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Abstract

In this paper, we are interested in finding explicit numerical formulas for the defaultable
bonds prices of firms which fit well with real financial data. For this purpose, we use a default
intensity whose values depend on the credit rating of these firms. Each credit rating corresponds
to a regime of the default intensity. Then, this regime switches as soon as the credit rating
of the firms also changes. This regime switching default intensity model allows us to capture
well some market features or economics behaviors. We obtain two explicit different formulas to
evaluate the conditional Laplace transform of a regime switching Cox Ingersoll Ross model. One
using the property of semi-affine of this model and the other one using analytic approximation.
We conclude by giving some numerical illustrations of these formulas and real data estimation
results.

Keywords: Defaultable bond; Regime switching; Conditional Laplace Transform; Credit rat-
ing; Markov copula.

MSC Classification (2010): 60H10 91G40 91G60 91B28 65C40

Introduction

In an economic crisis situation where the credit ratings of countries or firms have a big impact
in the general financial market, we need to understand and capture the change of these ratings in
the dynamic of a the firm bond price. Moreover, we also have to model the contagion risk due
to a bad rating of a firm on other one. For example, the Bond of countries in the Euro zone are
affected by the Greek bad rating. In the literature, models for pricing defaultable securities have
been introduced by Merton [23]. It consists of explicitly linking the risk of firm default and the
value of the firm. Although this model is a good issue to understand the default risk, it is less
useful in practical applications since it is too difficult to capture all the macroeconomics factors
which appear in the dynamics of the value of the firm. Hence, Duffie and Singleton [9] introduced
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the reduced form modeling, followed by Madan and Unal [22], Jeanblanc and Rutkowski [20] and
others. The main tool of this approach is the ”default intensity process” which describes in short
terms the instantaneous probability of default. To deal with contagion risk, the most popular
approach is copula. The credit rating of each firm is modeled by a Markov chain on which we will
construct our copula. In this regard, we use a continuous time Markov chain called credit migration
process studied by Bielecki and Rutkowski in [4]. Hence, our copula which depends on the credit
ratings will affect the dynamic of the default intensity. In fact, we define default intensity process
by a Cox-Ingersoll-Ross (CIR) model whose parameters values depend on this copula.

The Cox-Ingersoll-Ross model was first considered to model the term structure of interest rate
by Cox and al. in [7]. The study of this class of processes was caution by the fact that it allows us
a closed form expression of Laplace transform (see Duffie and al. [8]) and model well the default
intensity (Alfonsi and Brigo [1]). Moreover, Choi in [5] shows that regime switching CIR process
captures more short term interest rate than standard models. In a econometric point of view,
regime switching model were introduced by Hamilton in [16].

In this framework, we obtain explicit formulas to evaluate defaultable bond prices. More pre-
cisely, we obtain two different formulas to evaluate the Laplace transform of defaultable intensity.
In a first time, we use the semi affine property of the regime switching Cox Ingersoll Ross model and
then solve a system of Riccati’s equations. In a second time, we extend the analytic approximation
found in Choi and Wirjanto [6]. Indeed Choi and Wirjanto in [6] give an analytic approximation
of the value of bond price with constant CIR parameter and with constant time step model dis-
cretization. We extend this result in three ways: firstly to evaluate conditional Laplace transform
of a regime switching Cox Ingersoll Ross, secondly to evaluate defaultable regime switching bond
price and thirdly in the case of non uniform deterministic time step model discretization (in our
case, the time step model discretization depends on the regime switching stopping time). We apply
these two formulas to price defaultable bond. We illustrate the efficiency of our new modelization
of regime switching intensity firstly by comparing the computing time of each formulas, secondly
by showing (using real historical data based on the Greece spread CDS) that our model estimates
well data and that each regime captures well some market features or economics behaviors.

In Section 1, we introduce the Markov copula, the credit migration process and the regime
switching Cox-Ingersoll-Ross model. In Section 2, we give the two formulas to evaluate the con-
ditional Laplace transform in this framework. Finally, in Section 3, we show some simulations to
compare the formula results, illustrate the model and then we give some estimation on real data.

1 The defaultable model

1.1 Credit migration model

Let T > 0 be a fixed maturity time and denote by (€, := (ﬁt)[O,T] , P) an underlying probability
space.

Definition 1.1. A notation is a label given by an entity which measures the viability of a firm.
This graduate notation goes from 1 to K. 1 for the best economic and financial situation and K for
the worst. We will call an indicator of notation a continuous time homogeneous Markov chain on
the finite space S = {1,..., K}.



Let A and B be two firms with their own indicator of notation (XA)te[()’T] and (XB)te[()’T].
Hence X4 and XPB are Markov chains with generator matrix I and II”. We recall that the
generator matrix of C' € {A, B} is given by Hg- >0ifi#jforalli,jeS and If = — Z#i I1;;
otherwise. We can remark that Hg represents the intensity of the jump from state ¢ to state j.
Moreover, we denote by F/* := {o(X2);0 < s < t} and FP := {0(XPB);0 < s < t} the natural
filtrations generated by X4 and X5,

1.1.1 Markov Copula

Let denote by X the bivariate process X = (X A XB ), which is a finite continuous time Markov
chain with respect to its natural filtration FX = F4B. We recall now the Corollary 5.1 of Bielecki
and al. [2], applied to our case, which gives the condition that the components of the bivariate
processes X are themselves Markov chain with respect to their own natural filtration.

Corollary 1.1. Consider two Markov chains X* and X, with respect to their own filtrations F4
and FB, and with values in S. Suppose that their respective generators are HiA} and ka with i, 5, h
and k are in §. Consider the system of equations in the unknown Hz?](‘hk where 4,5, h, k € S and

(i, h) # (4, k)

N I =T VhijeS,i#j and Y TN, =T5 Vi hkeSh#k (1.1)
keS JjES
Suppose that the above system admits a solution such that the matriz 117 = (HZZJ hk)  res with
’ 1,7,h,k€
X X
Hii,hh = - Z Hz’j,hk (1~2)

(4,k)€SXS,(5,k)# (i, h)

properly defines an infinitesimal generator of a Markov chain with values in S x §. Consider, the
bivariate Markov chain X = (X4, XB) on S x S with generator matriz IIX. Then, the components

X4 and XB are Markov chains with respect to their own filtrations, their generators are II* and
5.

Hence we can now formulate the Definition of a Markov copula.

Definition 1.2. A Markov copula between the Markov chains X* and XB is any solution to
system (1.1) such that the matriz TIX, with Hgihh given in (1.2), properly defines an infinitesimal
generator of a Markov chain with values in S x S.

Moreover, the infinitesimal generator process of X which is a matrix with N := K? rows and
columns, since the cardinal of the state of notation is K, can be written as

7T(171) N W(I,K)
HX _ 71'(271 . 7T(27K)
W(K,l) W(K,K)

Then the possible states are N couples which are given by

£:=1{(1,1),(1,2),...,(1,K),(2,1),(2,2),..., (2, K),...(K,1),(K,2),..., (K, K)}



1.1.2 Markov copula in the hazard rate framework

We denote by F := (Fy)iejo7) the filtration such that F; = F; V F7*. Let 74 and 77 be the two
default times of firms A and B. Let define for all ¢ € [0, T:

H =14y and HP =18, (1.3)
We define now some others filtrations
Gr=FVvHE, |, GP=FVH! and G =F VvH VHE

where HA (resp. HP) is the natural filtration generated by H* (resp. H?) and we will denote
G = (Gt)seqo,r)> GA = (gg“)te[m and GP := (gtB)te[O’T}. Let now consider \' := \*(X), for i €
{A, B} two F-progressively non-negative processes defined on (€2, G, P) endowed with the filtration
F. We assume that [ A'(X,)ds = 400 and we set:

t
7' = inf {t € R+,/ N(Xg)ds > —1n(Ui)}, i € {A, B}.
0

where U? are mutually independent uniform random variables defined on (2, G, P) which are inde-
pendent of A’. The stopping times 74 and 77 are totally inaccessible and conditionally independent
given the filtration F, moreover the (H)-hypothesis is satisfied (i.e. that every local F-martingale
is a local G-martingale too). The process A\’ is called the F-intensity of the firm i and we have that

. ) tATh
Mi = Hi - / N (X,)ds
0

are G-martingales. In general case, processes \* are Fv G®-adapted which jump when any default
occurs. This jump impacts the default of the firm and makes some correlation between the firms.
In our case, the correlation is constructed using the F-Markov chain X = (X4, XP). Since from
the explicit formula of the intensity given the survey probability for each i € {A, B}:

1 dP(7" > 6|G})

No=— :
t P(ri > t|G!) db

o=t
we can find, from Bielecki and al. [3] (Example 4.5.1 p 94), that the formula of the conditional
survey probability is given by:

B(r' > 01Gy) = LringE [e~ X 0% 7 (14)

for i € {A, B}. The Markov chain X will explain how the curve of the default bond moves with
different states (regimes) of the financial market.

1.1.3 Construction of the Markov chain

We are now going to present the canonical construction of a conditional Markov chain X,
based on a given filtration F and a stochastic infinitesimal generator IIX. This construction can
be found in Bielecki and Rukowski [4] or Eberlein and Ozkan [10], which we follow closely in



the exposition. Each component Hfg : Q x [0,T] — RT are bounded, F-progressively measurable
stochastic processes. We recall that for every i,j € S,i # j, processes Hf](- are non-negative
and 11X (t) = — >t Hi)](.(t). The process X is constructed from an initial distribution p and the
F-conditional adapted infinitesimal generator II* by enlarging the underlying probability space
(Q, F,Pr) to a probability space denoted in the sequel by (2, F,Qr). The new probability space
is obtained as a product space of the underlying one with a probability space supporting the initial
distribution i of X and a probability space supporting a sequence of uniformly distributed random
variables, which control, together with the entries of the infinitesimal generator IIX, the laws of
jump times (7x)gen of X and jump heights. We denote by F its trivial extension from the original
probability space (2, F,Pr) to (Q, F,Qr). We refer to [4] or [13] for details of this construction.
However an important step of this construction is that they construct a discrete time process
(X 1) ren which allows us to construct the credit migration process X as

X=Xy forall te[m_1,m[, k>1 (1.5)

where 75, are the jump times. An important result is that the progressive enlargement of filtration
Fi = FyVF¥, t € [0, T satisfies the (H)-hypothesis. In the sequel, we will work under the enlarging
probability space (2, F,Qr). The expectations will be taken under the probability measure Qr
but for simplicity of notation, we will write E for EQ.

1.2 Pricing defaultable bond with Markov copula

1.2.1 Defaultable Model

Let W be a standard real Brownian motion with filtration 7 = o{Ws;0 < s < t}.
We recall that a Cox Ingersoll Ross (CIR) process is the solution of the stochastic differential
equation given by

A\ = k(0 — \)dt + o/ NdWy, t€[0,T] (1.6)

where k, 6 and o are constants which satisfy the condition ¢ > 0 and x6 > 0. We will assume that
Ao € R* and that 2x6 > 2. This is to ensure that the process ();) is positive. We will now define
the notion of CIR process with each parameters values depend on the value of a Markov chain.

Definition 1.3. Let (X); be a two-dimensional continuous time Markov chain on finite space
S?2:={1,...,K}? for all t € [0,T). We will call a Regime switching CIR the process (\;) which is
the solution of the stochastic differential equation given by

dM\ = H(Xt)(Q(Xt) — )\t)dt + O'(Xt)\/ MdWe,  t € [0, T] (17)
For all j € {1,...,K}?, we have that (5)0(j) > 0 and 2x(5)0(j) > o(5)?
For simplicity, we will denote the values k(X), 8(X;) and o(X;) by k¢, 6; and oy.

Assumption 1.1. We assume that both intensities processes A and AP follow a regime switching
CIR given for i = {A, B} by

AN, = K(X)(B(X,) — N)dt + o (X,) [ Nd W, (1.8)



Remark 1.1. We have that the intensity process (\!) depends on the value of the credit migration
process X = (X4, XB). Hence each firm A and B has an increasing sequence of FX -stopping times
given by:

ffortheﬁrmAiti50§7{4<72‘4<---<77§4§T.
*fOTtheﬁT’mBitZ'SOSTlB<TQB<"'<T£§T.

Hence with these two sequences, we construct another sequence by a rearrangement of these two
sequences in one where we put every stopping time TZ»A, ie{l,...n} and TjB, je{l,...,m} in an
increasing order. We obtain a new increasing sequence of stopping times of size M € N given by
0<T<m<- <1y <T. As an example of this construction

714 TQA TlB ’7'3A T2B Tf

L | | L= .
[ [ [ [ [ [ [ [
0 m1 7 T3 T4 5 Tg T

Remark 1.2. By this construction, we have that on each interval t € [T, Ti41[ that the regime
switching CIR process \' defined in (1.8) is a classical CIR with constant parameters.

1.2.2 Zero coupon bond price

We can now define the defaultable Zero coupon bond price.

Definition 1.4. We will denote by (D; T)t o’ i ={A, B} the price of a defaultable discounted
) €lo,

bond price which pays $1 at the maturity T.

Using the partitioning time, the notation defined in the previous subsection and the general
asset pricing theory in Harrison and Pliska [17] and [18], the conditional defaultable discounted
bond price D; 7 is given by

Proposition 1.1. For i = {A, B}, we have for all t € [0,T] that

ir=(1— H)E [exp <— /tT(rs + Ag)ds> X )\0} . (1.9)

Remark 1.3. The quantity (rt + )\i)
The part (Ai)te[o,T]
firmi € {A, B}. The quantity (rt + )‘%)te[OT
default, as well as for the effect of losses on default. This model allows us to capture an economic

refo.r] Can be seen as a default-adjusted interest rate process.

is the risk-neutral mean loss rate of the instrument due to the default of the

] therefore represents the probability and the timing of

health of each firm since for each firm i € {A, B}, the stochastic process (\) has parameters whose
values depend on the credit notation of the firm. And by the construction of the migration process
X, we have correlation between each firm notation. This allows the model to capture financial
health correlation between each firm, like the impact of the default of one firm against the others.



Our aim is so to obtain explicit formulas of (1.9). This is done by the following Theorem using
two different methods to evaluate the conditional Laplace transform of A’. The first one uses a
Ricatti approach and the second one an analytical approximation.

Theorem 1.1. Under Assumptions 1.1 and assuming that X is independent of W and that the
risk-free interest rate v is a deterministic function, then we have fori € { A, B} that the defaultable
bond price can be obtained by two formulas:

1. Riccati Approach:

T M
Dyr =E |exp (—/ rsds> exp — ZBM_j(Atj,l) exp (—Ao(Agy,i0)A) (1.10)
0 °
7j=1

where
2 4! 1
Aog(A -
O( to) ,}/1 + il ,yl 4 gl (,-yl + Hl) eXp(’)/lAto) —l—f)/l — gl
M=j+1gM—j+1(nM—j+1 |  M—j+1)
K Y K
Bu-j(Ay_,) = — (oM —5T1)2 Bt
2"6M_j+19M_j+1 o ((4M—3+1 4 M—j+1 M=j+1A Mgl Mg
ISP ((v TR ) exp(y ) T " )
M—j+1gM—j+1 ;
_QH In (27M7j+1)

(oM—j+1)2

L \/(KM—j—&-l)Z + (g M—+1)2

where we denote for simplicity K/ = k(Xy,), 07 = 0(Xy;) and 0?7 = o(Xy,)

2. Analytic Approximation:

T n
. (i u
Do =E(exp —/ reds | expd =2 2 4 an pgrn— ik — 5 hido [1 4 ar (1= Kohy)]
0 2 P 2

xexp{iln <E§00’X )])})(1.11)

k=1

B,
n—k+l 2 2 2
P Ty W InkOn—k+1

n—k n—k
Ao —I—Z Ki(0i — Ni)hit1 -1—2 oiv/ N AW,
i=0 =0

where the sequence a is given by

hn, I
+ ——an (1 = hpkp_1) and a, =1

Ap—1 = 1 +
" hn—l hn—l

Remark 1.4. The hypothesis that X is independent of W has an economic sense since for example
X = (XA,XB) could represent the credit notation of two countries given by an erogenous entity
like a credit rating agencies.



2 Conditional Laplace transform formulas

We are now going to prove the Theorem 1.1. More precisely, we will find two explicit formulas
to evaluate the conditional Laplace transform of A\ with respect to X denoted by ®. It is given, for
all u € C, by

T T
Qorax(u) = E [exp (—u/ )\sds) | Ao = )\,}'ff] =E)x [exp <—u/ )\Sdsﬂ . (2.12)
0 0

Hence, our defaultable bond price formulas will be obtained as a particular case of this equation
by taking u = 1.
2.1 A Ricatti approach

By Remark 1.1, there exists an increasing sequence of FX-stopping times in interval [0, T,
where the value of the Markov chain changes. We denote by I' this subdivision

O=m<nn<---<mpmy=T

So in each time interval [1g, Tp11[, & € {1,...n} the process X is constant. And so the CIR regime
switching process A has constant parameters on this each time interval.

Proposition 2.2. The conditional Laplace transform of the regime switching CIR process (for

u = 1) between time |7y, Tg1| with Ar, = X and X, = j € 8 is given by

Tk:+1
sy =E {exp <— / Asds> Moy = A Xo, = 7| = exp {—A(Au, A = B(Agy. 1)}
Tk

(2.13)
where Ay, = Tp41 — T and
. 2 4y 1
A(Ay,,j) = — : ; (2.14
(A, vtk vtk (1t k) exp(vAy) + 5 — Ky )
) HG’Y"‘KJ KJ‘&‘ /43'6'

B(Ay,,,j) = —”(UJZJ)Atk + 2% In ((v; + &) exp(v;As,) + 5 — Kj) — 2% In(2v;), (2.15)

j j j

vj = \/K] + 207 (2.16)

Proof. We recall that the constant parameter CIR process defined in (1.6) is an affine process (see
Duffie and al. [8]). So as in each step of time [7x, Ti4+1[, the stochastic process X is constant. So
the process A is a classical CIR with constant parameters on each step. So on each time interval
[Tk> Th1[, the process A is affine, hence we can assume that the expression of ®,, -, ., ; is given by
the form

eXp{_A(Atwj))‘Tk - B(Atk7j)} (2'17)

for some functions A(A,,7) and B(Ay,,j) solution of a system of Riccati equation. Then the
expected result is well known and can be found for instance in Cox and al. [7].
O



We would like now to give an explicit form of the conditional Laplace transform of the CIR
process between time 0 and T. This is done by the following Theorem.

Theorem 2.2. Assume that the intensity process () follows a regime switching CIR, then we
have for all \o =X >0 and X, =1ig € S? that

T T
Porax(l)=E [exp (—/ )\Sd8> Ao = )\,]:1)5] = Exx [exp <—/ /\sds)]
0 0

M
= €eXpy§ — ZBM—j(Atj71) eXp (_AO(At07iU))\)
j=1

where
2 4yt 1
Ao(A - , 2.18
olAn) YHsb RN (Y D exp(Y! Ag) + 9T = kT (218)
M= 1M —j+1 (A M—j+1 4 M—j+1
K 0% + K )
Buj(Ar, ) = - Gy A, (2.19)
pMoItgh =i+l M—j+1 |  M—j+1 M—j+1 M—j+1 _  M—j+1
+2 (o M=7+1)2 In ((v t R ) exp(y Ay )+ -k )
M—j+1gM—j+1 )
K M—j+1
(oM=i+1)2 In (24"
AM=iH1 \/(I{ij+1)2 + 2(oM-i+1)2, (2.20)
where we denote for simplicity &/ = k(Xy,), 07 = 0(Xy,) and 07 = o(Xy,).
Proof. We have a sequence of increasing times 0 = 79 < 71 < --- < 7ay = T where the Markov

chain X changes its value. Hence

T M—1 moy M-1 r+ Ay
Exx [exp (—/ )\sds>] = E\x |exp| — Z/ Asds =F)\x |exp | — Z/ Asds
0 k=0 Y7k k=0 * Tk
M-1 Tk+1
= E\x H exp (—/ )\sds)]
k=0 Tk

By hypothesis, X is independent of W, then conditioning with respect to Fr,, , := Far—1, we
obtain

T
E)\7X [exp <—/ )\sd8>] = E)\,X
0

Il

=
>
<




Moreover, we know that E [exp <— S )\sds) ]?M_l} is equal to ®(7as—1, 7, Xar), where Xy

TM —1
means X,,. So applying Proposition 2.2, we get

T™ L
E |exp —/ Asds | | Far—1
TM—1
We recall that the quantities Apr—1(A,, ,, X)) and Bpr—1(A¢,,_,, Xn) are constants. Hence
replacing this result in the expectation (2.21) gives

T
E,\X |:6Xp (7/ )\Sds)] = EA,X
0

= €xp {_AM—I(AtAM,UXM))\TM,l - BM—I(AtM,UXM)} .

M2 _—
H exp (*/ /\sds) exp {—Am—1(Avy_ s Xnr)Arpr_y — B]Ml(AtMl,XM)}]
k=0 i

M—2 —_—
= exp{~Bu-1(Aey 1, Xar)} Eax | [T exp (-/ Asds — AMl(AtMUXM))\TMlﬂ :
k=0 Tk

To simplify the notation of the calculus we will denote by Ax_; (resp. By_1) the quantity
Ag_1(Ay,_, Xk) (vesp. Br_1(As,_,, Xk)). Hence

M-—2

Tk+1
H exp <—/ Asds — AM—l)\er) )
k=0 7

k

T
E)\’X |:6Xp (—/ )\sds)} = eXp{—BM_l}E,\X
0

We condition again with respect to Fj/_s to obtain

T M -2 Tht1 o
Ex, x {exp (—/ )\Sds)] exp{—Bu-1}Exx |E H exp (—/ Asds —AA4,1ATM_1) | Far—2
0 k=0 Tk
M-3 Tk+1 TM—1 .
exp{—Bum-1}Ex x H exp (—/ )\sds) E |exp —/ Asds — Apr—1dryy | [ Fm—2] |-
Tk TM—2

k=0

To continue, we need to evaluate the conditional expectation:

TM—1 _
exp (—/ )\st - AM1>\7'M_1> ‘FMQ] .
TM—2

Prar—2,Dtyy o5 - E

Lemma 2.1. Assume for all k € {1,..., M} that the conditional expectation Orar_,Aey,_, 1AS an
exponential affine structure form given by
Pras kA, = EXP (_AM_k(At]\{—k7XM_k"F]-))\TM—k - BM—k(AthkvXM—k-i-l)) : (2.22)

Then we can find explicit forms for functions Apr—k(A¢yy s Xni—k+1) and Bayr— g (A¢yy s Xn—k+1)
which are given explicitly by equations (2.14) and (2.15) under the conditions that Ap—(0) =
AM—k—H and BM_k(O) =0.

P?"O()f. Let SOTM,k,AtJ\/17k =E |:eXp (_ fTAI_k+1 )\Sds — AM—kJ-‘rl/\T]uf]H»l) ’?M_k:| then

TM—k

TM —k+1
SDTM,;C,AtMik = EM—k €xp _/ )\Sds - AM—k+1)\TIVI—k+AtA17k .

TM—k

10



Taking a small time interval dt < A¢,, , to obtain

TM —k+1
€xXp | — / )‘Sds - AM*k+1)\TNI—k+At]\/[_k
TM—k

TM—k+1
Ep—k+dr |exp _/ ASdS_AM*kJFl/\TM—’“""AtM—k )
Mk

Thus EMkardt [exp <— fTM*kJA Asds — AM,k+1)\TM7k+1>}

TM—k

TM—kt+dt
o(Tav—k +dt, Ay, , —dt)exp | — / Ads || .
TM—k

We now use the hypothesis on the form of ¢ to get

Ep—k

=Em &

=En—k

T —k+Hdt
Eym—k [GXP (—An—k(Atp_y — dt, Xns—k1) Arpy_potde — Brr—i(Aey_y, — dbt, Xnr—k11)) exp (—/ )\sds):| .
TM—k

Then using our simplified notations we obtain
TM —k+dt
= EM—k exp (_AM—k(AtM_k — dt)ATM7k+dt — BM—k(AtM_k — dt)) exp —/ )\SdS .
TM —k

For small dt and using the stochastic differential equation of A\, we get

= Englexp{—An_r(Ae,, , — dtb) [)\TM% + Mk (eM—kﬂ - )\TM%> dt + oM —k+1 AUHth}
_BM*k(At]W—k —dt) — >‘7'M—kdt}]

where kM AT = (X, ),

0M7k+1 — H(X

TM—k+1) and oM ~FH1 = o(X

TM—kt1)-
— exp {—AM,k(Athk — Ay, — Ap—i (D, — dt) MR <9M—k+1 - ATM*k) dt}

x exp { =By k(Aty_, — dt) = Ay di } Eag [exp (—AM_k(AtM,k — dt)gM R+ ATM*det)}
= exp { = Auk(Buy — Ay — An gDy RV (0T A Yt

1 _
X eXp {_BM—k(AtM—k - dt) - )\TM—kdt} €xp (QA?\/[—k(AtM—k)(GM k+1)2)\7'M—kdt) :

By identifying with the assumed expression of ¢ in (2.22), we get

AM—k(AtI\/I—k) = AM—k(At]\/I—k- - dt) - AM—k(Athk)’iM_k—i_ldt - %A?\/[—k(Athk)(o'M_k—i—lydt + dt

BM—k(Athk) = BM—k(Athk - dt) + AM—k(Athk)KM_k+19M_k+1dt

Taking dt close to zero,

OAM—k(Dtpr_ )
Ity g
OBy (Dty,_y)
0Dty

_AM*k(AtM_k)KMikJrl - %A%W—kz(AtM—k)(UMikJrly +1

AM—k (AtM—k )K;M—Ic—l—leM—k:—l—l
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with conditions for A, , =0, Ap—,(0) = Apr—k41 and Bps—(0) = 0.

Hence by Proposition 2.2, we know the explicit forms of Apr—x(A¢,, ) and Byr—k(A¢,, )
which are given by equations (2.14), (2.15) with the recursive condition that Ap;_(0) = Apr—k+1
and initial condition Bp;_x(0) =0 O

We continue the proof of the Theorem 2.2, by applying the Lemma 2.1 with k = 2, we obtain

TM-1 _
E [exp <—/ Asds — AMl/\TM_1> | F a2
M2

with deterministic function Apr_2(A¢,, ,) and Bar—2(A¢,,_,). Hence

= exp (_AM*Q(AtM—z)ATM—z - BMfZ(AtM_g))

T M—3 a1
]E)\’X |:eXp (—/ ’I‘Sd8>:| :eXp{—BMfl}]E)\’X |:H exp (—/ )\Sds) exp (_AJ\472(AtM,2))\tM,2 - BMQ(AtMQ)):|
0 k=0 Tk
M—3 a1
:exp{_BMfl - BM*Q}E%X |:H eXp <_/ Asds — AJ\/12(AtM—2))\7'ZVI—2>:|
k=0 Tk

Conditioning an other time with respect to Fj;_3, we obtain

M-3 Tt 1 .
E [ I1 exp <—/ Asds — AMQATMQ> |fMg”
k=0 Tk

2 M—4 Tk+1 TM-—2 —
=expy§ — Z B]\/[,j EA,X H exp | — / )\Sds E exp | — / )\Sds - A]\/I—2)\7‘1w,2 |]:]\/[,3
ot k=0 Tk T™ -3

We can now again apply Lemma 2.1 with £ = 3 and we obtain again that

T
Ex x [GXP (—/ Asds)] =exp{—Bn-1— Bu—2}Ex x
0

TM—2 o
E [exp (—/ )\st — AM_Q/\TMZ) |~7:M—3] = exp (_AM—3(AtM,3))\TM,3 — BM—S(AtM,g))

M—3

And so

T 3 M—4
E)\7X [exp (—/ )\sd8>] =exXp _ZBM_j E)\7X [H exp (—/
0 :
j=1 k=0

Tk

Tk+1

/\st - AM—B(AtMg)/\TMs> ]

By iterating the conditioning with respect to F/_j, k going to 4 to M and applying the Lemma
2.1 we finally obtain

T M
Ex x [exp (—/ )\sds>] = exp — ZBM_j exp (—Ao(Ay) M)
0 -
7=1
with by hypothesis Ar, = A and Ag(Ay,) = Ao(A¢y, X7, ) with X, =g € 84, O

We can obtain the general expression of the conditional Laplace transform of the regime switch-

ing CIR process using Theorem 2.2.
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Corollary 2.2. For all w € C, we have that the conditional Laplace transform of the regime
switching CIR process with \g = X and X,, = ig € 8% is given by

T
<I>0,T,/\,X(u) = E)\’X [exp (—u/ /\Sds)}
0

M
= exp§ — Z BM_J‘ (AtM,j) exXp (—AO (Atov Zo) )\) (223)
7=1

where the functions BM_j for j = {1,...,M} and Ay are given by equations (2.18) and (2.19)
taking parameters 7 = k(Xr,) = &7, 07 := (X)) = ub’ and 57 := o(X,;) = \Juo’.

Proof. Since E [exp (—u fOT )\sds) Ao = )\,.7-'7)1(] =E)x [exp (— fg(u)\s)dsﬂ. This is the condi-
tional Laplace transform of a process (ul); which is still a CIR process with new parameters
Fe = Ky, 0 = uby and 6, = Vuoy, for all t € [0,T]. Hence applying Theorem 2.2 with this set of
parameters gives the expected result. ]

2.2 Analytic approximation

We give now a second way to evaluate the defaultable bond. In fact, we give now an analytical
approximation to evaluate the conditional Laplace transform of a regime switching CIR.

2.2.1 Construction of the new times grid

Let Ay be a fixed time step, then starting in time 0 we partition the time interval [0, 7] in time
steps of

— size A, if there is no jump of the Markov process between time 0 to A;.
— size 7 if there is the first jump of the Markov process at stopping time 7 less than A;.

Hence we denote by hy the first time step of size A; or 71. Then we will proceed as the following:
at time ti, corresponding of the time after the step hy, we construct the step hp41 of size

— Ay if there is no jump of the Markov process between time t to tp + A.
— 75 if there is the 7 jumps of the Markov process at stopping time 7; less than t; + Ag.

As an example of this construction

A, 2, 3A, AN,
T ‘ ‘ T ‘ ‘ 73
[ % \ \ % \ \ % [
0 t i ts ty ts te  tr T
hi  ho hs3 hy  hs he h7 hs

This construction implies that hy = t, — ti_1 < A; and that the parameters of the regime
switching CIR are constants (and bounded) in these each time intervals [ty, txo1[, k € {0,1,...,n—

13



1}. It follows as an application of the tree property of conditional expectation that the conditional

Laplace transform of ) is given by

T T
= E [exp <u/ )\Sd,s) |)\0,.7:7)~(] =E), x {exp <u/ )\Sd8>:|
0 0

Qo x(u) =
T
= E&OO’XEEX .. .Ef\’;{l [exp <—u/0 /\Sds>] .

Proposition 2.3. Let for all k € {1,...,n— 1},

(2.24)

(2.25)

h3
n—k+l 2 2 2
F =exp (8“ Okl kt1 n—k | -

Then, we have

T
exp (_”fo )\Sds> u > "
fioo,X =L F =expl =5 Z hiarg—10k—1 — §h1>\o 14+ a1 (1= kKoht)] | Fr

k=1

(2.26)

where . ,
= = (2.27)

an—1 =1+ +
" hn—l hn—l

Proof. Using trapezoidal rule, we obtain that the expectation at time t,_1 is given by

T n
to to Ai + A1
Exx [exp (—u/o )\Sds)] = E/\O,;( exp (—u E <2h,~>>

=1
n—2
= exp (—u Z (th) — u)\nz_2 hn_1> Ei’:)}l {exp (—% [hnAn + ApAn—1 + hn_l)\n_l])} .

, 2
=1

an (1 — hpkp—1) and a, =1

Using the approximation A, ~ Apy—14+kn—1 (On—1 — An—1) hn+0n—1/ A—1AW,,_1 where AW,,_1 =
Wy —W,,_1 and denote by G,,_o the quantity exp (—u E?:_f (%h» — u’\’g2 hn,l). We obtain

that Ef\’;} [exp (—u fOT )\sd,s)} is equal to

G 2B [exp (—g [ (At + 1 (Bt = A1) B+ 00 1V A 1AWt ) + Bt + 1A )|
= Gp_sexp (—g (o1 + W2k 101 — B2k 1 A1 + B a1 + hn_l)\n_l])

in’é}l( [exp (—ghnan_l MAWn_lﬂ )

Moreover we have that € ~ N(0,1) then for a constant K we know that

E [exp (K\/Te)} = exp (KST) . (2.28)

14



Applying (2.28) and factorize by —%, we obtain that Ei’g_)l( [exp (—u fOT )\sds)} is equal to

u? UNp_1hp_ h h U
Gp_sexp <8h20721_1/\n_1a3l)exp<— L ; n-l [1 + A n1 + 5 nlan (1- hnﬁn—1)] —2hian/€n—19n—1>
n— n—
An—1hp—
=Gp_9exp (—ghianmn,len,l) exp (—u”;nlan1> Fi.
Hence
. exp (—ufoT )\sds> u2 Ny 11
Ey = Gpooexp| —h2o2 A1 )exp | ———"a,
0 13 8 2

Then denoting G,,_3 = exp <—u 2?1_13 (%hl) — u)‘"2_3 hn,2>, we get the conditional expecta-
tion based on the information until ¢, _o

exp (—u fOT )\Sds>

tn—2 tn—1 _
Exox [Exx 2 = Gp-zexp (_

u
Eh%aiﬁn—len—l)

U
XE);ZT;( [GXP (_5 [)\nflhnflanfl + hp2An2 + hnfl)\an]):|
U, 2 u? 3 2 2
= Gp_3exp (—ghnanﬁn_lﬁn_l) exp <8hn10n2)\n_2an1>
U U 9
exp (—5)\n_2hn—1CLn—1 - 5/‘371—2 (On—2 — >\n—2) hn—10n-1 = hn—2An—2 — hn—l)\n—2>
U u? U
= Gp_3exp <—§hianlin,19n,1) exp <8h%_1ai_2)\n2ai_1> exp (—§hi_1an,1/{n,20n,2)
U U
X exXp <_§)\nf2hn71an71 + 5/{'n72>\n72hi_1an71 - hn72)\n72 - hnfl)\n72)

u u
= Gp_3exp <_§h72—ban/{n719n71 - hi_lanflﬁn729n72) Fy

2
hp— P
X exp <—“An_2hn_2 [1 + T T g,y (1 nn_ghn_l)D
2 hn72 hn72
u u u
= Gp_3exp (_gh%an’inflenfl - §hq2q,_1an71/€n720n72> exp <_§)\n72hn72an72) Fs.

Hence by iterations, we obtain

T
Lo |eP (—ufo /\Sds> L )
By x -7 =Gp——1€xp —5 E by jti@n—ktifn—k+i—10n—k+i—1

u
X exp (—§>\n—khn—kan—k> Fy.

Then until time tg, we finally obtain the expected result. ]
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Theorem 2.3. For all u € C, the conditional Laplace transform ® of the regime switching CIR
process is given by

In(®o7rax(u) = In <Ef\00,x [eXp (u /OT ASds)])

U — u
D) thakﬁkflgkfl - Ehl)\o [1+ a1 (1— roh1)]
k=1

hy k+1
n—k+1 2 2 2
exp 8 U Op Oy ft1

+ Z In (E?OO’X

k=1

n—k n—k
Ao + Z lii(9i — Xi)hiy1 + Z O'Z‘\/)TZ'AWZ'
=0 1=0

or

Proof. As in [6], we see that it would be difficult to compute the expression Ef\';}k(_l [F}] explicitly.

where the sequence a is defined in Proposition 2.5.

That is why we simply approximate the expression Fj at time ¢,,_j by IE(;% « [Fi). Firstly, we can
use the following approximation

n—k n—k
Ak = Ao+ Z Iil(el — )\i)hi—i—l + Z O'Z\/)TZAwl
=0 1=0

Then

h3
n—k+1 2 2 2
Fr, =exp <8U Oy kO — k1 n—k

hi k+1
n—k+ 2 2 2
=exp s U Op Oy ft1

n—k n—k
Ao + Z Hi(ﬁi — )\i)hi—i—l + Z O'Z‘\/)TZ'AWZ'
=0 1=0

) . (2.30)

Approximate the expression of Fj at time ¢,,_; by the expectation at time 0, we obtain
exp (fu fOT )\st> exp (fu fOT )\sds)
ln E?O,X n—1 ln EtAOO,X n Eto F
[[i= Fi [Ti=1 Ao, X [F]

Ef\OmX [exp (—u fOT )\Sds)}
[Teor EX, x [F]

= (st o (- [ )] ) - ({010

= In(Porpx(w) -y In (Etfo,x [Fk]) .
k=1

12

We conclude using (2.30).
O

Remark 2.5. The analytic approzimation formula given in previous Theorem could be also used
as a way to simulate conditional Laplace transform.
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3 Simulations

3.1 Pricing zero coupon Bond in the two firms case with two regimes

We fixe the time maturity of zero coupon bond T equal to 10 (i.e. a ten years ahead maturity).
We take a deterministic risk free interest rate equals to zero.

3.1.1 The model parameters and heuristic

The heuristic of the calculus of the defaultable Bond price is then done by a Monte Carlo
approach with MC € N steps:

1. We know the value of the infinitesimal generator II*X of the credit migration process X. This
one is given or estimated on some historical datas.

2. We generate a sequence of increasing stopping times and the times corresponding trajectory of
X.

3. (a) We apply the formula (1.10) to calculate the price of this defaultable Bond price for the
firm A or B.

(b) We apply the construction of the time grid studied in subsection 2.2.1. Then we applied
the formula (1.11).

4. We come back to step 2. until we will have done MC times this methods.
5. We evaluate the means of the MC values obtained in points 3 (a) and (b).

Hence assume that we have 2 regimes which represent a “"normal” economic regime (regime 0)
and a ”crisis” regime (regime 1), then the credit migration process X is done in a set of four states:
{(0,0); (1,0); (0,1); (1,1)}. For our simulation, in this part, we fix the infinitesimal generator ITX
of the credit migration process X equals to

—0.1083 0.0455  0.0455  0.0174
0.05642 —-0.1644 0.0082  0.1004
0.0542 0.01 —0.1644 0.1003
0.0542 0.01 0.01 —0.0741

X =

which corresponds to a transition matrix

0.90 0.04 0.04 0.02
x | 0.05 0.85 0.01 0.09
] 0.05 0.01 0.85 0.09
0.05 0.01 0.01 0.93

In other words, if we are in a state where only the firm A is on "crisis” (i.e. state (1,0)) the
probability that the firm B goes into ”crisis” in the next time step is 0.01. Figure 1 gives an
example of the trajectory of the credit migration process X and of the sequence of stopping times
7 where the credit migration process jumps.
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Figure 1: On left: Example of trajectory of the credit migration process X. On right: Example of instant

of regime switching of the credit migration process X.

So we need to have four sets of CIR default intensity parameters. Let for i € {4, B}, v, ¢! and
p' be real valued such that the set of parameters are given by Table 1

’ Parameters H Kx 0x ‘ ox ‘
(0,0) 0.1 0.15 0.15
(1,0) 0.1+ 4 0.15 + &4 0.15+ p4
(0,1) 0.1+ 5 0.15+ &8 0.15 + pP
(1,1) 0.1+ 408 | 0154+644+68 | 015+ pA +pP

Table 1: Parameters values of the CIR default intensity in the 2 regimes case.

Remark 3.6. ~ For i € {A, B}, the constant V', £ and p' are choosen such that the CIR
condition holds, i.e. 2kx0x > a_%(.

— The state (0,0) can be seen as a standard economic state where nor firm A nor firm B are

1N CTiSis.

3.1.2 Comparison of the different formulas to evaluate defaultable bond price.

Convergence:
We know that the formula of the conditional survey probability with respect to G is given by
equation (1.4). We would like now to compare the different formulas to pricing defaultable zero
coupon bond (i.e. formulas (1.4), (1.10) and (1.11)). In tables 2, 3 and 4, we resume the convergence
results in the case of a four states regime parameters defined as in Table 1.

Remark 3.7. We take for the time step parameter A; (appearing in subsection 2.2.1 for the
calculus of (1.11)) the value 0.01.

18



Parameters: vA VB A B | pA | p

Values: 021] 0 0103 0 |01

Table 2: Values of the constant parameters defined in Table 1.

Regimes: (0,0) | (1,0) | (0,1) | (1,1)
Bond price values: || 0.6086 | 0.3777 | 0.2740 | 0.0668

Table 3: Values of the Bond price standard formula in ¢ = 0 in each regime with a maturity 7' = 10 years.

Bond Price || Ricatti: 1.10 (std) | C.T.(sec.) || Analytic: 1.11 (Std) | C.T. || MC: 1.4 | C.T.

MC =100 0.5619 (0.1110) 1.94 0.5585 (0.1699) 15.98 0.6500 | 1.95
MC = 300 0.5692 (0.1015) 5.34 0.5587 (0.1602) 52.52 0.6233 | 6.61
MC =400 0.5736 (0.0949) 6.87 0.5649 (0.1505) 60.48 0.6400 | 9.58
MC = 500 0.5748 (0.0927) 7.97 0.5658 (0.1511) 78.32 0.6360 | 12.44
MC = 1000 0.5738 (0.0961) 16.31 0.5654 (0.1533) 146.51 || 0.6220 | 33.23
MC = 2000 0.5727 (0.0995) 27.33 0.5646 (0.1533) 221.22 || 0.5770 | 96.78

Table 4: Results for the formulas convergence in ¢t = 0 with initial regime the regime (0,0) and maturity

T = 10 years.
Bond Price | Analytic: 1.11
A =1 0.5612
Ay =0.1 0.5648
Ay =0.01 0.5649

In Table 4, we can see that all formulas converge when the number of Monte Carlo simulations
increases. Whereas the bond price value given by formula (1.10) based on Riccati approach or
formula (1.11) based on analytic approach converges quicker than the value given by formula (1.4).
Indeed, it is sufficient to take 400 Monte Carlo simulations to converge while it is necessary to
take at least 2000 Monte Carlo simulations with formula (1.4). The difference of 10~ on the value
given by (1.10) and (1.11) could be due to the error approximation of the conditional expectation
at time t,,_, of Fy (see. proof of Theorem 2.3). Hence our two formulas need less simulations than
formula (1.4) to converge. Moreover we observe that the Riccati approach formula (1.10) need a
smaller computation time. Only 6.87 sec while formula (1.11) needs 60.48 sec and formula (1.4)
needs 96.78 sec. Hence formula based on Riccati approach needs ten times less times than Analytic
approach to converge. Whereas, we know that we used CIR model for intensity modeling since
there exists explicit formula for bond. Hence as we said before, the analytic approach is interesting
to obtain an explicit easy scheme to simulate defaultable bond.

Bond price with respect to the maturity T:

We observe in Table 5 and Figure 2 that the three formulas give similar results. Whereas, firstly, we
made this simulation taking 2000 Monte Carlo simulations for the Probabilistic approach (formula
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Bond Price || Ricatti: 1.10 (M C = 400) | Analytic: 1.11 (MC = 400) | MC: 1.4 (MC = 2000)
T=1 0,9926 0,9923 0,9940
T=2 0,9709 0,9696 0,9770
T=5 0,8458 0,8405 0,8480
T=T7 0,7376 0,7261 0,7365
T =10 0,5736 0,5649 0,5770
T=15 0,3579 0,3948 0,3505

Table 5: Value of the Defaultable zero coupon bond price at time 0 with respect to the maturity time T'
with A; = 0.01.

—— Riccatti Approach
—— Analytic Approach
Probability

o
©
T

o o
~ [
T T

Value of the zero coupon defaultable bond
o
o
T

/

I I I |
1 2 5 7 10 5
Time to maturity

Figure 2: Graphs of the value of the Defaultable zero coupon bond price at time 0 with respect to the
maturity time 7" with A; = 0.01 (MC=400 for the two first formulas and 2000 for the Probability approach).

(1.4)). Secondly, we remark, when the maturity T is greater than 10, that the result given by the
analytic approximation is not better than the other. This relative mispricing was observed in the
non regime switching case and uniform step time model discretization in [6] as soon as the maturity
T is greater than 10.

3.1.3 Other simulations with Riccati approach formula.

Bond Price all over time t € [0, T
Taking parameters as in Table 2, we can draw the value of a defaultable zero coupon bond price

over time ¢ € [0, 7] using formula (1.10). An example is given in Figure 3.
Bond Price in function of probability that B goes to crisis:

Taking parameters as in Table 2, we evaluate the price of a defaultable zero coupon bond in
function of the probability P (Xi1a, = (0,1)|X: = (0,0)) and P (X¢1a, = (1,1)|X¢ = (0,0)). This
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Figure 3: Price of a defaultable zero coupon bond price in each time t between time 0 to maturity T.

is pi's and p;',. Hence we take a parametric transition matrix of the form:

1—a—-3b a 2b b
0.05 0.85 0.01 0.09
0.05 0.01 0.85 0.09
0.05 0.01 0.01 0.93

PX =

where a,b € [0,1]. We obtain the following result: Hence we observe in Figure 4 that when b

Defaultable zero coupon bond price

120,13 0.1 0.15 0.16 017 0.18 0.18 0.2
Value of b

Figure 4: Price of a defaultable zero coupon bond price in ¢ = 0 for maturity 7" = 10 and values of a = 0.04

in function of b.

grows up (i.e. the probability P (Xiia, = (1,1)|X; = (0,0))), the price of the defaultable zero
coupon bond price of the firm A decreases. This means that the economic status of the firm B (the
probability to go in crisis) impacts the value of the defaultable zero coupon bond of the firm A.
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3.2 Regime switching defaultable intensity estimation

We work now on real data. We would like to focus more on the modeling issue. We will
show that our regime switching model could capture some market features or economics behavior.
Hence, we can use this algorithm to estimate the intensities of the two firms and then construct
the Markov copula as explained before.

3.2.1 Calibration on Greek sovereign spread between 19/10/2009 to 13/05/2010

First, Figure 5 shows the plot of the Greek sovereign spread between the 19/10/2009 to
13/05/2010. For the estimation, we use the estimation procedure developed and studied in Goutte
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100 L | | | | | | I
19/10/09 16/11/09 14/12/09 11/01/10 08/02/10 08/03/10 05/04/10 03/05/10
Dates

Figure 5: Greek Spread between the 19/10/2009 to 13/05/2010.

and Zou [15] for regime switching Cox Ingersoll Ross process applied to foreign exchange rate data.
We assume that there are two regimes. This means that there is a "good” one and a ”bad” one
economies like a time crisis period and a ”standard” economic period, or a spike time period and a
non spike time period. Our results are stated in Table 6. Figure 6 gives a graphical representation

’ H Regime 1 Regime 2

K 0.022860 0.117918
6 | 309.460660 | 620.721205
o 0.774675 3.092136

| I¥ || 0.974977 | 0.934452 |
E

m | 0723722 | 0276278 |

Table 6: Maximum Likelihood estimation results.

of each time period in each regime.
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Figure 6: Greek Spread regime calibration between the 19/10/2009 to 13/05/2010. (The color blue is when

we are in regime 1 and red for regime 2).
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Figure 7: On left: Smoothed and Filtered probabilities. On right: Parameters convergence steps
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3.2.2 Interpretations

We can see clearly in Figure 6 that there are two significant time periods. The first one between
the 19/10/09 and april 2010, and the second one after april 2010. This period corresponds to the
beginning of the economic world crisis . Hence we can see on the estimation results Table 6 that
parameters values are very different in each regime. Before the crisis, we have a mean reverting
parameter less than after crisis, K1 = 0.02286 against Ko = 0.117918. And in the time crisis period
the volatility of the defaultable intensity is multiplied by 4 with respect to the volatility value
before crisis.

We can see also in the right graph of Figure 7, the estimation process is fast, indeed only 15
iterations of our algorithm are sufficient for convergence to the true estimated parameters values.

Moreover, we can calculate the Regime classification measure (RCM) obtained by this regime
switching model. In fact, let K > 0 be the number of regimes, the RCM statistics is then given by

RCM(K) = 100 (1 — 7_@ ZZ < (Xt = i|]-"%;é) _ 11{)2> (3.31)

t=1 1=1

where the quantity P (Xt = i|.7-"7):; é)) is the smoothed probability given in the left graph on Figure

7 and O is the vector parameter estimation results (i.e. 6 = (/%, é, G, X ) ) The constant serves
to normalize the statistic to be between 0 and 100. Good regime classification is associated with
low RCM statistic value: a value of 0 means perfect regime classification and a value of 100
implies that no information about regimes is revealed. In our case we obtain a RCM equals to
8.41. Hence, it shows that this model with regime switching parameters captures very well two
significant economics time period. And so this is a real add for the valuation of defaultable bond.

3.2.3 Methodology

Hence, we can apply this estimation method to find each estimated parameter for firms or coun-
tries A and B. Then using the copula construction theory defined in Corollary 1.1 and developed
in section 1.2.1 we can apply pricing formulas given in Theorem 1.1 to obtain estimation of the
price of defaultable bond regarding the correlation regime structure of each defaultable intensity
regime switching estimations.
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