A NOVEL DIMENSIONING METHOD FOR HIGH THROUGHPUT SATELLITE DESIGN
Dimitri Serrano-Velarde, Emmanuel Lance, Georges Rodriguez-Guisantes, Hector Fenech

To cite this version:
Dimitri Serrano-Velarde, Emmanuel Lance, Georges Rodriguez-Guisantes, Hector Fenech. A NOVEL DIMENSIONING METHOD FOR HIGH THROUGHPUT SATELLITE DESIGN. 17th Ka Band Conference, Oct 2011, Palerme, France. <hal-00625389>

HAL Id: hal-00625389
https://hal.archives-ouvertes.fr/hal-00625389
Submitted on 21 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

This work describes a novel methodology for the dimensioning of a Ka-Band high throughput satellite for broadband communications. The method is based on the optimization of performance for a forward link, as a function of a set of input criteria and a given envelope of available power. This approach is based on a spacecraft architecture using a multi-beam coverage implementing frequency re-use. Among the input criteria, we use the percentage of covered service area with a certain type of earth stations and the service availability. The proposed methodology is adaptable to any kind of service area. A DVB-S2 air interface with an Adaptive Coding and Modulation (ACM) is used as a reference. The method, employing iterative advanced link budget calculations including carrier-to-interference at antenna level, provides the highest capacity given a batch of antenna and pragmatic feed design.

Introduction

High Throughput Satellites (HTS) orientate the satellite systems towards multi-beam coverages at high frequency bands in order to offer broadband access on a large area while maximizing the usage of frequency reuse. Indeed, the terrestrial broadband offer does not cover large territories and a satellite broadband alternative is considered as a complement rather than a direct competitor to fiber optics [1].

There are numerous ways of designing satellite architectures and different kinds of trade-offs based on different parameters. Those parameters range from the ground segment with the level of complexity of a user terminal and a Gateway to the space segment with the whole definition of the spacecraft system and antennas.

In order to provide a clarification of the choices, the logic presented hereafter aims at showing a novel methodology which helps achieving the best trade-off between a set of input criteria and opens an efficient dialog between system engineers and antenna engineers. This will provide a new level of cooperation integrating these sometimes opposite engineering approaches and will accelerate the designing phase of the satellite. Also, the resources can be quickly focused on a selected set of technical solutions that will be analyzed in detail.

In the first part, we are going to show the issues to which the methodology is going to provide answers, then the steps for the reasoning, and finally present some technical solutions suggested for different scenarios.

Problem Description

When a satellite operator orders a new satellite, it invests effort to assess the different transmission scenarios and services by taking into account all the criteria. For instance, it is challenging to align the system requirements with the antenna requirements as one impact the other and vice versa. So it is important to achieve a hierarchy in those requirements to reach the best trade-off. A general approach
has been defined by a satellite manufacturer, but in the frame of beam hopping and for a very industrial approach [2]. Also another approach has been developed in [3] but takes into account very specific traffic constraints.

Our methodology is based on the case where the satellite uses a multi-beam coverage with frequency re-use and spatial separation. Starting with a set of high level inputs (available DC power, antenna reflector size, etc.), the engineer has to choose first a number of spots and the frequency plan i.e. frequency/polarization organization over a given Service Area (SA). It then achieves the best architectural trade-off through an iterative approach by increasing or decreasing the number of spots for instance.

The chosen initial goals are the service area filling percentage (CP) and the availability (AV) of the communication system. Indeed, these criteria are very important for a satellite operator as the main aim is to guarantee the most robust communication system as long as possible and to be able to cover the largest area so as to reach bigger market opportunities or to strengthen already existent markets. Besides, this set of parameters, can be considered as "macro parameters" and can be provided by the commercial and marketing needs before the design and they offer the possibility to test the system in accordance with the objectives of a satellite operator. Finally, the optimization criterion is the achieved maximum capacity.

In order to ease the procedure without loss of generality, the link budget calculations are focused on the Forward Link (from Gateway towards the end users) and more specifically on the Downlink (Satellite to terminals) as this link segment is the most constraining and systems dimensioning for the capacity.

The key steps of the method itself are the following: first of all it is necessary to define the input parameters (frequency plan, DC power, terminal, etc.) and a service area covered by a certain number of spots. Then it is necessary to generate the EIRP or $\frac{G}{T}$ radiation diagrams so that by using these diagrams, it is possible to calculate first the $\frac{C}{T}$ performances at antenna level and then an advanced link budget in order to obtain the raw performances in terms of $\frac{C}{N+I}$.

Then through an iterative approach, it is possible by increasing or decreasing the number of spots to find out which antenna configuration satisfies the AV and CP criteria in terms of total capacity. Ultimately, the chosen system will be the one which provides the highest capacity while maintaining the initial goals.

This algorithm has been applied to several communication scenarios over different areas and a system has been achieved each time. Also by changing the AV and CP criteria, the method is flexible enough to provide a new solution. The link budget model has been built upon data provided mostly by two references [4] and [5] so as to be adapted to specific needs later on.

Finally, an improved model including mass and cost is also developed as an extension of this method.

Proposed Models

To begin with, the model is based on several "modules" and input data which are used for all the calculations.

- **Antenna Model**

 In order to start the reasoning, it is necessary to generate the antenna system with software tools and convert the radiation diagrams into usable formats for the link budget, in other words EIRP density or $\frac{G}{T}$ matrices.

 The adopted reflector model is designed by taking into account the illumination taper and spillover losses but also by neglecting the scan aberration. It is based on the model proposed by Peter Balling [6].

 First, the aperture distribution from a single feed is calculated by:
\[g(r) = p + (1 - p) \left(1 - \left(\frac{r}{a}\right)^n\right) \]

with:
- \(a\), the radius of the aperture
- \(p\), the relative edge illumination
- \(n\) is typically 1, but may be changed in the illumination exponent field

The element beams are approximated by a linear combination of Bessel functions:

\[F_j(\theta, \phi) = k \cdot a \left(c_1 \cdot BF(1, k \cdot ax_j) + c_2 \cdot BF(n + 1, kax_j) \right) \]

with:
- \(k\), the propagation constant \(\frac{2\pi}{\lambda}\)
- \(x_j\), the distance from beam center, \(x_j = \sqrt{(u-u_j)^2 + (v-v_j)^2}\)
- \(BF(n,x)\), Bessel functions given by:
 \[BF(n,x) = 2^n \cdot n! \cdot \frac{J_n(x)}{x^n} \]
 \[BF(n,0) = 1 \]
- The coefficients \(c_1\) and \(c_2\) depend on the edge taper \(p\), and are normalized so that \(F_j^2\) yields directivity. Balling uses an analytic approximation to determine directivity. We prefer perform a PO integration of an on-focus feed to determine the directivity, which is more accurate.

Interference Model

Once these radiation files are created, it is necessary to define the cells for this multi-beam architecture. The cell definition is also necessary, as each user will be linked to a certain spot and the satellite has to be able to organize the traffic on every spot. Based on this cell division, it is possible to calculate the \(CI\) ratio as a performance indicator at antenna level. Indeed, for a multi-beam antenna system implementing frequency reuse and spatial separation, it is important to calculate the interferences generated by all the beams on each other, as the more spots one includes, the more interference is generated. In a general way, it is possible to define the calculation of the \(CI\) as follows.

Let's consider a certain spot \(k\) with a directivity of \(C_k\). Considering, that the architecture is a multi-beam coverage with frequency reuse, there will be two types of interferers. Depending on the side of the transmission, there will be the interferers in co-polarization, which are at the same frequency and the same polarization but used in different spatial spots. Their contribution can be quantified as:

\[I_{co} = \sum_{q=0}^{N} (D_{q}^{Co}(x)) \]

with:
- \(q\), the identifier for an interferring spot
- \(N\), the total number of interferers in Co-polarization
- \(x\), the point defined by a coordinate system
- \(D_{q}^{Co}\), the directivity in Co-polarization for the interferer \(q\)

There are also the interferers related to the cross polarization, which are the spots at the same frequency but with a directly opposite polarization. Their contribution is as follows:
\[I_{cx} = \sum_{p=0}^{M} (D_p^{CX}(x)) \]

with:
- \(p \), the identifier for an interfering spot
- \(M \), the total number of interferers in the orthogonal polarization
- \(x \), the point defined by a coordinate system
- \(D_p^{CX} \), the directivity in the orthogonal polarization of interfering spot \(p \)

Combined all together, the \(\frac{C}{I_{tot}} \) calculation is done as follows:

\[
\frac{C}{I_{tot}} = \frac{C_k}{I_{co} + I_{cx}}
\]

It is also important to include the Beam Pointing Error (BPE), which can influence heavily on the performances.

Link Budget and Design Model

If the performances are acceptable for the coverage area, this data is injected into an advanced link budget model. This model takes into account all the different station parameters, link parameters and satellite parameters. Also, the different attenuations, both technical (such as the interferences) and natural (such as rain, clouds, ...), are taken into account for the final link calculation.

Once the data has been calculated, it is possible to apply the logic itself. To begin with, one of the results of the link budget is the performance of the \(\frac{C}{N + I} \) under clear sky conditions i.e. no rain attenuations, but with all the other attenuations. Corresponding to the proper service area, a performance criterion is applied, in order to identify the users able to receive the lowest type of modulation and able to maintain a satellite communication. By applying a set of rain attenuations based on the models recommended by the ITU it is possible to extrapolate via an iterative procedure for the link budget, the availabilities that can be achieved.

Combining this data with the percentage of coverage allows obtaining a solid view of what antenna structure is the most efficient and interesting to go into detail.

In order to underline this approach, the next section will focus on two given antenna scenarios and show how the method can be applied.

Results

There will be two scenarios that are going to be discussed in the following part. One will be based on four 2.8 meter antenna reflectors with a service area centered over France and a second one based on four 2 meter antenna reflectors with a service area centered over Central Africa. Both scenarios will use an orbital position of 0°E as an arbitrary position.

Scenario 1

This scenario aims at providing a service over an elliptical polygon covering mainly France. The satellite is placed at an orbital position of 0°E. The antenna system is composed of four identical reflectors of 2.8m (state of the art) and the number of included spots is allowed to vary over the area. The frequencies used are 19.7GHz and 20.2GHz in Ka-Band with four colors. The air interface is the DVB-S2 standard.

Figure 1 shows an example of EIRP coverage and the given \(\frac{C}{N + I} \) performances achieved over France for 100 spots.
By using a $\frac{E_b}{N_0}$ of -1dB and an operational margin of 3dB, it is possible to obtain Figure 2, showing the behavior of the different antenna systems with a varying number of spots in terms of coverage percentage versus given availabilities.

With Figure 2, it is possible to see the performance of each antenna system and highlight a clear trend: the more spots you include for a given service area, the more your power is divided per spot and the more interference is generated. Consequently, lesser coverage percentage is achieved for every availability.

By applying the AV criteria of 99.96% and the CP criteria of 98%, the method highlights which antenna systems (with a fixed antenna aperture of 2.8m) is the most optimized in terms of capacity as shown in Figure 3.
Based on this set of figures, it appears that the antenna system providing the highest capacity while achieving the criteria is the system with a beam spacing of 0.19° (72 spots) which corresponds to an approximate spot size of 0.21°. Also, a trend is highlighted for the service area: the more spots are included the more capacity is available but beyond a given number of spots, the criteria are no more respected.

So, if a satellite engineer wants to develop a Ka-Band multi-beam Satellite on this kind of region, more fine tuned analysis could be focused around a spot architecture of seventy-two spots corresponding to a beam spacing of 0.19°.

Scenario 2

This scenario is based on an elliptical polygon covering Central Africa. The satellite is placed at an orbital position of 0°E. The antenna system is composed of four identical reflectors of 2m and the number of stacked spots varies over the area.

The downlink frequencies used are 19.7GHz and 20.2GHz in Ka-Band. The air-interface is the DVB-S2 standard.

Figure 4 shows an example of EIRP coverage and the given $\frac{C}{N+I}$ performances achieved over the central Africa region for 442 spots.
By using a $\frac{E_b}{N_0}$ threshold of -1dB and an operational margin of 3dB, it is possible to obtain Figure 5 showing the behavior of the different antenna systems with a varying number of spots in terms of coverage percentage versus given availabilities.

With Figure 5 it is possible to see the performance of each antenna system and also the same trend as in Scenario 1. Compared to the previous scenario, the curves have more losses due to the high attenuation region close to the equator causing a clear "break" at an availability of around 99%. By applying the AV criteria of 98% and the CP criteria of 97%, the method will highlight which antenna system with what kind of beam spacing is the most optimized in terms of capacity as shown in Figure 6.

![Figure 5: Coverage Percentage vs Availability, Scenario 2](image)

![Figure 6: Capacity vs Number of Spots, Scenario 2](image)
Based on this set of figures, an antenna system with a beam spacing of 0.5° (137 spots) appears to offer the best trade off in terms of capacity. On a side note, due to the high attenuations and inter-spot interferences, it appears clearly that the criteria have to be reassessed compared to the first scenario.

Further Work

Further work will be spend on using real antenna data generated with more accurate models taking into account the complete antenna system including real clusters and all kind of losses. These calculations shall provide a solid view on the behavior of the methodology. Also a new module will be added to this model taking into account the mass and cost of the different antenna structures and add a new layer of design.

Conclusions

It has been demonstrated that the methodology gives very consistent and reliable results for the different scenarios. Indeed, by using this methodology it is possible to focus quickly and efficiently the design optimizations around only a few cases and find the best trade-off. As shown in the two scenarios, no matter which area is studied, a possible trade-off can be found according to the requirements set by the system designer. This shows also how adaptive the methodology is and that the reasoning itself is system defining and not area dependent.

References

1 Giuliano Beretta, Keynote Speech for the 16th Ka Band Conference, 2010
3 Mario A. Blanco, Design Methodology For High Capacity SATCOM Systems, 13th Ka and Broadband Communications Conference 2007
6 P. Balling, Spacecraft Multi-Beam and Contoured-Beam Antennas, Microwave Antennas for Avionics, Volume 151, 1987