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Abstract

Complex structures often include hollow parts. These hollow parts constitute
the skeleton of the structure and are largely responsible for its global behavior,
hence the importance of analyzing them precisely. The method we propose in this
paper is a modal method based on the modal analysis of elements of hollow parts.
This method does not require nodal degrees of freedom on the boundaries between
the elements: “modal” elements are created, and these elements can be assembled
through modal mass and stiffness matrices in the same way as the finite element
method. Thus, it is possible to choose the precision of the analysis by choosing the
quantity of modes used in the modal analysis of the elements.We will study not
only structural systems but also coupled fluid-structure systems, and our results
will be compared with experimental tests.

keywords: Modal analysis; Substructuring; Fluid-structure coupling.

1 Introduction

Complex structures often include hollow parts. The behavior of these hollow parts
is quite important for it is greatly responsible for the behavior of the whole structure.
Indeed, hollow parts constitute the skeleton of many complex structures, such as cars.
Moreover, they are also usually associated with plates. In this case, they are consid-
ered as stiffeners. These stiffeners can be studied using a finite element model based
on the real geometry of the structure. This is a quite expensive method because it re-
quires many degrees of freedom to be sufficiently precise. Hollow parts can also be
considered as beams. Several beam models do exist, but they are not always capable of
representing the real characteristics of the geometry.

A modal substructuring method has already been proposed to describe hollow parts
[1]. This method uses modes corresponding to each side of a stiffener element of length
δz. The hollow parts of the structure can be described by these modes. Assembly of
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the stiffener elements is done through the generalized degrees of freedom. Thus, no
nodal degrees of freedom are required on the boundaries. However, nodal degrees of
freedom have to be kept in order to assemble the hollow part tothe rest of the structure.

Acoustical coupling inside hollow parts is also very important. Hollow parts can
be considered as wave guides and propagate noise. In order topredict the acoustical
behavior of a structure, it is necessary to take coupling into account. Modal analysis
of coupled fluid-structure systems has already been studied[2, 3, 4]. The method we
propose here will use acoustical and structural modes to describe the hollow parts.

The hollow part will be divided into several elements. Each element will be ana-
lyzed as a coupled fluid-structure system. Particular modeswill be chosen in order to
allow assembly of these elements without the use of nodal degrees of freedom.

We will first explain the method examining a hollow partin vacuo. Through sev-
eral examples, we will compare our results with finite element methods. The case of an
infinite waveguide will be reviewed. A hollow part will then be coupled to a plate, in
order to show how different structures can be assembled. In this case, the hollow part
is considered as a stiffener. To assemble a hollow part with another structure, we will
use the “Double Modal Synthesis” method proposed by Jezequel [5, 6, 7]. Thus, the
stiffeners coupled to the plate will be represented by “branch modes”, which are gen-
eralized degrees of freedom corresponding to the boundaries between the structures.

We will then study the case of an acoustical coupling inside the hollow part. Results
will be compared with a finite element model and a test. This last example will show
that the method proposed in this paper is able to take into account acoustics problems.
Indeed, hollow parts constituting the skeleton of a complexstructure can be responsible
for noise propagation, because these hollow parts can be considered as wave guides. It
is important to be able to predict this noise. To do this, the acoustical aspects of the
hollow parts must be quite precisely represented.

2 Analysis of hollow parts of a structure in vacuo

The hollow part we wish to study is shown on figure 1. This structure will be di-
vided into several elements. Each element is meshed with boundary degrees of freedom
only, as shown in figure 2. It is not actually necessary to remove the internal degrees of
freedom, but it will facilitate the explanation of the method. Note that internal degrees
of freedom should be expressed as a function of internal modes, using the Craig &
Bampton method for example [8].

2.1 Modal analysis of an element

Figure 2 shows an element used to analyze the hollow part. When the modal anal-
ysis of this element is complete, two nodal degrees of freedom will remain, in order
to couple the hollow part with another structure. The behavior of an element can be
described with the equation of motion:

(

−ω2

[
MLL MLR

MRL MRR

]

+

[
KLL KLR

KRL KRR

]){
uL

uR

}

=

{
fL
fR

}

(1)
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Figure 1: Hollow part to study
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Figure 2: Element of the hollow part

where mass and stiffness matricesM andK are split into left and right degrees of
freedomL andR. Vectorsu andf are split the same way.

uL anduR are then split into degrees of freedom that will be expressedas a function
of generalized degrees of freedomug

L andug
R, and the othersuk

L anduk
R – marked

“retained” on figure 2:

uL =

{
uk
L

u
g
L

}

, uR =

{
uk
R

u
g
R

}

(2)

Let φR be the matrix of the modes of the element when one node of the right side
is fixed, as shown in figure 3.

ΦR is the modal matrix corresponding to right nodes of the element – it is a part of
matrixφR. According to the Craig & Bampton theory [8], displacementsof these right
nodes can be expressed as follows:
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Figure 3: Element of a hollow part

u
g
R = ΦRqR +ΨRu

k
R (3)

whereΨR is the matrix of the static modes, corresponding to the rigidbody modes
of the right side of the element.

Analogous matrices are defined for the left side of the element. Let φL be the
matrix of the modes of the element when one node of the left side is fixed.ΦL is the
modal matrix corresponding to left nodes of the element. Displacements of these left
nodes can be expressed as follows:

u
g
L = ΦLqL +ΨLu

k
L (4)

Thus, displacementsu can be expressed as a function of generalized degrees of
freedomqL andqR:







uk
L

u
g
L

uk
R

u
g
R







=







I 0 0 0

ΨL ΦL 0 0

0 0 I 0

0 0 ΨR ΦR













uk
L

qL

uk
R

qR







(5)

Notice that as left degrees of freedom do not depend on right modes, and right
degrees of freedom do not depend on left modes, assembling modal elements will be
possible.

2.2 Assembling elements

In order to assemble two elements, let write the relations between the nodal degrees
of freedom of the left and right side of two elements. Degreesof freedom of the right
side of the first element, calleduk

R1
andug

R1
, must match with degrees of freedom of

the left side of the second element, calleduk
L2

andug
L2

:
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{
uk
R1

= uk
L2

u
g
R1

= u
g
L2

(6)

Equation 6 can be written for elementsn andn+ 1:

{
uk
Rn

= uk
Ln+1

u
g
Rn

= u
g
Ln+1

(7)

Equations 6 leads to the expression of degrees of freedom of the left part of the
second element as a function of degrees of freedom of the firstelement:

{
uk
L2

= uk
R1

qL2 = Φ̃L

(
ΦRqR1 + (ΨR −ΨL)u

k
R1

) (8)

which can be written for elementsn andn+ 1:

{
uk
Ln+1

= uk
Rn

qLn+1
= Φ̃L

(
ΦRqRn

+ (ΨR −ΨL)u
k
Rn

) (9)

whereΦ̃L is a pseudo-inverse matrix ofΦL:

Φ̃L =
(
ΦT

LΦL

)
−1

ΦT
L (10)

Equations 8 allow the assembling ofN elements, using transfer matricesTn:

Ktot =

N∑

n=1

TT
nKTn (11)

Mtot =

N∑

n=1

TT
nMTn (12)

Notice that assembling matrices is as simple as in the finite element method. For
two elements, matricesTn are built as follows:

T1 =







I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0







(13)

T2 =







0 0 I 0 0 0

0 0 Φ̃L (ΨR −ΨL) Φ̃LΦR 0 0

0 0 0 0 I 0

0 0 0 0 0 I







(14)

Notice that it is possible to use equation 14 for matrixT1. Matrix given in equation
11 is more simple, but it may be easier to use the same kind of matrix for each element.
Thus, forN elements, matricesTn can be written:
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Tn =







0 · · · 0 I 0 0 0 0 · · · 0

0 · · · 0 Φ̃L (ΨR −ΨL) Φ̃LΦR 0 0 0 · · · 0

0 · · · 0 0 0 I 0 0 · · · 0

0 · · · 0 0 0 0 I 0 · · · 0







(15)

︸ ︷︷ ︸

2(n− 1) columns
︸ ︷︷ ︸

2(N − n) columns

(16)

Equation 15 is valid forn = 1 . . .N . Forn = 1, it is also possible to use matrix
T1 defined as follows:

T1 =







I 0 0 0 0 · · · 0

0 I 0 0 0 · · · 0

0 0 I 0 0 · · · 0

0 0 0 I 0 · · · 0







(17)

︸ ︷︷ ︸

2(N − 1) columns

(18)

Notice that if the hollow part is a periodic structure, thereis a relation between
matricesΦL andΦR:

ΦR = AΦL (19)

whereA is a diagonal matrix defined as follows:

A(i, i) = −1 if i is associated with : − the z translation
− the x rotation
− the y rotation

A(i, i) = 1 else

(20)

MatricesΨL andΨR correspond to rigid body modes of the element, since only
one node is fixed. Hence the relation:

ΨL = ΨR (21)

Equations 19 and 21 allow the transfer matricesTn to be simplified.

2.3 Coupling structures using “double modal synthesis”

The “hollow parts” that have been studied in the previous sections are parts of a
complex structure including plates and stiffeners. Duringthe modal analysis of the
elements constituting these hollow parts, nodal degrees offreedom have been retained.
The nodes kept fixed in the modal analysis of the elements allow us to couple the
hollow part with another structure – a plate, for example. Thus, the second structure
is studied using a classic modal analysis method – the Craig &Bampton method for
example. Coupling is made through the nodal degrees of freedom remaining from the
modal analysis.

In order to use only generalized degrees of freedom, it is possible to express de-
grees of freedom of the boundary between the two structures as a function of “branch
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modes”, using the “double modal synthesis” method [5, 6, 7].Looking at the coupled
problem, the motion equation can be written as follows:



−ω2





MHH MHB MHS

MBH MBB MBS

MSH MSB MSS



+





KHH KHB KHS

KBH KBB KBS

KSH KSB KSS















qH

uB

qS






= f

(22)
We denoteH the generalized degrees of freedom concerning the hollow part,B the

nodal degrees of the boundary, andS the generalized degrees of freedom of the second
structure.f is the vector of the generalized forces applied on the system.

ΦB is the matrix of the branch modes, which satisfy the following equation:

(
−
[
ω2

i

]
MBB +KBB

)
ΦB = 0 (23)

where
[
ω2
i

]
(1 < i < N ) is a diagonal matrix ofN eigenfrequencies. Boundary

degrees of freedomuB can be expressed as follows:

uB = ΦBqB (24)

which allow the whole system to be fully described with generalized degrees of
freedom: “Section modes” for the hollow parts, “surface modes for the plates”, and
“branch modes” for the boundaries between the hollow parts and the plates.

2.4 Resultsin vacuo

2.4.1 Analysis of an infinite waveguide

The first comparison was made for an infinite waveguide. We consider the hollow
part as an infinite and periodic structure. Mass and stiffness matrices are divided into
left and right sides. We compute the dispersion curves for this infinite waveguide using
finite element matrices (denotedM andK) and modal matrices (computed using our
proposed method and denotedM andK).

Considering equation 27, which is the motion equation of an element (properties in
table 1 and 2), we use the following notation:

Z(ω) = −ω2M+K (25)

Z(ω) = −ω2M+K (26)

[
ZLL(ω) ZLR(ω)
ZRL(ω) ZRR(ω)

]{
uL

uR

}

=

{
fL
fR

}

(27)

The modal equation corresponding to equation 27 can be written:

[
ZLL(ω) ZLR(ω)

ZRL(ω) ZRR(ω)

]{
qL

qR

}

=

{
fL
fR

}

(28)
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Young’s modulus Poisson’s ratio Density
2.0e11 Pa 0.33 7850 kg.m−3

Table 1: Properties of the material

Thickness Section Length
0.01 m 1 × 1 m2 infinite

Table 2: Geometry of the structure

The structure is periodic, hence the relation:

uR = αuL (29)

fR = −αfL (30)

whereα = e−ik∆l. Real and imaginary parts ofk = kR + ikI can be written as a
function ofα as follows:







kR = ℜ(k) = −
arg(α)

∆l

kI = ℑ(k) =
ln (|α|)

∆l

(31)

Equation 27 becomes:
[

ZLL(ω) −I

ZRL(ω) 0

]{
uL

fL

}

= α

[
−ZLR(ω) 0

−ZRR(ω) −I

]{
uL

fL

}

(32)

Considering modal matrices, the equation can be written:

[
ZLL(ω) −I

ZRL(ω) 0

]{
qL

fL

}

= α

[
−ZLR(ω)B 0

−ZRR(ω)B −C

]{
qL

fL

}

(33)

whereB andC are matrices coming from the modal synthesis of an element. These
matrices allow us to write the equations betweenqR andqL, andfR andfL:

qR = αBqL (34)

fR = −αCfL (35)

fR andfL are the modal forces associated with the modal matricesM andK.
Propagation curves givek as a function off =

ω

2π
(k must be real).

The curves obtained from the finite element matrices are given in figure 4. The
curves obtained from the modal matrices are given in figures 5, 6 and 7.

Figure 5 is a plot using a modal element of 10 modes. The results are quite poor,
which is why we plot the same curves using 30 and 60 modes. Figure 6 shows the
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f (Hz)

k (m−1)

Figure 4: Propagation curves – FEM model

results obtained using 30 modes for an element. Dispersion curves are somewhat better.
Figure 7 gives the results obtained using 60 modes for an element. The results are
good – at low frequencies, curves are even exactly the same –,but many modes were
required.

The need for many generalized degrees of freedom to represent an infinite wave
guide can be explained by the fact that the boundaries between elements is the only
parameter used in the calculations. In the case of a finite hollow part, stationary waves
are generated thanks to the boundary conditions at the beginning and the end of the
hollow part. Results should then be better for such cases.

2.4.2 Modal and finite element analysis of a tube

We consider the tube shown in figure 1 split into elements shown in figure 2. This
tube may be a hollow part of a structure.

The material used for this comparison is structural steel, whose properties are given
in table 3. Properties of the studied structure are given in table 4. The structure is
represented in figure 8.

Table 5 shows the eigenfrequencies found by the modal analysis using the method
we propose and a finite element method. The finite element model uses 144 degrees of
freedom for each section, whereas the modal model uses only 41 degrees of freedom
(35 section modes and 6 nodal d.o.f. for each section). The results are quite good.

Figure 9 shows the evolution of the accuracy of the method as afunction of the
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f (Hz)

k (m−1)

Figure 5: Propagation curves – 10 modes

Young’s modulus Poisson’s ratio Density
2.0e11 Pa 0.33 7850 kg.m−3

Table 3: Properties of the material

Thickness Section Length
0.001 m 0.1 × 0.1 m2 0.2 m

Table 4: Geometry of the structure

number of section modes retained. In this figure, one can see that the results are much
more accurate when the number of section modes retained is high. However, the num-
ber of section modes need not be as high as in the example givenin section 2.4.1.
Indeed, the stationary waves make the results more accuratethanks to the boundary
conditions.

2.4.3 Stiffener coupled with a plate

We also made calculations using a stiffener coupled with a plate. The whole struc-
ture is given in figure 10. The properties of the material and the geometry of the
structure are given in tables 6 and 7.
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f (Hz)

k (m−1)

Figure 6: Propagation curves – 30 modes

Frequencies found by a classical finite Frequencies found by proposedError
element method – 144× 25 d.o.f. – (Hz) method – 41× 25 d.o.f. – (Hz) (%)

(35 modes for each section)

138.0 137.9 0.08
141.4 141.9 0.36
240.4 239.0 0.62
249.8 247.3 0.99
282.5 272.6 3.6
312.0 315.5 1.1
321.9 375.8 14.3
335.7 392.0 14.3
401.8 393.6 2.1
408.3 424.4 3.8
411.6 425.2 3.2
444.4 455.2 2.3

Table 5: Eigenfrequencies of the hollow part

This case is very interesting to study because hollow parts are often used as stiff-
eners. Coupled to a plate, such stiffeners are useful to modify the characteristics of the
structure and the values of its eigenfrequencies.
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f (Hz)

k (m−1)

Figure 7: Propagation curves – 60 modes

x

y
z

Figure 8: Studied structure

Young’s modulus Poisson’s ratio Density
2.0e11 Pa 0.33 7850 kg.m−3

Table 6: Properties of the material
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Figure 9: Error on the first modes as a function of the number ofsection modes retained
(1: 10 modes, 2: 15 modes, 3: 20 modes, 4: 25 modes, 5: 30 modes,6: 35 modes, 7:
40 modes)

Figure 10: Hollow part coupled with a plate

We compute the eigenfrequencies of the whole structure. These eigenfrequencies
have been calculated using three methods: a finite element method (considered as a
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Thickness Section Hollow part length Plate
0.001 m 0.1 × 0.1 m2 0.5 m 1.2 × 0.5 m2

Table 7: Geometry of the structure

reference), the modal method we propose, and a method using beam modeling. The re-
sults show that the method we propose is quite close to the finite element method. Fig-
ures 11 and 12 shows the error between our method and the finiteelement method, and
between the method using Timoshenko beam modeling and the finite element method.
In this example, we first used 10 generalized degrees of freedom (figure 11), and then
50 generalized degrees of freedom (figure 12) for each element of the stiffener. Using
50 modes provides better results, but the difference between 10 and 50 section modes
is quite small. In both cases, the modal method we propose gives better results than a
method using Timoshenko beam modeling. Notice that for the case of coupled struc-
tures, the number of section modes retained is not as important as for the single beam
studied in section 2.4.2. Indeed, the behavior of the structure does not depend only
on the stiffener, but also on the plate, which is why the accuracy of the analysis of the
stiffener is not as important as for the first example (given in section 2.4.2).

1 2 3 4 5 6 7
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10
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20

25

30

35

40

45

50

Mode number

E
rr

o
r(

%
)

Figure 11: Error compared to finite element method (black: using 10 section modes
for each element of the stiffener, white: using beam modeling)
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Figure 12: Error compared to finite element method (black: using 50 section modes
for each element of the stiffener, white: using a beam modeling)

3 Analysis of a hollow part including fluid-structure cou-
pling

In this section, the hollow part considered in section 2 willbe studied considering
the acoustical aspects.

3.1 Modal analysis of an element

The hollow parts of the structure are split into several elements, as for thein vacuo
case.

Fluid-structure problems have often been studied and equations concerning acous-
tical coupling are well known [3, 4, 9]. Using a finite elementformulation, the motion
equation of an element can be written as follows:

(

−ω2

[
MS 0

C MA

]

+

[
KS −CT

0 KA

]){
u

p

}

=

{
f

0

}

(36)

The method we use to study the coupled system is the same as forthe in vacuo
problem. Modes of the fluid part will first be calculated and then an analysis of the
structural part will be performed.
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3.1.1 Analysis of the fluid part

In order to find modes allowing us to easily assemble elements, let us split the
acoustical mass and stiffness matrices into left and right sides of an element:

MA =

[
MALL MALR

MARL MARR

]

(37)

KA =

[
KALL KALR

KARL KARR

]

(38)

The pressure vectorp is split the same way:

p =

{
pL

pR

}

(39)

First, the modal matrixφA
R is introduced. It is the matrix of the acoustical modes

of an element when one node of the right side is fixed (pk
R = 0) (see figure 3 for

notations).ΦA
R is the part of matrixφA

R concerning the nodes of the right side of the
element.

Secondly, matrixΦA
L is the matrix of the acoustical modes of an element when one

node of the left side is fixed (pk
L = 0). ΦA

L is the part of matrixΦA
L concerning the

nodes of the left side of the element.
Pressure vectorp can be written as a function of generalized degrees of freedom

qA
L andqA

R and pressure on fixed nodespk
R andpk

L:

p
g
L = ΦA

Lq
A
L +ΨA

Lp
k
L (40)

p
g
R = ΦA

Rq
A
R +ΨA

Rp
k
R (41)

Notice that generalized degrees of freedom of each side of the element only depend
on nodal degrees of freedom of the same side, which will allowus to easily assemble
elements.

3.1.2 Analysis of the structural part

The modal analysis of the structural part of a element has already been given in
section 2.1. Using similar notations, displacements of thetwo sides of an element can
be expressed as follow:

u
g
L = ΦLqL +ΨLu

k
L (42)

u
g
R = ΦRqR +ΨRu

k
R (43)

As for the acoustical analysis, generalized degrees of freedom of each side of the
element depend only on nodal degrees of freedom of the same side.
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3.2 Assembling elements

In order to assemble two elements, let us write the relationsbetween the right side
of thenth element and the left side of the(n+ 1)th element:







uk
Ln+1

= uk
Rn

u
g
Ln+1

= u
g
Rn

pk
Ln+1

= pk
Rn

p
g
Ln+1

= p
g
Rn

(44)

Using equations 40, 41, 42 and 43, equation 44 leads to:







uk
Ln+1

= uk
Rn

qLn+1
= Φ̃L

(
ΦRqRn

+ (ΨR −ΨL)u
k
Rn

)

pk
Ln+1

= pk
Rn

qA
Ln+1

= Φ̃A
L

(
ΦA

RqRn
+
(
ΨA

R −ΨA
L

)
pk
Rn

)

(45)

These relations lead to transfer matrices that allow us to assemble several elements,
as explain in section 2.2 (equations 11 and 12).

3.3 Results

In this section, we compare the results obtained with our proposed method and
experimental tests conducted on a hollow part.

3.3.1 Verification of proposed method

The verification of the modal synthesis method we propose is made using elements
shown on figure 17. Our modal synthesis method is now comparedwith a finite element
model. Figure 13 shows the error between these two methods for one elements. This
error is quite small and shows the efficiency of the model we propose.

3.3.2 Validation by experimental testing

The hollow part used for the tests is shown in picture 14.
We used a shock hammer for the excitation and a microphone to get the pressure

inside the hollow part, as shown in picture 15. Experimentalmaterial is shown in
picture 16. Of course, the acoustical cavity has been blocked up. It is open in the
picture in order to show the microphone.

3.3.3 Modal analysis and comparison

The structure has been studied using the method proposed in the paper. A different
element has been used for the curved part. The two kind of elements are shown on
figure 17 and 18.

The properties of the material used for this example are given in table 8. The
Young’s modulus has been matched in order to get the best results possible. The
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Figure 13: Verification of the method

Figure 14: Hollow part used for experimental testing

Young’s modulus should be approximately2.0e11 Pa. We found an optimal value
of 1.96e11 Pa.

Young’s modulus Poisson’s ratio Density Section Length
1.96e11 Pa 0.33 7850 kg.m−3 0.08 × 0.08 m2 0.9 m / 0.65 m

Table 8: Properties of the material used for testing
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Figure 15: Microphone used for experimental testing

Figure 16: Material used for testing

Figure 19 shows the results obtained in this section. The behavior of the hollow
part has been predicted quite well. The measurement curve breaks down at 350 Hz,
because of the cut-off frequency of the shock hammer. Nevertheless, the two curves
under 350 Hz are not so different.

Under 350 Hz, differences between the two curves may have various reasons. First,
the hollow part has been suspended through a rigid bar – in order to get a punctual
contact – and a sandow. This sandow induces a very low stiffness that could influence
the results. Secondly, though the extremities of the hollowpart have been blocked,
there may be leakage because of the wire of the microphone. There may also have
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Figure 17: Element used for the modal analysis

Figure 18: Element used for the modal analysis – curved part

been measurement errors or inaccurate measurements.

4 Conclusion

The method we proposed in this paper allows us to study hollowparts of a struc-
ture with good precision, using generalized degrees of freedom. This modal method
does not use nodal degrees of freedom on the boundaries between elements, which is
quite interesting. Modal matrices created by the modal analysis of an element can be
assembled the same way as finite element matrices.

Numerical testing on a waveguide and a finite element model have shown that the
method can produce quite good results. Of course, results obtained for the infinite
waveguide are not as good as the results obtained with finite hollow parts. The case of
a stiffener coupled to a plate has been processed. It has beenshown that the method pro-
posed in the paper was able to produce good results in this case. Experimental testing
has shown that the fluid-structure coupling was correctly modelized, which will allow
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Figure 19: Measurements and modal analysis

us to predict the pressure field resulting from the the skeleton of a complex structure.
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