Skip to Main content Skip to Navigation
Journal articles

Exponentially many perfect matchings in cubic graphs

Louis Esperet 1, * František Kardoš 2, 3 Andrew King 4 Daniel Kráľ 5 Sergey Norine 6
* Corresponding author
1 G-SCOP_OC - Optimisation Combinatoire
G-SCOP - Laboratoire des sciences pour la conception, l'optimisation et la production
3 MASCOTTE - Algorithms, simulation, combinatorics and optimization for telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : We show that every cubic bridgeless graph G has at least 2|V(G)|/3656 perfect matchings. This confirms an old conjecture of Lovász and Plummer.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00625682
Contributor : Louis Esperet <>
Submitted on : Thursday, September 22, 2011 - 12:04:32 PM
Last modification on : Tuesday, May 26, 2020 - 6:50:22 PM

Links full text

Identifiers

Citation

Louis Esperet, František Kardoš, Andrew King, Daniel Kráľ, Sergey Norine. Exponentially many perfect matchings in cubic graphs. Advances in Mathematics, Elsevier, 2011, 227 (4), pp.1646-1664. ⟨10.1016/j.aim.2011.03.015⟩. ⟨hal-00625682⟩

Share

Metrics

Record views

434