Ft := F t∨FXt , t ∈ [0, T ] satisfies the (H)-hypothesis. In the sequel, we will work under the enlarging

probability space (Ω,F ,QT ). The expectations will be taken under the probability measure QT

but for simplicity of notation, we will write E for EQT .

1.2 Pricing defaultable bond with Markov copula

1.2.1 Defaultable Model

Let W be a standard real Brownian motion with filtration Ft = σ{Ws; 0 ≤ s ≤ t}.
We recall that a Cox Ingersoll Ross (CIR) process is the solution of the stochastic differential

equation given by

dλt = κ(θ − λt)dt+ σ
√
λtdWt, t ∈ [0, T ] (1.6)

where κ, θ and σ are constants which satisfy the condition σ > 0 and κθ > 0. We will assume that

λ0 ∈ R+ and that 2κθ ≥ σ2. This is to ensure that the process (λt) is positive. We will now define

the notion of CIR process with each parameters values depend on the value of a Markov chain.

Definition 1.3. Let (X)t be a two-dimensional continuous time Markov chain on finite space

S2 := {1, . . . ,K}2 for all t ∈ [0, T ]. We will call a Regime switching CIR the process (λt) which is

the solution of the stochastic differential equation given by

dλt = κ(Xt)(θ(Xt)− λt)dt+ σ(Xt)
√
λtdWt, t ∈ [0, T ]. (1.7)

For all j ∈ {1, . . . ,K}2, we have that κ(j)θ(j) > 0 and 2κ(j)θ(j) ≥ σ(j)2

For simplicity, we will denote the values κ(Xt), θ(Xt) and σ(Xt) by κt, θt and σt.

Assumption 1.1. We assume that both intensities processes λA and λB follow a regime switching

CIR given for i = {A,B} by

dλit = κ(Xt)(θ(Xt)− λit)dt+ σ(Xt)
√
λitdWt. (1.8)
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Remark 1.1. We have that the intensity process (λit) depends on the value of the credit migration

process X = (XA, XB). Hence each firm A and B has an increasing sequence of FX-stopping times

given by:

– for the firm A it is 0 ≤ τA1 < τA2 < · · · < τAn ≤ T .

– for the firm B it is 0 ≤ τB1 < τB2 < · · · < τBm ≤ T .

Hence with these two sequences, we construct another sequence by a rearrangement of these two

sequences in one where we put every stopping time τAi , i ∈ {1, . . . n} and τBj , j ∈ {1, . . . ,m} in an

increasing order. We obtain a new increasing sequence of stopping times of size M ∈ N given by

0 ≤ τ1 < τ2 < · · · < τM ≤ T . As an example of this construction

-

0

τA1

τ1

τA2

τ2

τB1

τ3

τA3

τ4

τB2

τ5

τA4

τ6 T

Remark 1.2. By this construction, we have that on each interval t ∈ [τk, τk+1[ that the regime

switching CIR process λi defined in (1.8) is a classical CIR with constant parameters.

1.2.2 Zero coupon bond price

We can now define the defaultable Zero coupon bond price.

Definition 1.4. We will denote by
(
Di
t,T

)
t∈[0,T ]

, i = {A,B} the price of a defaultable discounted

bond price which pays $1 at the maturity T.

Using the partitioning time, the notation defined in the previous subsection and the general

asset pricing theory in Harrison and Pliska [17] and [18], the conditional defaultable discounted

bond price Dt,T is given by

Proposition 1.1. For i = {A,B}, we have for all t ∈ [0, T ] that

Di
t,T = (1−H i

t)E
[
exp

(
−
∫ T

t
(rs + λis)ds

)
|FXt , λ0

]
. (1.9)

Remark 1.3. The quantity
(
rt + λit

)
t∈[0,T ]

can be seen as a default-adjusted interest rate process.

The part
(
λit
)
t∈[0,T ]

is the risk-neutral mean loss rate of the instrument due to the default of the

firm i ∈ {A,B}. The quantity
(
rt + λit

)
t∈[0,T ]

therefore represents the probability and the timing of

default, as well as for the effect of losses on default. This model allows us to capture an economic

health of each firm since for each firm i ∈ {A,B}, the stochastic process (λit) has parameters whose

values depend on the credit notation of the firm. And by the construction of the migration process

X, we have correlation between each firm notation. This allows the model to capture financial

health correlation between each firm, like the impact of the default of one firm against the others.
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Our aim is so to obtain explicit formulas of (1.9). This is done by the following Theorem using

two different methods to evaluate the conditional Laplace transform of λi. The first one uses a

Ricatti approach and the second one an analytical approximation.

Theorem 1.1. Under Assumptions 1.1 and assuming that X is independent of W and that the

risk-free interest rate r is a deterministic function, then we have for i ∈ {A,B} that the defaultable

bond price can be obtained by two formulas:

1. Riccati Approach:

Di
0,T = E

exp

(
−
∫ T

0
rsds

)
exp

−
M∑
j=1

BM−j(∆tj−1)

 exp (−A0(∆t0 , i0)λ)

 (1.10)

where

A0(∆t0) =
2

γ1 + κ1
− 4γ1

γ1 + κ1

1

(γ1 + κ1) exp(γ1∆t0) + γ1 − κ1

BM−j(∆tj−1) = −κ
M−j+1θM−j+1(γM−j+1 + κM−j+1)

(σM−j+1)2
∆tj−1

+2
κM−j+1θM−j+1

(σM−j+1)2
ln
(
(γM−j+1 + κM−j+1) exp(γM−j+1∆tj−1) + γM−j+1 − κM−j+1

)
−2

κM−j+1θM−j+1

(σM−j+1)2
ln
(
2γM−j+1

)
γM−j+1 =

√
(κM−j+1)2 + 2(σM−j+1)2

where we denote for simplicity κj = κ(Xtj ), θ
j = θ(Xtj ) and σj = σ(Xtj )

2. Analytic Approximation:

Di
0,T =E(exp

(
−
∫ T

0
rsds

)
exp

{
−u

2

n∑
k=1

h2
n−k+1an−k+1κn−kθn−k −

u

2
h1λ0 [1 + a1 (1− κ0h1)]

}

× exp

{
n∑
k=1

ln

(
Et0λ0,X

[
exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +
n−k∑
i=0

σi
√
λi∆Wi

])])}
)(1.11)

where the sequence a is given by

an−1 = 1 +
hn
hn−1

+
hn
hn−1

an (1− hnκn−1) and an = 1.

Remark 1.4. The hypothesis that X is independent of W has an economic sense since for example

X = (XA, XB) could represent the credit notation of two countries given by an exogenous entity

like a credit rating agencies.
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2 Conditional Laplace transform formulas

We are now going to prove the Theorem 1.1. More precisely, we will find two explicit formulas

to evaluate the conditional Laplace transform of λ with respect to X denoted by Φ. It is given, for

all u ∈ C, by

Φ0,T,λ,X(u) = E
[
exp

(
−u
∫ T

0
λsds

)
|λ0 = λ,FXT

]
= Eλ,X

[
exp

(
−u
∫ T

0
λsds

)]
. (2.12)

Hence, our defaultable bond price formulas will be obtained as a particular case of this equation

by taking u = 1.

2.1 A Ricatti approach

By Remark 1.1, there exists an increasing sequence of FX -stopping times in interval [0, T ],

where the value of the Markov chain changes. We denote by Γ this subdivision

0 = τ0 < τ1 < · · · < τM = T

So in each time interval [τk, τk+1[, k ∈ {1, . . . n} the process X is constant. And so the CIR regime

switching process λ has constant parameters on this each time interval.

Proposition 2.2. The conditional Laplace transform of the regime switching CIR process (for

u = 1) between time [τk, τk+1[ with λτk = λ and Xτk+1
= j ∈ Sd is given by

Φτk,τk+1,j := E
[
exp

(
−
∫ τk+1

τk

λsds

)
|λτk = λ,Xτk+1

= j

]
= exp {−A(∆tk , j)λ−B(∆tk , j)}

(2.13)

where ∆tk = τk+1 − τk and

A(∆tk , j) =
2

γj + κj
− 4γj
γj + κj

1

(γj + κj) exp(γj∆tk) + γj − κj
, (2.14)

B(∆tk , j) = −κjθj(γj + κj)

σ2
j

∆tk + 2
κjθj
σ2
j

ln ((γj + κj) exp(γj∆tk) + γj − κj)− 2
κjθj
σ2
j

ln (2γj) , (2.15)

γj =
√
κ2
j + 2σ2

j . (2.16)

Proof. We recall that the constant parameter CIR process defined in (1.6) is an affine process (see

Duffie and al. [8]). So as in each step of time [τk, τk+1[, the stochastic process X is constant. So

the process λ is a classical CIR with constant parameters on each step. So on each time interval

[τk, τk+1[, the process λ is affine, hence we can assume that the expression of Φτk,τk+1,j is given by

the form

exp {−A(∆tk , j)λτk −B(∆tk , j)} (2.17)

for some functions A(∆tk , j) and B(∆tk , j) solution of a system of Riccati equation. Then the

expected result is well known and can be found for instance in Cox and al. [7].
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We would like now to give an explicit form of the conditional Laplace transform of the CIR

process between time 0 and T. This is done by the following Theorem.

Theorem 2.2. Assume that the intensity process (λt) follows a regime switching CIR, then we

have for all λ0 = λ > 0 and Xτ1 = i0 ∈ Sd that

Φ0,T,λ,X(1) = E
[
exp

(
−
∫ T

0
λsds

)
|λ0 = λ,FXT

]
:= Eλ,X

[
exp

(
−
∫ T

0
λsds

)]

= exp

−
M∑
j=1

BM−j(∆tj−1)

 exp (−A0(∆t0 , i0)λ)

where

A0(∆t0) =
2

γ1 + κ1
− 4γ1

γ1 + κ1

1

(γ1 + κ1) exp(γ1∆t0) + γ1 − κ1
, (2.18)

BM−j(∆tj−1) = −κ
M−j+1θM−j+1(γM−j+1 + κM−j+1)

(σM−j+1)2
∆tj−1 (2.19)

+2
κM−j+1θM−j+1

(σM−j+1)2
ln
(
(γM−j+1 + κM−j+1) exp(γM−j+1∆tj−1) + γM−j+1 − κM−j+1

)
−2

κM−j+1θM−j+1

(σM−j+1)2
ln
(
2γM−j+1

)
,

γM−j+1 =
√

(κM−j+1)2 + 2(σM−j+1)2, (2.20)

where we denote for simplicity κj = κ(Xtj ), θ
j = θ(Xtj ) and σj = σ(Xtj ).

Proof. We have a sequence of increasing times 0 = τ0 < τ1 < · · · < τM = T where the Markov

chain X changes its value. Hence

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= Eλ,X

[
exp

(
−
M−1∑
k=0

∫ τk+1

τk

λsds

)]
= Eλ,X

[
exp

(
−
M−1∑
k=0

∫ τk+∆tk

τk

λsds

)]

= Eλ,X

[
M−1∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)]

By hypothesis, X is independent of W , then conditioning with respect to FτM−1 := FM−1, we

obtain

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= Eλ,X

[
E

[
M−1∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
|FM−1

]]

= Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
E

[
exp

(
−
∫ τM

τM−1

λsds

)
|FM−1

]]
.(2.21)
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Moreover, we know that E
[
exp

(
−
∫ τM
τM−1

λsds
)
|FM−1

]
is equal to Φ(τM−1, τM , XM ), where XM

means XτM . So applying Proposition 2.2, we get

E

[
exp

(
−
∫ τM

τM−1

λsds

)
|FM−1

]
= exp

{
−AM−1(∆tM−1 , XM )λτM−1 −BM−1(∆tM−1 , XM )

}
.

We recall that the quantities AM−1(∆tM−1 , XM ) and BM−1(∆tM−1 , XM ) are constants. Hence
replacing this result in the expectation (2.21) gives

Eλ,X
[
exp

(
−
∫ T

0

λsds

)]
= Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
exp

{
−AM−1(∆tM−1 , XM )λτM−1 −BM−1(∆tM−1 , XM )

}]

= exp
{
−BM−1(∆tM−1 , XM )

}
Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−1(∆tM−1 , XM )λτM−1

)]
.

To simplify the notation of the calculus we will denote by Ak−1 (resp. Bk−1) the quantity

Ak−1(∆tk−1
, Xk) (resp. Bk−1(∆tk−1

, Xk)). Hence

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= exp {−BM−1}Eλ,X

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−1λτM−1

)]
.

We condition again with respect to FM−2 to obtain

Eλ,X
[
exp

(
−
∫ T

0

λsds

)]
= exp {−BM−1}Eλ,X

[
E

[
M−2∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−1λτM−1

)
|FM−2

]]

= exp {−BM−1}Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]]
.

To continue, we need to evaluate the conditional expectation:

ϕτM−2,∆tM−2
:= E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]
.

Lemma 2.1. Assume for all k ∈ {1, . . . ,M} that the conditional expectation ϕτM−k,∆tM−k
has an

exponential affine structure form given by

ϕτM−k,∆tM−k
= exp

(
−AM−k(∆tM−k , XM−k+1)λτM−k −BM−k(∆tM−k , XM−k+1)

)
. (2.22)

Then we can find explicit forms for functions AM−k(∆tM−k , XM−k+1) and BM−k(∆tM−k , XM−k+1)

which are given explicitly by equations (2.14) and (2.15) under the conditions that AM−k(0) =

AM−k+1 and BM−k(0) = 0.

Proof. Let ϕτM−k,∆tM−k
:= E

[
exp

(
−
∫ τM−k+1

τM−k
λsds−AM−k+1λτM−k+1

)
|FM−k

]
then

ϕτM−k,∆tM−k
= EM−k

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]
.
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Taking a small time interval dt� ∆tM−2 to obtain

EM−k

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]

= EM−k

[
EM−k+dt

[
exp

(
−
∫ τM−k+1

τM−k

λsds−AM−k+1λτM−k+∆tM−k

)]]
.

Thus EM−k+dt

[
exp

(
−
∫ τM−k+1

τM−k
λsds−AM−k+1λτM−k+1

)]
= EM−k

[
ϕ(τM−k + dt,∆tM−k − dt) exp

(
−
∫ τM−k+dt

τM−k

λsds

)]
.

We now use the hypothesis on the form of ϕ to get

EM−k

[
exp

(
−AM−k(∆tM−k − dt,XM−k+1)λτM−k+dt −BM−k(∆tM−k − dt,XM−k+1)

)
exp

(
−
∫ τM−k+dt

τM−k

λsds

)]
.

Then using our simplified notations we obtain

= EM−k

[
exp

(
−AM−k(∆tM−k − dt)λτM−k+dt −BM−k(∆tM−k − dt)

)
exp

(
−
∫ τM−k+dt

τM−k

λsds

)]
.

For small dt and using the stochastic differential equation of λ, we get

= EM−k[exp{−AM−k(∆tM−k − dt)
[
λτM−k + κM−k+1

(
θM−k+1 − λτM−k

)
dt+ σM−k+1

√
λτM−kdWt

]
−BM−k(∆tM−k − dt)− λτM−kdt}]

where κM−k+1 = κ(XτM−k+1
), θM−k+1 = θ(XτM−k+1

) and σM−k+1 = δ(XτM−k+1
).

= exp
{
−AM−k(∆tM−k − dt)λτM−k −AM−k(∆tM−k − dt)κ

M−k+1
(
θM−k+1 − λτM−k

)
dt
}

× exp
{
−BM−k(∆tM−k − dt)− λτM−kdt

}
EM−k

[
exp

(
−AM−k(∆tM−k − dt)σ

M−k+1
√
λτM−kdWt

)]
= exp

{
−AM−k(∆tM−k − dt)λτM−k −AM−k(∆tM−k)κM−k+1

(
θM−k+1 − λτM−k

)
dt
}

× exp
{
−BM−k(∆tM−k − dt)− λτM−kdt

}
exp

(
1

2
A2
M−k(∆tM−k)(σM−k+1)2λτM−kdt

)
.

By identifying with the assumed expression of ϕ in (2.22), we get
AM−k(∆tM−k)=AM−k(∆tM−k − dt)−AM−k(∆tM−k)κM−k+1dt− 1

2A
2
M−k(∆tM−k)(σM−k+1)2dt+ dt

BM−k(∆tM−k)=BM−k(∆tM−k − dt) +AM−k(∆tM−k)κM−k+1θM−k+1dt

Taking dt close to zero,
∂AM−k(∆tM−k )

∂∆tM−k
= −AM−k(∆tM−k)κM−k+1 − 1

2A
2
M−k(∆tM−k)(σM−k+1)2 + 1

∂BM−k(∆tM−k )

∂∆tM−k
= AM−k(∆tM−k)κM−k+1θM−k+1

11



with conditions for ∆tM−k ≡ 0, AM−k(0) = AM−k+1 and BM−k(0) = 0.

Hence by Proposition 2.2, we know the explicit forms of AM−k(∆tM−k) and BM−k(∆tM−k)

which are given by equations (2.14), (2.15) with the recursive condition that AM−k(0) = AM−k+1

and initial condition BM−k(0) = 0

We continue the proof of the Theorem 2.2, by applying the Lemma 2.1 with k = 2, we obtain

E

[
exp

(
−
∫ τM−1

τM−2

λsds−AM−1λτM−1

)
|FM−2

]
= exp

(
−AM−2(∆tM−2)λτM−2 −BM−2(∆tM−2)

)
with deterministic function AM−2(∆tM−2) and BM−2(∆tM−2). Hence

Eλ,X
[
exp

(
−
∫ T

0

rsds

)]
= exp {−BM−1}Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
exp

(
−AM−2(∆tM−2)λtM−2 −BM−2(∆tM−2)

)]

= exp {−BM−1 −BM−2}Eλ,X

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−2(∆tM−2)λτM−2

)]

Conditioning an other time with respect to FM−3, we obtain

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= exp {−BM−1 −BM−2}Eλ,X

[
E

[
M−3∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−2λτM−2

)
|FM−3

]]

= exp

−
2∑
j=1

BM−j

Eλ,X

[
M−4∏
k=0

exp

(
−
∫ τk+1

τk

λsds

)
E

[
exp

(
−
∫ τM−2

τM−3

λsds−AM−2λτM−2

)
|FM−3

]]

We can now again apply Lemma 2.1 with k = 3 and we obtain again that

E

[
exp

(
−
∫ τM−2

τM−3

λsds−AM−2λτM−2

)
|FM−3

]
= exp

(
−AM−3(∆tM−3)λτM−3 −BM−3(∆tM−3)

)
And so

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
=exp

−
3∑
j=1

BM−j

Eλ,X

[
M−4∏
k=0

exp

(
−
∫ τk+1

τk

λsds−AM−3(∆tM−3)λτM−3

)]

By iterating the conditioning with respect to FM−k, k going to 4 to M and applying the Lemma

2.1 we finally obtain

Eλ,X
[
exp

(
−
∫ T

0
λsds

)]
= exp

−
M∑
j=1

BM−j

 exp (−A0(∆t0)λτ0)

with by hypothesis λτ0 = λ and A0(∆t0) = A0(∆t0 , Xτ1) with Xτ1 = i0 ∈ Sd.

We can obtain the general expression of the conditional Laplace transform of the regime switch-

ing CIR process using Theorem 2.2.
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Corollary 2.2. For all u ∈ C, we have that the conditional Laplace transform of the regime

switching CIR process with λ0 = λ and Xτ1 = i0 ∈ Sd is given by

Φ0,T,λ,X(u) := Eλ,X
[
exp

(
−u
∫ T

0
λsds

)]

= exp

−
M∑
j=1

B̃M−j
(
∆tM−j

) exp
(
−Ã0 (∆t0 , i0)λ

)
(2.23)

where the functions B̃M−j for j = {1, . . . ,M} and Ã0 are given by equations (2.18) and (2.19)

taking parameters κ̃j := ˜κ(Xτj ) = κj, θ̃j := ˜θ(Xτj ) = uθj and σ̃j := ˜σ(Xτj ) =
√
uσj.

Proof. Since E
[
exp

(
−u
∫ T

0 λsds
)
|λ0 = λ,FXT

]
= Eλ,X

[
exp

(
−
∫ T

0 (uλs)ds
)]

. This is the condi-

tional Laplace transform of a process (uλ)t which is still a CIR process with new parameters

κ̃t = κt, θ̃t = uθt and σ̃t =
√
uσt, for all t ∈ [0, T ]. Hence applying Theorem 2.2 with this set of

parameters gives the expected result.

2.2 Analytic approximation

We give now a second way to evaluate the defaultable bond. In fact, we give now an analytical

approximation to evaluate the conditional Laplace transform of a regime switching CIR.

2.2.1 Construction of the new times grid

Let ∆t be a fixed time step, then starting in time 0 we partition the time interval [0, T ] in time

steps of

– size ∆t if there is no jump of the Markov process between time 0 to ∆t.

– size τ1 if there is the first jump of the Markov process at stopping time τ1 less than ∆t.

Hence we denote by h1 the first time step of size ∆t or τ1. Then we will proceed as the following:

at time tk, corresponding of the time after the step hk, we construct the step hk+1 of size

– ∆t if there is no jump of the Markov process between time tk to tk + ∆t.

– τi if there is the i jumps of the Markov process at stopping time τi less than tk + ∆t.

As an example of this construction

-

∆t 2∆t 3∆t 4∆t

0

τ1 τ2 τ3

Tt1-�
h1

t2-�
h2

t3-�
h3

t4-�
h4

t5-�
h5

t6-�
h6

t7-�
h7

-�
h8

This construction implies that hk = tk − tk−1 ≤ ∆t and that the parameters of the regime

switching CIR are constants (and bounded) in these each time intervals [tk, tk+1[, k ∈ {0, 1, . . . , n−
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1}. It follows as an application of the tree property of conditional expectation that the conditional

Laplace transform of λ is given by

Φ0,T,λ,X(u) := E
[
exp

(
−u
∫ T

0
λsds

)
|λ0,FXT

]
= Eλ0,X

[
exp

(
−u
∫ T

0
λsds

)]
= Et0λ0,XE

t1
λ,X . . .E

tn−1

λ,X

[
exp

(
−u
∫ T

0
λsds

)]
. (2.24)

Proposition 2.3. Let for all k ∈ {1, . . . , n− 1},

Fk = exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1λn−k

)
. (2.25)

Then, we have

Et0λ0,X

exp
(
−u
∫ T

0 λsds
)

∏n−1
i=1 Fi

 = exp

(
−u

2

n∑
k=1

h2
kakκk−1θk−1 −

u

2
h1λ0 [1 + a1 (1− κ0h1)]

)
Fn

(2.26)

where

an−1 = 1 +
hn
hn−1

+
hn
hn−1

an (1− hnκn−1) and an = 1. (2.27)

Proof. Using trapezoidal rule, we obtain that the expectation at time tn−1 is given by

Etn−1

λ0,X

[
exp

(
−u
∫ T

0
λsds

)]
= Etn−1

λ0,X

[
exp

(
−u

n∑
i=1

(
λi + λi−1

2
hi

))]

= exp

(
−u

n−2∑
i=1

(
λi + λi−1

2
hi

)
− uλn−2

2
hn−1

)
Etn−1

λ,X

[
exp

(
−u

2
[hnλn + hnλn−1 + hn−1λn−1]

)]
.

Using the approximation λn ' λn−1+κn−1 (θn−1 − λn−1)hn+σn−1

√
λn−1∆Wn−1 where ∆Wn−1 =

Wn−Wn−1 and denote by Gn−2 the quantity exp
(
−u
∑n−2

i=1

(
λi+λi−1

2 hi

)
− uλn−2

2 hn−1

)
. We obtain

that Etn−1

λ0,X

[
exp

(
−u
∫ T

0 λsds
)]

is equal to

Gn−2E
tn−1

λ0,X

[
exp

(
−u

2

[
hn

(
λn−1 + κn−1 (θn−1 − λn−1)hn + σn−1

√
λn−1∆Wn−1

)
+ hnλn−1 + hn−1λn−1

])]
= Gn−2 exp

(
−u

2

[
hnλn−1 + h2

nκn−1θn−1 − h2
nκn−1λn−1 + hnλn−1 + hn−1λn−1

])
×Etn−1

λ0,X

[
exp

(
−u

2
hnσn−1

√
λn−1∆Wn−1

)]
.

Moreover we have that ε ∼ N (0, 1) then for a constant K we know that

E
[
exp

(
K
√
Tε
)]

= exp

(
K2T

2

)
. (2.28)
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Applying (2.28) and factorize by −uλn−1hn−1

2 , we obtain that Etn−1

λ0,X

[
exp

(
−u
∫ T

0 λsds
)]

is equal to

Gn−2 exp

(
u2

8
h3
nσ

2
n−1λn−1a

2
n

)
exp

(
−uλn−1hn−1

2

[
1 +

hn
hn−1

+
hn
hn−1

an (1− hnκn−1)

]
−u

2
h2
nanκn−1θn−1

)
=Gn−2 exp

(
−u

2
h2
nanκn−1θn−1

)
exp

(
−uλn−1hn−1

2
an−1

)
F1.

Hence

Etn−1

λ0,X

exp
(
−u
∫ T

0 λsds
)

F1

 = Gn−2 exp

(
u2

8
h3
nσ

2
n−1λn−1

)
exp

(
−uλn−1hn−1

2
an−1

)

Then denoting Gn−3 = exp
(
−u
∑n−3

i=1

(
λi+λi−1

2 hi

)
− uλn−3

2 hn−2

)
, we get the conditional expecta-

tion based on the information until tn−2

Etn−2

λ0,X

Etn−1

λ,X

exp
(
−u
∫ T

0 λsds
)

F1

 = Gn−3 exp
(
−u

2
h2
na

2
nκn−1θn−1

)
×Etn−2

λ0,X

[
exp

(
−u

2
[λn−1hn−1an−1 + hn−2λn−2 + hn−1λn−2]

)]
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1

)
exp

(
u2

8
h3
n−1σ

2
n−2λn−2a

2
n−1

)
exp

(
−u

2
λn−2hn−1an−1 −

u

2
κn−2 (θn−2 − λn−2)h2

n−1an−1 − hn−2λn−2 − hn−1λn−2

)
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1

)
exp

(
u2

8
h3
n−1σ

2
n−2λn−2a

2
n−1

)
exp

(
−u

2
h2
n−1an−1κn−2θn−2

)
× exp

(
−u

2
λn−2hn−1an−1 +

u

2
κn−2λn−2h

2
n−1an−1 − hn−2λn−2 − hn−1λn−2

)
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1 −

u

2
h2
n−1an−1κn−2θn−2

)
F2

× exp

(
−u

2
λn−2hn−2

[
1 +

hn−1

hn−2
+
hn−1

hn−2
an−1 (1− κn−2hn−1)

])
= Gn−3 exp

(
−u

2
h2
nanκn−1θn−1 −

u

2
h2
n−1an−1κn−2θn−2

)
exp

(
−u

2
λn−2hn−2an−2

)
F2.

Hence by iterations, we obtain

Etn−kλ0,X

exp
(
−u
∫ T

0 λsds
)

∏k−1
i=1 Fi

=Gn−k−1 exp

(
−u

2

k∑
i=1

h2
n−k+ian−k+iκn−k+i−1θn−k+i−1

)

× exp
(
−u

2
λn−khn−kan−k

)
Fk.

Then until time t0, we finally obtain the expected result.
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Theorem 2.3. For all u ∈ C, the conditional Laplace transform Φ of the regime switching CIR

process is given by

ln (Φ0,T,λ,X(u)) = ln

(
Et0λ0,X

[
exp

(
−u
∫ T

0
λsds

)])
= −u

2

n∑
k=1

h2
kakκk−1θk−1 −

u

2
h1λ0 [1 + a1 (1− κ0h1)]

+

n∑
k=1

ln

(
Et0λ0,X

[
exp

{
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +

n−k∑
i=0

σi
√
λi∆Wi

]}])
(2.29)

where the sequence a is defined in Proposition 2.3.

Proof. As in [6], we see that it would be difficult to compute the expression Etn−k−1

λ0,X
[Fk] explicitly.

That is why we simply approximate the expression Fk at time tn−k by E0
λ0,X

[Fk]. Firstly, we can

use the following approximation

λn−k ' λ0 +
n−k∑
i=0

κi(θi − λi)hi+1 +
n−k∑
i=0

σi
√
λi∆Wi.

Then

Fk =exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1λn−k

)

=exp

(
h3
n−k+1

8
u2σ2

n−ka
2
n−k+1

[
λ0 +

n−k∑
i=0

κi(θi − λi)hi+1 +
n−k∑
i=0

σi
√
λi∆Wi

])
. (2.30)

Approximate the expression of Fk at time tn−k by the expectation at time 0, we obtain

ln

Et0λ0,X

exp
(
−u
∫ T

0 λsds
)

∏n−1
i=1 Fi

 ' ln

Et0λ0,X

exp
(
−u
∫ T

0 λsds
)

∏n
k=1 E

t0
λ0,X

[Fk]


= ln

Et0λ0,X
[
exp

(
−u
∫ T

0 λsds
)]

∏n
k=1 E

t0
λ0,X

[Fk]


= ln

(
Et0λ0,X

[
exp

(
−u
∫ T

0
λsds

)])
− ln

(
n∏
k=1

Et0λ0,X [Fk]

)

= ln (Φ0,T,λ,X(u))−
n∑
k=1

ln
(
Et0λ0,X [Fk]

)
.

We conclude using (2.30).

Remark 2.5. The analytic approximation formula given in previous Theorem could be also used

as a way to simulate conditional Laplace transform.
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3 Simulations

3.1 Pricing zero coupon Bond in the two firms case with two regimes

We fixe the time maturity of zero coupon bond T equal to 10 (i.e. a ten years ahead maturity).

We take a deterministic risk free interest rate equals to zero.

3.1.1 The model parameters and heuristic

The heuristic of the calculus of the defaultable Bond price is then done by a Monte Carlo

approach with MC ∈ N steps:

1. We know the value of the infinitesimal generator ΠX of the credit migration process X. This

one is given or estimated on some historical datas.

2. We generate a sequence of increasing stopping times and the times corresponding trajectory of

X.

3. (a) We apply the formula (1.10) to calculate the price of this defaultable Bond price for the

firm A or B.

(b) We apply the construction of the time grid studied in subsection 2.2.1. Then we applied

the formula (1.11).

4. We come back to step 2. until we will have done MC times this methods.

5. We evaluate the means of the MC values obtained in points 3 (a) and (b).

Hence assume that we have 2 regimes which represent a ”normal” economic regime (regime 0)

and a ”crisis” regime (regime 1), then the credit migration process X is done in a set of four states:

{(0, 0); (1, 0); (0, 1); (1, 1)}. For our simulation, in this part, we fix the infinitesimal generator ΠX

of the credit migration process X equals to

ΠX =


−0.1083 0.0455 0.0455 0.0174

0.0542 −0.1644 0.0082 0.1004

0.0542 0.01 −0.1644 0.1003

0.0542 0.01 0.01 −0.0741


which corresponds to a transition matrix

PX =


0.90 0.04 0.04 0.02

0.05 0.85 0.01 0.09

0.05 0.01 0.85 0.09

0.05 0.01 0.01 0.93


In other words, if we are in a state where only the firm A is on ”crisis” (i.e. state (1,0)) the

probability that the firm B goes into ”crisis” in the next time step is 0.01. Figure 1 gives an

example of the trajectory of the credit migration process X and of the sequence of stopping times

τ where the credit migration process jumps.
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Figure 1: On left: Example of trajectory of the credit migration process X. On right: Example of instant

of regime switching of the credit migration process X.

So we need to have four sets of CIR default intensity parameters. Let for i ∈ {A,B}, νi, ξi and

ρi be real valued such that the set of parameters are given by Table 1

Parameters κX θX σX

(0,0) 0.1 0.15 0.15

(1,0) 0.1 + νA 0.15 + ξA 0.15 + ρA

(0,1) 0.1 + νB 0.15 + ξB 0.15 + ρB

(1,1) 0.1 + νA + νB 0.15 + ξA + ξB 0.15 + ρA + ρB

Table 1: Parameters values of the CIR default intensity in the 2 regimes case.

Remark 3.6. – For i ∈ {A,B}, the constant νi, ξi and ρi are choosen such that the CIR

condition holds, i.e. 2κXθX ≥ σ2
X .

– The state (0, 0) can be seen as a standard economic state where nor firm A nor firm B are

in crisis.

3.1.2 Comparison of the different formulas to evaluate defaultable bond price.

Convergence:

We know that the formula of the conditional survey probability with respect to G is given by

equation (1.4). We would like now to compare the different formulas to pricing defaultable zero

coupon bond (i.e. formulas (1.4), (1.10) and (1.11)). In tables 2, 3 and 4, we resume the convergence

results in the case of a four states regime parameters defined as in Table 1.

Remark 3.7. We take for the time step parameter ∆t (appearing in subsection 2.2.1 for the

calculus of (1.11)) the value 0.01.
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Parameters: νA νB ξA ξB ρA ρB

Values: 0.2 0 0 0.3 0 0.1

Table 2: Values of the constant parameters defined in Table 1.

Regimes: (0, 0) (1, 0) (0, 1) (1, 1)

Bond price values: 0.6086 0.3777 0.2740 0.0668

Table 3: Values of the Bond price standard formula in t = 0 in each regime with a maturity T = 10 years.

Bond Price Ricatti: 1.10 (std) C.T.(sec.) Analytic: 1.11 (Std) C.T. MC: 1.4 C.T.

MC = 100 0.5619 (0.1110) 1.94 0.5585 (0.1699) 15.98 0.6500 1.95

MC = 300 0.5692 (0.1015) 5.34 0.5587 (0.1602) 52.52 0.6233 6.61

MC = 400 0.5736 (0.0949) 6.87 0.5649 (0.1505) 60.48 0.6400 9.58

MC = 500 0.5748 (0.0927) 7.97 0.5658 (0.1511) 78.32 0.6360 12.44

MC = 1000 0.5738 (0.0961) 16.31 0.5654 (0.1533) 146.51 0.6220 33.23

MC = 2000 0.5727 (0.0995) 27.33 0.5646 (0.1533) 221.22 0.5770 96.78

Table 4: Results for the formulas convergence in t = 0 with initial regime the regime (0, 0) and maturity

T = 10 years.

Bond Price Analytic: 1.11

∆t = 1 0.5612

∆t = 0.1 0.5648

∆t = 0.01 0.5649

In Table 4, we can see that all formulas converge when the number of Monte Carlo simulations

increases. Whereas the bond price value given by formula (1.10) based on Riccati approach or

formula (1.11) based on analytic approach converges quicker than the value given by formula (1.4).

Indeed, it is sufficient to take 400 Monte Carlo simulations to converge while it is necessary to

take at least 2000 Monte Carlo simulations with formula (1.4). The difference of 10−1 on the value

given by (1.10) and (1.11) could be due to the error approximation of the conditional expectation

at time tn−k of Fk (see. proof of Theorem 2.3). Hence our two formulas need less simulations than

formula (1.4) to converge. Moreover we observe that the Riccati approach formula (1.10) need a

smaller computation time. Only 6.87 sec while formula (1.11) needs 60.48 sec and formula (1.4)

needs 96.78 sec. Hence formula based on Riccati approach needs ten times less times than Analytic

approach to converge. Whereas, we know that we used CIR model for intensity modeling since

there exists explicit formula for bond. Hence as we said before, the analytic approach is interesting

to obtain an explicit easy scheme to simulate defaultable bond.

Bond price with respect to the maturity T:

We observe in Table 5 and Figure 2 that the three formulas give similar results. Whereas, firstly, we

made this simulation taking 2000 Monte Carlo simulations for the Probabilistic approach (formula
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Bond Price Ricatti: 1.10 (MC = 400) Analytic: 1.11 (MC = 400) MC: 1.4 (MC = 2000)

T = 1 0,9926 0,9923 0,9940

T = 2 0,9709 0,9696 0,9770

T = 5 0,8458 0,8405 0,8480

T = 7 0,7376 0,7261 0,7365

T = 10 0,5736 0,5649 0,5770

T = 15 0,3579 0,3948 0,3505

Table 5: Value of the Defaultable zero coupon bond price at time 0 with respect to the maturity time T

with ∆t = 0.01.
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Figure 2: Graphs of the value of the Defaultable zero coupon bond price at time 0 with respect to the

maturity time T with ∆t = 0.01 (MC=400 for the two first formulas and 2000 for the Probability approach).

(1.4)). Secondly, we remark, when the maturity T is greater than 10, that the result given by the

analytic approximation is not better than the other. This relative mispricing was observed in the

non regime switching case and uniform step time model discretization in [6] as soon as the maturity

T is greater than 10.

3.1.3 Other simulations with Riccati approach formula.

Bond Price all over time t ∈ [0, T ]

Taking parameters as in Table 2, we can draw the value of a defaultable zero coupon bond price

over time t ∈ [0, T ] using formula (1.10). An example is given in Figure 3.

Bond Price in function of probability that B goes to crisis:

Taking parameters as in Table 2, we evaluate the price of a defaultable zero coupon bond in

function of the probability P (Xt+∆t = (0, 1)|Xt = (0, 0)) and P (Xt+∆t = (1, 1)|Xt = (0, 0)). This
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Figure 3: Price of a defaultable zero coupon bond price in each time t between time 0 to maturity T.

is pX1,3 and pX1,4. Hence we take a parametric transition matrix of the form:

PX =


1− a− 3b a 2b b

0.05 0.85 0.01 0.09

0.05 0.01 0.85 0.09

0.05 0.01 0.01 0.93


where a, b ∈ [0, 1]. We obtain the following result: Hence we observe in Figure 4 that when b
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Figure 4: Price of a defaultable zero coupon bond price in t = 0 for maturity T = 10 and values of a = 0.04

in function of b.

grows up (i.e. the probability P (Xt+∆t = (1, 1)|Xt = (0, 0))), the price of the defaultable zero

coupon bond price of the firm A decreases. This means that the economic status of the firm B (the

probability to go in crisis) impacts the value of the defaultable zero coupon bond of the firm A.
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3.2 Regime switching defaultable intensity estimation

We work now on real data. We would like to focus more on the modeling issue. We will

show that our regime switching model could capture some market features or economics behavior.

Hence, we can use this algorithm to estimate the intensities of the two firms and then construct

the Markov copula as explained before.

3.2.1 Calibration on Greek sovereign spread between 19/10/2009 to 13/05/2010

First, Figure 5 shows the plot of the Greek sovereign spread between the 19/10/2009 to

13/05/2010. For the estimation, we use the estimation procedure developed and studied in Goutte
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Figure 5: Greek Spread between the 19/10/2009 to 13/05/2010.

and Zou [15] for regime switching Cox Ingersoll Ross process applied to foreign exchange rate data.

We assume that there are two regimes. This means that there is a ”good” one and a ”bad” one

economies like a time crisis period and a ”standard” economic period, or a spike time period and a

non spike time period. Our results are stated in Table 6. Figure 6 gives a graphical representation

Regime 1 Regime 2

κ̂ 0.022860 0.117918

θ̂ 309.460660 620.721205

σ̂ 0.774675 3.092136

Π̂X
ii 0.974977 0.934452

πi 0.723722 0.276278

Table 6: Maximum Likelihood estimation results.

of each time period in each regime.

22



19/10/09 16/11/09 14/12/09 11/01/10 08/02/10 08/03/10 05/04/10 03/05/10
100

200

300

400

500

600

700

800

900

1000

Dates

Figure 6: Greek Spread regime calibration between the 19/10/2009 to 13/05/2010. (The color blue is when

we are in regime 1 and red for regime 2).
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3.2.2 Interpretations

We can see clearly in Figure 6 that there are two significant time periods. The first one between

the 19/10/09 and april 2010, and the second one after april 2010. This period corresponds to the

beginning of the economic world crisis . Hence we can see on the estimation results Table 6 that

parameters values are very different in each regime. Before the crisis, we have a mean reverting

parameter less than after crisis, κ̂1 = 0.02286 against κ̂2 = 0.117918. And in the time crisis period

the volatility of the defaultable intensity is multiplied by 4 with respect to the volatility value

before crisis.

We can see also in the right graph of Figure 7, the estimation process is fast, indeed only 15

iterations of our algorithm are sufficient for convergence to the true estimated parameters values.

Moreover, we can calculate the Regime classification measure (RCM) obtained by this regime

switching model. In fact, let K > 0 be the number of regimes, the RCM statistics is then given by

RCM(K) = 100

(
1− K

K − 1

1

T

T∑
t=1

K∑
i=1

(
P
(
Xt = i|FλT ; Θ̂

)
− 1

K

)2
)

(3.31)

where the quantity P
(
Xt = i|FλT ; Θ̂

)
is the smoothed probability given in the left graph on Figure

7 and Θ̂ is the vector parameter estimation results
(
i.e. Θ̂ :=

(
κ̂, θ̂, σ̂, Π̂X

))
. The constant serves

to normalize the statistic to be between 0 and 100. Good regime classification is associated with

low RCM statistic value: a value of 0 means perfect regime classification and a value of 100

implies that no information about regimes is revealed. In our case we obtain a RCM equals to

8.41. Hence, it shows that this model with regime switching parameters captures very well two

significant economics time period. And so this is a real add for the valuation of defaultable bond.

3.2.3 Methodology

Hence, we can apply this estimation method to find each estimated parameter for firms or coun-

tries A and B. Then using the copula construction theory defined in Corollary 1.1 and developed

in section 1.2.1 we can apply pricing formulas given in Theorem 1.1 to obtain estimation of the

price of defaultable bond regarding the correlation regime structure of each defaultable intensity

regime switching estimations.
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