Asynchronous Evolutionary Multi-Objective Algorithms with heterogeneous evaluation costs

Mouadh Yagoubi 1, * Ludovic Thobois 2 Marc Schoenauer 1, 3
* Auteur correspondant
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Master-slave parallelization of Evolutionary Algorithms (EAs) is straightforward, by distributing all fitness computations to slaves. The benefits of asynchronous steady state approaches are well-known when facing a possible heterogeneity among the evaluation costs in term of runtime, be they due to heterogeneous hardware or non-linear numerical simulations. However, when this heterogeneity depends on some characteristics of the individuals being evaluated, the search might be biased, and some regions of the search space poorly explored. Motivated by a real-world case study of multi-objective optimization problem the optimization of the combustion in a Diesel Engine the consequences of different components of heterogeneity in the evaluation costs on the convergence of two Evolutionary Multi-objective Optimization Algorithms are investigated on artificially-heterogeneous benchmark problems. In some cases, better spread of the population on the Pareto front seem to result from the interplay between the heterogeneity at hand and the evolutionary search.
Type de document :
Communication dans un congrès
IEEE Congress on Evolutionary Computation, CEC 2011, New Orleans, LA, USA, 5-8 June, 2011, Jun 2011, New Orleans, LA, United States. pp.21-28, 2011
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00625318
Contributeur : Mouadh Yagoubi <>
Soumis le : jeudi 27 octobre 2011 - 14:35:35
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : lundi 30 janvier 2012 - 11:10:04

Fichier

PID1819361.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00625318, version 1

Collections

Citation

Mouadh Yagoubi, Ludovic Thobois, Marc Schoenauer. Asynchronous Evolutionary Multi-Objective Algorithms with heterogeneous evaluation costs. IEEE Congress on Evolutionary Computation, CEC 2011, New Orleans, LA, USA, 5-8 June, 2011, Jun 2011, New Orleans, LA, United States. pp.21-28, 2011. 〈hal-00625318〉

Partager

Métriques

Consultations de la notice

619

Téléchargements de fichiers

1735