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Abstract

Complex structures often include hollow parts. These holarts constitute
the skeleton of the structure and are largely responsibtiliédalobal behavior,
hence the importance of analyzing them precisely. The ndetlepropose in this
paper is a modal method based on the modal analysis of elsmnollow parts.
This method does not require nodal degrees of freedom orotiedaries between
the elements: “modal” elements are created, and these elgeen be assembled
through modal mass and stiffness matrices in the same wayednite element
method. Thus, it is possible to choose the precision of tiaéyais by choosing the
quantity of modes used in the modal analysis of the eleméfieswill study not
only structural systems but also coupled fluid-structurgtesys, and our results
will be compared with experimental tests.

keywords: Modal analysis; Substructuring; Fluid-struetcoupling.

1 Introduction

Complex structures often include hollow parts. The behavidhese hollow parts
is quite important for it is greatly responsible for the bébaof the whole structure.
Indeed, hollow parts constitute the skeleton of many comglieictures, such as cars.
Moreover, they are also usually associated with plateshimdase, they are consid-
ered as stiffeners. These stiffeners can be studied usimite élement model based
on the real geometry of the structure. This is a quite expensiethod because it re-
quires many degrees of freedom to be sufficiently precisdlotigarts can also be
considered as beams. Several beam models do exist, butréegtalways capable of
representing the real characteristics of the geometry.

A modal substructuring method has already been proposezbtitie hollow parts
[1]. This method uses modes corresponding to each side iffiemst element of length
dz. The hollow parts of the structure can be described by thesem Assembly of
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the stiffener elements is done through the generalizedegsguf freedom. Thus, no
nodal degrees of freedom are required on the boundariesevwnodal degrees of
freedom have to be kept in order to assemble the hollow péneteest of the structure.

Acoustical coupling inside hollow parts is also very impoitt Hollow parts can
be considered as wave guides and propagate noise. In orgezdixt the acoustical
behavior of a structure, it is necessary to take coupling aticount. Modal analysis
of coupled fluid-structure systems has already been stf@j&i[4]. The method we
propose here will use acoustical and structural modes tribesthe hollow parts.

The hollow part will be divided into several elements. Ealshreent will be ana-
lyzed as a coupled fluid-structure system. Particular mediéde chosen in order to
allow assembly of these elements without the use of nodakdsmf freedom.

We will first explain the method examining a hollow pantvacuo. Through sev-
eral examples, we will compare our results with finite eletmeethods. The case of an
infinite waveguide will be reviewed. A hollow part will therelzoupled to a plate, in
order to show how different structures can be assemblednidrcase, the hollow part
is considered as a stiffener. To assemble a hollow part waithheer structure, we will
use the “Double Modal Synthesis” method proposed by Je1¢biUé, [7]. Thus, the
stiffeners coupled to the plate will be represented by “bhamodes”, which are gen-
eralized degrees of freedom corresponding to the boursdaeimveen the structures.

We will then study the case of an acoustical coupling indigdtollow part. Results
will be compared with a finite element model and a test. Thisdxample will show
that the method proposed in this paper is able to take intouat@coustics problems.
Indeed, hollow parts constituting the skeleton of a comptaxcture can be responsible
for noise propagation, because these hollow parts can sdayad as wave guides. It
is important to be able to predict this noise. To do this, tbeuatical aspects of the
hollow parts must be quite precisely represented.

2 Analysis of hollow parts of a structurein vacuo

The hollow part we wish to study is shown on figlite 1. This dtrrewill be di-
vided into several elements. Each element is meshed withdzoy degrees of freedom
only, as shown in figurlg 2. It is not actually necessary to nebe internal degrees of
freedom, but it will facilitate the explanation of the methdote that internal degrees
of freedom should be expressed as a function of internal syagsing the Craig &
Bampton method for examplel[8].

2.1 Modal analysis of an element

Figure[2 shows an element used to analyze the hollow partnwWieemodal anal-
ysis of this element is complete, two nodal degrees of freeddl remain, in order
to couple the hollow part with another structure. The betraef an element can be
described with the equation of motion:

M M K K u f
2 LL LR LL LR L L
w + = 1
( [ Mg Mkgr ] [ Krr Krr }) { ur } { fr } @)
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Figure 1: Hollow part to study

d.o.f. retained

d.o.f. retained

Figure 2: Element of the hollow part

where mass and stiffness matrideésandK are split into left and right degrees of
freedomL andR. Vectorsu andf are split the same way.

uy, andug, are then splitinto degrees of freedom that will be expreasedfunction
of generalized degrees of freedarf}y andu%, and the others® andu¥, — marked
“retained” on figuré:

(4} weld) e

Uur
Let ¢ be the matrix of the modes of the element when one node of ghe side
is fixed, as shown in figuid 3.

d is the modal matrix corresponding to right nodes of the elgmét is a part of

matrix ¢ g. According to the Craig & Bampton theolyi [8], displacemesftthese right
nodes can be expressed as follows:



right side of the element

‘ 3

right node: fixed

Figure 3: Element of a hollow part

uf, = Prar + Vruf, 3
whereV  is the matrix of the static modes, corresponding to the figidy modes
of the right side of the element.
Analogous matrices are defined for the left side of the elémeést ¢, be the
matrix of the modes of the element when one node of the le¢ isidixed. @, is the

modal matrix corresponding to left nodes of the elementplasements of these left
nodes can be expressed as follows:

u) =®rqp + Vpuf (4)

Thus, displacements can be expressed as a function of generalized degrees of
freedomqy, andqg:

u’ I o o0 o© ul
u'% _ \I/L (I)L 0 0 qrL (5)
u’j% 0 0 1 0 u’f%
u';]% 0 0 \I/R (I)R qr

Notice that as left degrees of freedom do not depend on rigides, and right

degrees of freedom do not depend on left modes, assemblidglratements will be
possible.

2.2 Assembling elements

In order to assemble two elements, let write the relatiobwden the nodal degrees
of freedom of the left and right side of two elements. Degrdseedom of the right
side of the first element, calleaf;,; andu?,, must match with degrees of freedom of
the left side of the second element, cali€d, andu?,:



{ ullg%l = u]Z2 (6)

g _ 49
Ug1 = UL
Equatiori6 can be written for element@andn + 1:
ko _ ok
uRn - uLn+1 (7)
uf, =u?
Rn Ln+1

Equationg b leads to the expression of degrees of freedomedeft part of the
second element as a function of degrees of freedom of thefastent:

{ ulz2 = 1}]}%1 (8)
acz = 1 (Prar: + (Vg — W) uky)
which can be written for elementsandn + 1:
(o 2an ©
Az, = @1 (Prar, + (Yr — ¥r)uf )

where®; is a pseudo-inverse matrix @f;:

by = (F2,) @7 (10)

Equation$ B allow the assembling 8felements, using transfer matricEs :

N

Kot = ) TyKT, (11)
n=1
N

Mo = »  TEMT, (12)
n=1

Notice that assembling matrices is as simple as in the fitet@ent method. For
two elements, matriceF,, are built as follows:

I1 00 0 OO
0 I 00 0O
Ti=190 0100 0 (13)
0001100
00 I 0 0O
|0 0 PL(Tr—-TL) Dz 0 O
T2=19 o 0 0 I o0 (14)
00 0 0 0 I

Notice that it is possible to use equation 14 for mairix Matrix given in equation
[I1 is more simple, but it may be easier to use the same kind wixiiar each element.
Thus, forN elements, matrice®,, can be written:



0 0 I 0 o o0o0 ---0
1o 0 &, (¥p—Uy) &Pz 0 O O --- 0O
Tn = 0 0 0 0 I o0 ---0 (15)
0 - 0 0 0 0o0I 0 -0 (16)
——— S——
2(n — 1) columns 2(N —n) columns

Equatior Ib is valid forn = 1... N. Forn = 1, it is also possible to use matrix
T, defined as follows:

1 0000 0

0I 00 O 0
T'=lo00100 - 0 88

000 I_O_--- 0

2(N — 1) columns

Notice that if the hollow part is a periodic structure, thé&se relation between
matrices®;, and®g:

Dp = Ad;, (19)

whereA is a diagonal matrix defined as follows:

A(i,i) = —1 if iisassociated with: — the z translation

— the z rotation
— the y rotation (20)
A(i,i)=1 else

MatricesW;, and ¥ correspond to rigid body modes of the element, since only
one node is fixed. Hence the relation:

Uy =WUgr (21)
Equation$ 19 and 21 allow the transfer matridgsto be simplified.

2.3 Coupling structures using “double modal synthesis”

The “hollow parts” that have been studied in the previousises are parts of a
complex structure including plates and stiffeners. Duting modal analysis of the
elements constituting these hollow parts, nodal degreffs@lom have been retained.
The nodes kept fixed in the modal analysis of the elementsvall® to couple the
hollow part with another structure — a plate, for exampleud§,ithe second structure
is studied using a classic modal analysis method — the Craia&pton method for
example. Coupling is made through the nodal degrees of dragdmaining from the
modal analysis.

In order to use only generalized degrees of freedom, it isiptesto express de-
grees of freedom of the boundary between the two structwasfanction of “branch



modes”, using the “double modal synthesis” methdd [5/) 6. 8pbking at the coupled
problem, the motion equation can be written as follows:
qH
up =f
qs

(22)

We denotéd the generalized degrees of freedom concerning the hollotyahe
nodal degrees of the boundary, asithe generalized degrees of freedom of the second
structure f is the vector of the generalized forces applied on the system

5 is the matrix of the branch modes, which satisfy the follayvaguation:

Kyr Kgp Kpgs
Ky Kpp Kpgs
Ksg Ksp Kgs

Mpr Mpp Mpg
Msg Mgsp Mgg

Mgy Mpyp Mpgs
—? 4

(= [wi]Mpp +Kpp) Pp =0 (23)

where [wf] (1 < i < N)is a diagonal matrix ofV eigenfrequencies. Boundary
degrees of freedomp can be expressed as follows:

up = Ppqp (24)

which allow the whole system to be fully described with getieed degrees of
freedom: “Section modes” for the hollow parts, “surface m®dor the plates”, and
“branch modes” for the boundaries between the hollow partstlae plates.

2.4 Resultsin vacuo
2.4.1 Analysis of an infinite waveguide

The first comparison was made for an infinite waveguide. Wesicen the hollow
part as an infinite and periodic structure. Mass and stiffmeatrices are divided into
left and right sides. We compute the dispersion curves feritifinite waveguide using
finite element matrices (denot®d andK) and modal matrices (computed using our
proposed method and denof®flandK).

Considering equatidn 27, which is the motion equation oflament (properties in
table[1 andR), we use the following notation:

Z(w) = —w’M+K (25)
Z(w) = —w*M+K (26)
_ ZLL(W) Zir(w) | { uy, }:{ fr, } @7)
| Zrr(w) Zgrr(w) | | ur fr
The modal equation corresponding to equatidn 27 can beewritt
[ ZLL(W) ZLR(w) | { qar }_{ EL } (28)
| Zrr(w) Zgr(w) | | ar fr




Young’s modulus| Poisson’s ratio Density
2.0e1l Pa 0.33 7850 kg.m 3

Table 1: Properties of the material

Thickness| Section | Length
0.01m |1 x 1m? [ infinite

Table 2: Geometry of the structure

The structure is periodic, hence the relation:

ur = auy (29)
fR = —OéfL (30)

wherea = e~ 4!, Real and imaginary parts &f= kr + ik; can be written as a
function of« as follows:

A
In (J4) (31)

Equatiori 2V becomes:

o) S el S} e

Considering modal matrices, the equation can be written:

[ZLL(W) -1 }{ qr }:a{ ~Zrr(w)B 0 } { qr } (33)
ZRL(W) 0 fL —ZRR(w)B -C fL

whereB andC are matrices coming from the modal synthesis of an eleméwsd
matrices allow us to write the equations betwegnandq, andf g andf . :

qr = aBqg (34)
?R = —OZC?L (35)

fr andf;, are the modal forces associated with the modal matiidendK.

Propagation curves giveas a function off = 21 (k must be real).

The curves obtained from the finite elementﬁmatrices arengivdigure[4. The
curves obtained from the modal matrices are given in figuriésad 7.

Figure[B is a plot using a modal element of 10 modes. The meatdt quite poor,
which is why we plot the same curves using 30 and 60 modes.rélgshows the
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Figure 4: Propagation curves — FEM model

results obtained using 30 modes for an element. Dispersitves are somewhat better.
Figure[T gives the results obtained using 60 modes for anegleniThe results are
good — at low frequencies, curves are even exactly the saimat mpany modes were
required.

The need for many generalized degrees of freedom to regrasenfinite wave
guide can be explained by the fact that the boundaries bateleenents is the only
parameter used in the calculations. In the case of a finilewglart, stationary waves
are generated thanks to the boundary conditions at the fiaegiand the end of the
hollow part. Results should then be better for such cases.

2.4.2 Modal and finite element analysis of a tube

We consider the tube shown in figlide 1 split into elements shiaigurel2. This
tube may be a hollow part of a structure.

The material used for this comparison is structural stelese properties are given
in table[3. Properties of the studied structure are giverallef4. The structure is
represented in figuid 8.

Table[ shows the eigenfrequencies found by the modal dsalgmg the method
we propose and a finite element method. The finite element lnsde 144 degrees of
freedom for each section, whereas the modal model uses ardedrees of freedom
(35 section modes and 6 nodal d.o.f. for each section). Thétseare quite good.

Figure[9 shows the evolution of the accuracy of the method fametion of the
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Figure 5: Propagation curves — 10 modes

Young’s modulus| Poisson’s ratio Density
2.0ell Pa 0.33 7850 kg.m

Table 3: Properties of the material

Thickness Section Length
0.00lm [ 0.1 x 0.1m* | 0.2m

Table 4: Geometry of the structure

number of section modes retained. In this figure, one carhsgdite results are much
more accurate when the number of section modes retaineghs However, the num-
ber of section modes need not be as high as in the example igiveection 2.4.11.

Indeed, the stationary waves make the results more acdat&s to the boundary

conditions.

2.4.3 Stiffener coupled with a plate

We also made calculations using a stiffener coupled wittagepIThe whole struc-
ture is given in figuré_10. The properties of the material amel geometry of the

structure are given in tablg$ 6 dnd 7.

10
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Figure 6: Propagation curves — 30 modes

Frequencies found by a classical finit¢ Frequencies found by proposederror
element method — 144 25 d.o.f. — (Hz)| method —41x 25d.0.f. — (Hz)| (%)
(35 modes for each section)
138.0 137.9 0.08
141.4 141.9 0.36
240.4 239.0 0.62
249.8 247.3 0.99
282.5 272.6 3.6
312.0 315.5 11
321.9 375.8 14.3
335.7 392.0 14.3
401.8 393.6 2.1
408.3 424.4 3.8
411.6 4252 3.2
444.4 455.2 2.3

Table 5: Eigenfrequencies of the hollow part

This case is very interesting to study because hollow paeteften used as stiff-
eners. Coupled to a plate, such stiffeners are useful tofgnthati characteristics of the
structure and the values of its eigenfrequencies.

11
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Figure 7: Propagation curves — 60 modes

Figure 8: Studied structure

Young’s modulus

Poisson’s ratio

Density

2.0ell Pa

0.33

7850 kg.m °

Table 6: Properties of the material

12
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40 modes)

Figure 10: Hollow part coupled with a plate

We compute the eigenfrequencies of the whole structuresé bagenfrequencies
have been calculated using three methods: a finite elemethbochéconsidered as a

13



Thickness Section Hollow part length Plate
0.00lm | 0.1 x 0.1m? 0.5m 1.2 x 0.5 m?

Table 7: Geometry of the structure

reference), the modal method we propose, and a method usamg imodeling. The re-
sults show that the method we propose is quite close to thie #f@ment method. Fig-
ured 11 anf 12 shows the error between our method and thedfigtent method, and
between the method using Timoshenko beam modeling and iteedlement method.
In this example, we first used 10 generalized degrees ofdredéigure 11), and then
50 generalized degrees of freedom (fidurk 12) for each eleafi¢ghe stiffener. Using
50 modes provides better results, but the difference betd®eand 50 section modes
is quite small. In both cases, the modal method we proposs digtter results than a
method using Timoshenko beam modeling. Notice that for #s® ©f coupled struc-
tures, the number of section modes retained is not as impaafor the single beam
studied in section 2.4.2. Indeed, the behavior of the sireatioes not depend only
on the stiffener, but also on the plate, which is why the aacyiof the analysis of the
stiffener is not as important as for the first example (givesdctiori 2.412).

50

45t 1

ZLLL

1 2 3 4 5 6 7
Mode number

Figure 11: Error compared to finite element method (blackagi40 section modes
for each element of the stiffener, white: using beam modglin

14
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Figure 12: Error compared to finite element method (blackigu80 section modes
for each element of the stiffener, white: using a beam madgli

3 Analysis of a hollow part including fluid-structure cou-
pling

In this section, the hollow part considered in secfibn 2 hdlstudied considering
the acoustical aspects.

3.1 Modal analysis of an element

The hollow parts of the structure are split into several eets, as for thén vacuo
case.

Fluid-structure problems have often been studied and Emsatoncerning acous-
tical coupling are well knowri [3,14, 9]. Using a finite elemémtmulation, the motion
equation of an element can be written as follows:

2 MS 0 KS —CT u _ f
(_w |: C My :| T [ 0 Ku P - 0 (36)
The method we use to study the coupled system is the same #®efior vacuo

problem. Modes of the fluid part will first be calculated andrttan analysis of the
structural part will be performed.

15



3.1.1 Analysis of the fluid part

In order to find modes allowing us to easily assemble eleméettsis split the
acoustical mass and stiffness matrices into left and riigletssof an element:

Muarr Muaurr
My = 37
4 [ Muarr Marr ] (37)

Karr Karr
Ki= 38
A [ Karr Karr ] (38)

The pressure vectgr is split the same way:

p—{ b } (39)

First, the modal matrixy4 is introduced. It is the matrix of the acoustical modes
of an element when one node of the right side is fixpl} (= 0) (see figurd13 for
notations).®4 is the part of matrixp% concerning the nodes of the right side of the
element.

Secondly, matrixp4 is the matrix of the acoustical modes of an element when one
node of the left side is fixedpf = 0). ®4 is the part of matrixd4 concerning the
nodes of the left side of the element.

Pressure vectgp can be written as a function of generalized degrees of fimedo
q andq# and pressure on fixed nodp andp* :

pj = ®Pqf + Uipk (40)
p% = ®pan + Uaph (41)

Notice that generalized degrees of freedom of each sideeadldment only depend
on nodal degrees of freedom of the same side, which will allewo easily assemble
elements.

3.1.2 Analysis of the structural part

The modal analysis of the structural part of a element hasadir been given in
sectior 2.1L. Using similar notations, displacements otwiwesides of an element can
be expressed as follow:

u) =®rqp + Vpuf (42)
uf, = Prqr + Yruf (43)

As for the acoustical analysis, generalized degrees oflfn@eof each side of the
element depend only on nodal degrees of freedom of the sal®e si

16



3.2 Assembling elements

In order to assemble two elements, let us write the relatietseen the right side
of then!" element and the left side of the + 1)th element:

k —
ugn«#l ugn
u =u
Lpta Ry,
K (44)

Using equations 4Q, #I, %2 aind 43, equafioh 44 leads to:

k Y
UL, = I}Rn

ar,,, = L (Prar, + (Vr— ¥)uf, )
k _ k
Pr... = PRn
qaz,,, = 7 (Prar, + (P — ¥2) pR,)
These relations lead to transfer matrices that allow usderable several elements,
as explain in sectidn 2.2 (equatidns 11 12).

(45)

3.3 Results

In this section, we compare the results obtained with oup@sed method and
experimental tests conducted on a hollow part.

3.3.1 \Verification of proposed method

The verification of the modal synthesis method we proposeaamsing elements
shown on figurE7. Our modal synthesis method is now compreithé finite element
model. Figuré 113 shows the error between these two methodméoelements. This
error is quite small and shows the efficiency of the model vappse.

3.3.2 Validation by experimental testing

The hollow part used for the tests is shown in picfure 14.

We used a shock hammer for the excitation and a microphonettthg pressure
inside the hollow part, as shown in pictdrel 15. Experimentaterial is shown in
picture[16. Of course, the acoustical cavity has been btbcke It is open in the
picture in order to show the microphone.

3.3.3 Modal analysis and comparison

The structure has been studied using the method proposee paper. A different
element has been used for the curved part. The two kind ofeglesrare shown on
figure[1T and18.

The properties of the material used for this example arengimetable[8. The
Young’s modulus has been matched in order to get the bestsgmssible. The

17
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Figure 13: Verification of the method

Figure 14: Hollow part used for experimental testing

Young’s modulus should be approximatéyell Pa. We found an optimal value

of 1.96¢11 Pa.

Young’s modulus| Poisson’s ratio Density Section

Length

1.96¢l1 Pa 0.33 7850 kg.m ° | 0.08 x 0.08 m?

0.9m/0.65m

Table 8: Properties of the material used for testing

18




Figure 15: Microphone used for experimental testing

Figure 16: Material used for testing

Figure[19 shows the results obtained in this section. Thawehof the hollow
part has been predicted quite well. The measurement cupakbdown at 350 Hz,
because of the cut-off frequency of the shock hammer. Neskss, the two curves
under 350 Hz are not so different.

Under 350 Hz, differences between the two curves may haveusareasons. First,
the hollow part has been suspended through a rigid bar — ierdedget a punctual
contact — and a sandow. This sandow induces a very low st#ftieat could influence
the results. Secondly, though the extremities of the hof@ant have been blocked,
there may be leakage because of the wire of the microphonereThay also have

19



Figure 17: Element used for the modal analysis

Figure 18: Element used for the modal analysis — curved part

been measurement errors or inaccurate measurements.

4 Conclusion

The method we proposed in this paper allows us to study hagilamss of a struc-
ture with good precision, using generalized degrees ofifree This modal method
does not use nodal degrees of freedom on the boundariesdregdements, which is
quite interesting. Modal matrices created by the modalyaabf an element can be

assembled the same way as finite element matrices.
Numerical testing on a waveguide and a finite element moded khown that the

method can produce quite good results. Of course, resuttsngdl for the infinite
waveguide are not as good as the results obtained with fialtevinparts. The case of
a stiffener coupled to a plate has been processed. It hasheam that the method pro-
posed in the paper was able to produce good results in thés Experimental testing
has shown that the fluid-structure coupling was correctlgetiaed, which will allow

20
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Figure 19: Measurements and modal analysis

us to predict the pressure field resulting from the the skrlef a complex structure.
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