N
N

N

HAL

open science

MDLChunker: A MDL-Based Cognitive Model of
Inductive Learning

Vivien Robinet, Benoit Lemaire, Mirta B. Gordon

» To cite this version:

Vivien Robinet, Benoit Lemaire, Mirta B.
Model of Inductive Learning. Cognitive Science, 2011, 35 (7), pp.1352-1389.

6709.2011.01188.x . hal-00624819

Gordon. MDLChunker: A MDL-Based Cognitive
10.1111/j.1551-

HAL Id: hal-00624819
https://hal.science/hal-00624819

Submitted on 19 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00624819
https://hal.archives-ouvertes.fr

MDLChunker: a MDL-based Cognitive Model of Inductive Learning

Vivien Robinet, Benoit Lemairk and Mirta B. Gordaoh

'University of Grenoble

Running Head: Cognitive Model of Inductive Learning

Address correspondence to:

Vivien Robinet

INRIA — Equipe NeuroMathComp
2004, route des Lucioles

06902 Sophia-Antipolis Cedex 2

France

vivien.robinet@inria.fr

Abstract

This paper presents a computational model of thelwanans inductively identify and aggregate coreéum the
low-level stimuli they are exposed to. Based on ithem that humans tend to select the simplest tstes; it
implements a dynamic hierarchical chunking mechmarniswhich the decision to create or not a new &harbased
on an information-theoretic criterion, the Minimubescription Length (MDL) principle. We present thetical
justifications for this approach together with éswf an experiment in which participants, exposedeaningless
symbols, have been implicitly encouraged to crédgh-level concepts by grouping them. Results siioat the
designed model, called hereafter MDLChunker, makesise quantitative predictions both on the kifidlaunks
created by the participants and also on the moitewhich these creations occur. They suggest beasimplicity
principle used to design MDLChunker is particuleagfficient to model chunking mechanisms. The materiest of

this model over existing ones is that it does Bquire any adjustable parameter.

1. Introduction

Humans are able to associate together stimuli they consider similar because they have adequatdame
schemata to represent them. The ability to genenate mental schemata endows individuals with endénc
capabilities in the world where they evolved. WHaned with sequences of low-level stimuli, they al#e to
organize them dynamically according to their latstructure in a way that helps prediction. Thisstding
mechanism mostly known under the name of "chunkisggms to be a general information-processing itool
perception and learning (Gobet et al, 2001). lalso studied in the literature of implicit learnifi@leeremans,
1997). The challenge of inductive concept learnintp understand how and when a collection of diishowing

internal regularities are bound together to createw concept or class.

There are infinitely many ways of organizing théommation grasped from the environment, as welthese are
infinitely many curves that fit a finite set of dabr an infinity of grammars which cover a seseffitences, etc. As
has been thoroughly discussed in the theory of Machearning (see Bishop, 2006) the induction poblof
finding the best model underlying or explainingea ef data has no trivial solution. The adequatamexity of a
model is related to the available amount of daia:domplex models may in principle better fit tretad but at the
expense of a poorer predictive power. The tradéefiveen goodness-of-fit and predictability is kmoas the bias-
variance dilemma. We believe that humans put iméztice general mechanisms to construct and seteatepts,
which efficiently represent the input stimuli. Guypothesis, following Chater & Vitanyi (2003), isat humans put
a general principle of simplicity into practice $elect representations among several possible dnasrmative
justification for considering simplicity as a pripte underlying cognitive tasks (Chater, 1999)hattamong all the
possible representations consistent with extertielut, a cognitive agent should adopt the one whilghest
predictive power. Simplicity is closely relateddompression: the simplest representation of afsstirauli is the
shortest one, with no internal redundancy. A shepresentation helps comprehension and interpoetatf the

external world because it contains all the relevagtilarities.

Both statistical learning theory (Vapnik, 1998) akdimogorov algorithmic information theory (Kolmogu,

1968) show that predictability is highly dependentthe complexity of data representation. In paléic within the

framework of Kolmogorov's theory, the shortest esintation (which is the simplest one) has thedsgpredictive
power. The same principle is used in scientifioties: the best model of empirical findings hasltveest number
of parameters. From a cognitive point of view, esgntations that satisfy the principle of simpjicate plausible
because they require less resources, provide tagpredictions and easy recall. Since algorithmiforimation

theory gives a theoretical justification for selegtshort representations, we recast the searclemésentations

with optimal prediction properties into the problefiiooking for the shortest representations.

We assume that humans learn new concepts inducfiggh low-level stimuli through generation andesgion of
new lexicons or concepts that represent these lstimuhe shortest possible way. These conceptg gise to
representations of the external world which arenagit because they use a minimum of resources awnd tree
highest predictive power. Since stimuli are peredivand represented with some initial lexicon, @nganew
concepts amounts to enhance the lexicon by inojudaw elements that allow for shorter encodinghefdld ones.
Actually, these new concepts are useful only if/thelp to better represent new stimuli. In our niptlee criterion
defining the "goodness" of a concept among comgetlternatives is the length of the stimuli repréaons when
that concept is used. Applying this criterion isrery complex task, not only because defining a menwcept
requires a combinatorial search in the space gdabible combinations of lexicon elements but akscause there

is a multiplicity of alternative transcriptions afstimuli in terms of a lexicon.

Our main concern in the present paper is to tesptrtinence of creating chunks in accordance thighsimplicity
principle. In our approach, concepts are hierasctoé chunks, and concept selection is performedgushe
Minimum Description Length (MDL) principle (Rissame 1978). These choices have strong theoretical

justifications that we discuss in the section 2.

We use an algorithm borrowed from the informatidredry literature: the two-part MDL coding. The two
corresponding basic processes, generating churikselacting the best ones, are implemented in Higiplest
version, called MDLChunker, discussed in sectionTBis implementation does not integrate specifignitive
constraints that are nonetheless highly relevahtitban cognition modeling in general, althoughtoatur problem

in particular.

Special efforts have been made to keep the modsingde as possible, and especially to avoid frasmpeters.
This is very important to ensure that results ddpamthe information carried by the model (Sun,£0and not on
ad-hoc posterior adjustments. Said differently, ave not interested in the ultimate performance thay be
achieved through specific refinements of our apgno@ur goal is to test the relevance of the aatiodi of
simplicity and chunking, not the performance of @edfic implementation. The MDLChunker produces the
quantitative predictions necessary to validatentioglel through comparison with experimental datat{se 4). We

compare it with other models, theoretically in @t and experimentally in section 6.

In section 7 we present a completely different npéntation of the same principles, MDLChunker-cbgt is
more plausible from the cognitive point of view,drder to show that the studied principles may &mltelized in a
brain-like architecture. The cognitively plausiblepresentations are shown to be compatible witmitiogly
plausible computations. The performance of MDLCharmdog was found to be similar to that of the bare
MDLChunker on a new experiment. Memory capacityfiscentral importance in concept learning. Learnaig
word segmentation, another cognitive task treatetie literature, is shown to be highly dependanthe size of the
short term memory. The ability of our model to de@h memory size constraints is investigated ictisa 7. We
discuss why memory size should be measured in tefrasncepts' description lengths rather than iminers of

items. In section 8 we summarize our conclusiorms@npose some lines to guide future investigations

2. Theoretical background

Our main hypothesis is that humans perform induagti@. construct and select representations, Ipfementing a
general simplicity principle (Chater & Vitanyi, 28D This section presents the theoretical justifices for
choosing the simplicity principle and the chunkimgchanism as a basis for the design of MDLChunkesented

in section 3. Its validation is described in satto

2.1. From the induction problem to the Kolmogorov compleity

Within the Machine Learning framework, the induatiproblem may be rephrased in terms of the “biagmnae
dilemma” (Bishop, 2006): sufficiently complex mosletan in principle fit every finite dataset (smbiés). The

counterpart is a poor ability to account for newad@uge variance). Designing a new model bringslation to this

trade-off between predictive power and data fittiegr example, a cyclic phenomenon may be well iedédi.e.
provide good predictions) by a sinusoid even if¢hare fitting errors which may be attributed tasedn the data.
This simple curve may provide better predictioratione without fitting errors. The VC-dimension pvigk, 1998)
of a model is a theoretical concept that allowsngjfiang the probability of prediction error in tes of the number
of parameters and the amount of data used to detetimeir values. Unfortunately the VC-dimensiomdg easy to

calculate and in particular it is unknown for thedel considered in this paper.

The simplicity principle provides a solution to theuction problem (Chater & Vitanyi, 2003) by peaing the
shortest representation among all possible oneis pitinciple is of particular interest for cognitivmodeling
because relevant properties can be demonstratégdnwiie Kolmogorov complexity framework. Kolmogorov
complexity (Solomonoff, 1960; Chaitin, 1966; Kolnargv, 1968) gives a formal definition of the intué notion
of simplicity, without making assumptions about fh@cess that generated the data. The complexity gifzen

datasetX is defined as the size of the shortest computegram P able to generateX on a Turing machine

(Turing, 1936) and then halt. In other words, is the best compression without loss that carobad for X .

The generality of this measure is guaranteed byirkariance theorem (Solomonoff, 1964): the prograny
language itself (i.e. the particular Turing machin®es not matter, since all programming languggesiuce
programs of the same size up to an additive cohstae latter only depends on the Turing machineniot on the
dataset X. This additive constant represents the size of élmlator able to translate instructions from one
programming language to another. The Kolmogoroverity is a theoretically useful measure of thimimation
carried by a given set of data but, even worse thar/C-dimension (which has been determined farestearning

machines, like neural networks), cannot be caledldti & Vitanyi, 1997).

One of the most important results in Kolmogorov pterity theory is that the shortest prograp for a given

datasetX has also the highest probability to make correetigtions about new data issued from the sameepsoc
as X (Vereshchagin & Vitanyi, 2004). Intuitively, thbartest program contains all the information anthimy but
the information necessary to generate the dat#seiny longer program adds extra-information notpanped by
the datase . This extra-information is, on average, not bett@n random information which, included in a longe

program, would decrease its probability of makingrect predictions (Vitanyi, 2005).

Thus, without additional information, the shortpsbgram P for X is the best model foX. This result gives a

theoretical solution to the bias-variance dilemnentioned before. As an example, consider the dbtd {2, 3, 5,

8, 13}. The following representations are both catiige with the data:

- X2 =Xyt X Hi>0andx =x, =1

However the first one is preferable because ih@ter. The second one is more constrained bedtumsdudes the
implicit assumption that the data are generatea Ipplynomial process: this information is not camtd in the
data. Considering that {1, 1, 2, 3, 5, 8, 13} dre first seven Fibonacci numbers is the most priebiaterpretation,
making the continuation 21, 34, ... (first case)renprobable than 29, 85, ... (second case). Eveheifexact
Kolmogorov complexity of this dataset is unknowrdaihe two representations are not actual programsaf

universal Turing machine, it is easy to see thatfitst representation is shorter and thus moregitde than the

second.
2.2. The chunking mechanism

Chunking may be considered a key mechanism in tiognit was initially introduced by Miller (1956 describe
the short term memory capacity, that he found tabeut seven plus or minus two chunks. In factrettis no
precise definition of what constitutes a chunk. érciing to Gobet et al. (2001) a chunk is "a coltetiof elements
having strong associations with one another, buakwessociations with elements within other chunRsius, a
chunk clusters together strongly associated elesniatd a single unit. A chunk may be consideredh aoncept
facilitating recall but it does not correspond tfixad quantity of information. Chunks allow thegritive system to
represents complex information as collections efrentary units, which may be chunks themselves prfbeess of
chunking has to solve two underlying problems: wélamentary units should be clustered together anttunk,

and when a new chunk is worthy to be created.

For instance, when exposed to the flow of phoneofi¢seir language, toddlers group phonemes that teroccur

together, forming syllables and then words. Words thus be seen as chunks of syllables which amdalves

chunks of phonemes (see Fig. 1). Sequences of woatl®ften occur jointly can also be clusteredoton higher-

level chunks.

([muveb])

~

[mu:vabl])

/ \
C mm) () (1)

@0 Coh OO

Fig. 1. Example of phoneme-based chunks that are drarchically organized using prefixes and suffixeso

form the syllables, and then the word "immovable".

In MDLChunker, concepts are represented by chunkkl@arning new concepts means creating new chdriies.
simplicity principle may be applied to any kind kfgularities. Because the regularities capturecenl@émpn the
representation language, it is important to chotisese representations carefully, and we have chosen
representations that have strong cognitive justiitc. Languages having the expressiveness of mg anachine

are able to represent all the regularities expoésshrough an algorithmic procedure (Turing, 1936)terms of
language representation, chunks may be considesed 'aminimal expressiveness" language. They argleim

conjunctions of elements, such as:

-chunk ABC=AandBand C

However, a hierarchy of chunks can still represelarge variety of concepts. Chunks are broadly @sel studied

in cognitive psychology. They serve as a basis @fesl cognitive computational models such as EPAM
(Feigenbaum & Simon, 1984), CHREST (Gobet, 1993)m@etitive Chunker (Servan-Schreiber & Anderson,
1990), PARSER (Perruchet & Vinter, 1998), etc. Anparison of MDLChunker with some of them is presdrnin

section 5.

2.3. The Minimum Description Length principle

Kolmogorov complexity-based approaches rely on idetsen languages that have the expressivenessucgh@
machines. However, a cognitive agent is not abkxtoact all the kinds of regularities that mayrepresented with
a Turing machine (van Rooij, 2008; Oaksford & Chat®93; Chater, 1996). For example, it is easyaftwuman to
interpret the 30 bits 0010010010010010010010010D1#8%) 10 repetitions of "001", whereas it is difficto
interpret 110010010000111111011010101000 as tke tfiirty bits of 71. Clearly, in the first case, there is a
chunking mechanism at work: the regularities in tfa#a can be recognized because the chunks "00¢"bma
identified. Instead of the initial binary lexicorsed to encode the data, the new representatiomiosrd single

chunk denoted "001".

In the particular case we are interested in, whegelarities are chunks, the minimal Shannon infdiom measure

of the data is a computable approximation of Kolorog complexity according to Information Theory (lmegy-
Yan-Cheong & Cover, 1978)). Information Theory asss that the data are realizations of a randonabiariX

that takes values in a lexicon according to sonubaiility density P(X). The amount of informatiorl (X;)
carried by a given valueg (an element of the lexicon) of the random variadé@ends on the probability of its

occurrenceP(Xi) through the following equation (Shannon, 1948).

I(x) =-log, P(x) (1)

According to Shannon information theory, the shairtmde for the random variabl¥ has a length given by (1):

the most probable values are given the shortestscothus, the minimal length (in bits) requiredaiverage to

encode one realization of a random variable thag v@luesX, drawn with probabilityP(x) is:

L(X) = =2 P(x)log, P(x) (2)

This intensive quantity is called entropy. Approzgiimg probabilities by the corresponding frequesicibe shortest

encoding of any realization di data has a length
— n
Ln(¥) = -2 1 log, - (3
i

where I, is the number of occurrences of the valyein the dataseX . This is the Shannon-Fano coding of the

data. Whenever a datasgtmay be considered as a setNdf independent and identically distributed realizasiof
a random variableX , the frequency of each valué may be used to approximate its probability. Thia,optimal
(shortest) representation of the data is given dyaton (3). Notice that this does not give us itgresentation

code, but only its size. The optimal representatiode uses words of Iengtl‘(xi) to encode the realizatiok,

n
whose frequency isN—')

Consider for example the set "A B A A C B A D" whioeeds 16 bits to be naively encoded (becausastt 2 bits
per symbol are needed to encode four different syspbNotice that equation (3) applies to this aetl gives
L., = 14 bits. Using the frequencies of each symbolmey encode them differently with codelengths gitagn
equation (1). The optimal codewofdsre: A: 0, B: 10, C: 110 and D: 111. They allow 8ystem to compress the
original data to give the following 14 bits repration: "0 10 0 0 110 10 0 1P1'This is an example of the usual

application of the Shannon-Fano encoding algorithiahata compression.

Consider now a dataset showing frequency reguéardind chunks (such as "XYZ B XYZ XYZ C B XYZ D'A.

naive encoding requires 2.6 bits per charactettfersix letters alphabet (in fact, with 3 bits vea@ncode up to 8

! This is an approximation to the extent that frewpies are approximations of probabilities.

2 The notation "Z: z" indicates that z is the codeor Z.

® The codewords being self-delimiting, we use sp&mesnderstandability reasons.

10

characters, but 2 bits are not enough to encodmatly 6 characters). Thus, we need 41.6 bitsricode the data
using this naive encoding. The optimal Shannon-Feode takes advantage of the frequency of each aytob
encode the more frequent ones with fewer bits. Ating to (3), the minimum length needed to enctdsé data is
38 bits. Now observing that symbols X, Y, Z argjfiently associated, we may replace them by a chunkyZ.
Then the data are represented by "A B A A C B Avbiose minimum representation length is 14 bitsstasvn
before. Creating the chunk "A" has a cost, whichmeasure by the length of its definition: 8 bitshigs' per
symbol). We add the chunk definition length to tlepresentation length in order to obtain the tdedcription
length of the data which is thus 22 bits. We ses ihtroducing new concepts (the chunks) allowedouturther
compress the data. Transforming "XYZ B XYZ XYZ CX¥Z D" into "A B A A C B A D" and "A: XYZ" saves
16 bits. The hypothesis that chunks are the ordulegities present in the dataset ensures thasttirgg obtained
after defining the chunks can be seen as indepénéafizations of a random variable. The optimalifythe

resulting compression only depends on the optignafithe chunking process.

The above example shows that when looking for #st kepresentations we need to identify which sysbloould
be grouped together to form the chunks. The differepresentation sizes are evaluated using equg)o Chunks
are generated whenever they reduce the overaliHexighe stimuli description. The latter is compd®f two parts:

the chunk definition part which serves as a lexiand the stimuli description given the chunk déiomis.

Within this paradigm, the best description of aadat is the shortest one, written in a programnfémguage
involving chunks. Moreover, the Minimum Descriptiblength (MDL) principle (see Griinwald et al, 200% &

general overview of MDL) is utilized to find in mtice the shortest description of the data. Ndtied the rationale
to look for the shortest encoding of input stimslthe search for good predictability and not thfataving memory,
which is a (probably useful) side effect. The twartoding version of the MDL principle (Rissan&fy78) is based

on the probability decomposition (Bayes rule):

* In this case, each symbol costs 2 bits because #re four different symbols in the chunk defiiti A, X, Y and

Z. These codelengths evolve as other chunks aatecte

11

P(stimuli,chunkg = P(stimuli| chunkg[P(chunk$

which, once introduced into (3) shows that the rimfation carried by the data is split into two patte chunks
information and the stimuli information given theunks. The chunk information captures the regudariin the
data while the data information given the chunKereeto the information carried by the data whee ltdtter are
encoded using the chunks. Finding the shortestferzthe overall description (stimuli representaicand chunks

definitions) is equivalent to minimizing togetheetsize of the two parts.

3. MDLChunker

MDLChunker described in this section is a raw impdatation of the MDL principle applied to chunking
mechanisms. While the MDL principle is a powerfutthod to solve the induction problem because iviges a
way of comparing the lengths of different repreagans, it gives no hints on how to generate thienthe absence
of other information, the only regularities that wensider to cluster data together into useful epte (the chunks)
are the frequencies of the elements: elements @ppezten together may be grouped and replaceal dhyunk with

a more compact representation.

Clearly, looking for and selecting the best chuitka combinatorial problem, because one needs rtipace the
overall description length of the stimuli for eaglossible group of symbols that may constitute cbunk
MDLChunker assumes that only pairs of symbols magtwuped together to constitute new chunks. Alghatiis
not possible to create n-ary chunks in generalawitispecifying an upper bound for n because ottmbinatorial
problem, in principle it is possible to create g-ahunks with any arbitrary value of n through hrehical
aggregation of binary chunks. Clearly, the sharhtenemory capacity gives an upper bound for n. @titiprecise
results about the arity of chunks that humans bhte t create, we restrict MDLChunker to only caiesibinary

chunks. There is some evidence (detailed in se@jidhat humans proceed that way.

3.1. How MDLChunker works

This section describes the simplest version of MBludker. Some points may appear cognitively implaladio the

reader because we have neglected cognitive camtstréin particular, it has no memory limits or tircenstraints.

12

The goal is to show how far we may go without idtroing any specific hypothesis about human cogmitiwits.
More plausible versions from the cognitive pointvigw are presented in section 7 where we showttigatesults

are similar.

MDLChunker generates a hierarchy of chunks throaghexploration algorithm based on the MDL princigte
guides the search of the chunks that allow forsthartest representation of the perceived stimuie Tegularities
found in the data are organized into chunks, wlaighthen added to the lexicon used to encode itimellsinto a
compressed representation. The MDL principle opsras a control mechanism of chunk creation: actewk can

be accepted only if the resulting description langftthe stimuli (including the chunks definitiori®ycomes shorter.

Inputs are sequences of stimuli. MDLChunker repres¢éhem using sets of initial symbols or featucefied

hereafter canonical chunks (in the example of eedj this is the initial alphabet used to encdderaw data), and
creates higher level chunks by hierarchically megdower level chunks. The higher level chunksexpressed in
terms of unordered conjunctions of lower level dtsirBecause our system is intended to be genedadhgplicable

to different domains, the initial features or caisahchunks obviously depend on the specific domain

Stimuli ' Stimuli | Chunks Chunks
:
L]
123 : 9 ci=1
123 ' c9 2=
45 . c7 Ci=3
12345 ! cocr C4=4
45 ' c7 C5=5
45 . c7 C6=6
123 . C9
45 ' c7 C7:C4 C5
12345 ' c9C7 c8:Cl C2
123456 1 c9C7cCs C9:C8C3
1236 : Cc9 Cé
12345 4 cc7
1]
104.5 bits > 36.8 bits + 55.7 bits = 92.5 bits

® This is a standard assumption required by mangratiodels such as SP (Wolff, 2006), PARSER (Peauéh

Vinter, 1998), Competitive Chunker (Servan-Schreénderson, 1990), etc.

13

Fig. 2. Example of the way extracting chunks can eopress information brought by the incoming stimuli.
Chunks C1 to C6 are the canonical chunks allowing saw description of the stimuli. Chunks C7 to C9 ae
used to compress redundant information because CL5 and C1, C2, C3 appear frequently together. The

codelengths of the different parts are given at theottom.

Through the learning process, information contaiimreéach new stimulus is re-expressed in termshefabove
mentioned two parts: definition of the already fest chunks and representation of the stimuli givenchunks’
definitions, hereafter denoted “Stimuli|Chunks”"gdeg. 2). As a result, the information shared Hgrge enough
number of stimuli is stored as Chunks while then8ti|Chunks part contains the information encodedugh new
chunks. According to the formalism described secgp the chunks contain compressed inform&tiwhich we
interpret as the induced concepts learned fromsthmeuli, while the Stimuli|Chunks part contains tegmuli

representations in terms of these concepts. Thimileg procedure changes the representation ofrigaal data,
but neither adds nor removes information. The twdsare incrementally updated taking into accaath new

stimulus, which is processed by applying a threg-gtrocedure:

(1) Updating codelengths: each chunk is assignealdalength defined by equation (1), according to

the frequency of its use in the Chunks and in tirawBi|Chunks parts.

(2) Factorization: the current stimulus is factedzto find its shortest encoding using the existing

chunks. Its representation is then included inStimuli|Chunks part.

(3) Optimization: new chunks are created in the r&hpart whenever they allow to decreases the

overall description length, i.e. the Chunk plus $tienuli|Chunks lengths.

3.2. Example

Initially, before any stimulus has been perceiveé, Stimuli|Chunks part is empty and the Chunk pantains the

canonical chunks which are the features used todenthe arriving stimuli. Fig. 3 illustrates how MOhunker

® Information that can be compressed in terms ofikbuThe model is blind to other regularities.

14

works on the simple dataset of Fig. 2, where thmnical chunks are C1, C2, C3, C4, C5 and C6 cporeting to

features 1, 2, 3, 4, 5 and 6. The first nine stirate trivially encoded using the correspondingaracal chunks C1
to C6 (first pane). At the 9th step, the conjunttad C4 and C5 is frequent enough to be mergeddnt single

chunk: this is the optimization process. Adding C4:C5 to the Chunk part increases the descrifgiogth by 12.7

bits. However, once the corresponding co-occurrermfe C4 and C5 are replaced by C7 in all the engsti
representations, the description length of the @t|@hunks part decreases by 16.4 bits. The oveledkcription

length is decreased by 3.6 bits (second pane). Wieenext stimulus is presented, its encoding gthenchunks is
no more unique: it may be either C1 C2 C3 C4 C®LC61 C2 C3 C7 C6. The factorization process isl usdind

the shortest one (here C1 C2 C3 C7 C6 whose lendtB.1 bits) (last pane).

15

Stimuli

123
123
45
12345
45
45
123
45
12345

Stimuli

12345

Stimuli

45
45
123
45
12345
123456

---..---l..----..----..----..

--.---i---.---.---.------.---

Stimuii | Chunks

clcaas
cicacs
C4C5
ClC2C3C4C5
C4C5

C4C5
clccs
C4C5
ClC2C3C4C5

63.8 bits +

Stimuii | Chunks

clcacs
clcacs
c7
clcacicy
c7

cicaccy

47 4 bits +

Stimuli | Chunks

clcacs
clcacs
c7
clcacicy
c7

€l €2 E3CF
CIC2C3C7C6

Chunks

Cl=1I
Cl=2
Ci=3
Ci=4
Ccs5=5
Cé=6

16.9 bits = 80.6 bits

Chunks

Cl=1I
C1=2
C3=3
Ci=4
Cs5=5
Cé=6

C7:C4 C5

29.6 bits

77.0 bits

Chunks

Cl=1
C2=2
Ci=3
C4=4
C5=5
Cé=6

C7:C4C5

Fig. 3. The first pane shows the codelengths of tieo parts after the 9th stimulus (1 2 3 4 5) is peeived. The

second one presents the corresponding optimizatigghase that creates chunk C7: C4 C5 in the Chunk par

16

and updates the Stimuli|Chunks part accordingly. Tk third pane illustrates the factorization phase othe

10th stimulus (1 2 3 4 5 6) that gives raise to threpresentation C1 C2 C3 C7 C6.

We now describe the three processes involved in ©Inker learning process: the updating of codelenghe

factorization and the optimization processes.

3.3. Updating codelengths

The optimal codelength of each chunk is computéusquation (1), Wher(P(Ci) is the probability that chunk Ci

appears in the two parts, Chunks and Stimuli|Chuhlkss is equivalent to the probability of Ci irseing composed
of the concatenation of the two parts. As opposethé example of section 2, the contents of the pads are
supposed to be generated by the same probabildyildition. In Fig. 2, chunk C9 appears 8 timesthie

Stimuli|Chunks part and 1 time in the Chunk palte Bptimal codelength corresponding to this prdbglmf 9/33

is 1 (C9)=1.9 bits.

3.4. Factorization

This process corresponds to an encoding of the istiauli described using only the canonical chuimke a new
representation in terms of the extended alphab@tagong all the Chunks. Among all possible encgdirthe aim is
to find the shortest one. The factorization of estitmulus is generally not unique, and finding shertest encoding
is not trivial when chunks overlap. This problenaisn to splitting a sequence of phonemes into wosdmetimes
several solutions exist, especially if the sigsahoisy. For example, "grapes and blackberry Startd "grape sand

black bear restarts" are two ways of chunkingstimae sequence of phonemes.

In MDLChunker factorization is implemented by meaof a heuristic search in the space of all possible
combinations of chunks. The algorithm starts with eanpty node and progressively adds chunks unfilliy

constructs the stimulus representation. The sdarghided by the distance (in the codelength sebstyeen the

" MDL is used as a selection criterion: it is notessary to find codewords having this optimal cedgth, and

using real numbers is not problematic.

17

current sequence of chunks and the stimulus repegsen in terms of canonical chunks. In complidatases the
algorithm may fall into a local optimum and mise tjlobal shortest encoding. The algorithm descrhmre is used
to factorize a bounded stimulus. In the case whieeee is no natural way to split the input dataibbunded

stimuli, it may be extended (see section 6.3) tprent a continuous stream.

Fig. 4 illustrates the factorization of the stinml@1 C2 C3 C4 C5 C6 when the system contains glrehahunks:
6 canonical chunks C1 to C6 of size 5 bits eachthadhunks C7: C1 C2 (9 bits), C8: C7 C3 (7 bi9;, C3 C4 (1
bit), C10: C4 C5 (9 bits) and C11: C10 C6 (7 bild)e current node is expanded, creating potentides with any
chunks included in the stimulus but not yet appliethe current path (the one starting at the st reaching the
current node). Each potential node is associaggehalty (written in parentheses) equal to the lerigt bits) of the
path from the root to the node, plus the lengtheasary to complete the representation using omyctnonical
chunks. For example C9 is associated a penaltybif 4 4 * 5 bits = 21 bits. The node having thealest penalty
becomes the current nddg@ere C9) and is in turn expanded. The first fazation found is C9 C7 C5 C6 (20 bits),

and the second one is C8 C11 (14 bits). The leteturned as the best representation for thisustis.

L]

L]
. .
:
(€7 Jas=s0 COEE
.C8 (22=7+15)

(29=9+20) . . .
m=7+|5) . . :

8 This algorithm is similar to A* (Pearl, 1984). Iaptimality is guaranteed only if the chosen penéite. the
heuristic used) underestimates the distance bettheecurrent node and the goal. This is not the tase because

the penalty has no obvious lower bound.

18

Fig. 4. The first two factorizations of the stimulis C1 C2 C3 C4 C5 C6 where not all expanded nodesear
represented. The penalty used to guide the searchindicated in parentheses. The first term is theast of the

path (in bits) from the root, and the second terms an estimation of the cost necessary to reach tgeal.

3.5. Optimization

During the optimization process MDLChunker looks few binary chunks that decrease the overall g#&or
length and adds them to the Chunk part. Given timebrer of co-occurrenceCiCj of each pair of chunks Ci and

Cj, it is possible to calculate the new descriptiength of the system if the corresponding chunk CkCj was

created:

DescriptimLengthinceasd€Ci,Cj) = L1+ L2+ L3+ L4 (4)

with

o #N+3#CIC])| (#N)_ o (#N
Ll-#C'CJEﬁ'Og{ #CiCj +1 j ooz 'ogz(#qﬂ

L2 =#CiCj (log,| # - 37#CIC) —Iogz(#—N_] +4CiC) log,| TN 3HCICH oy [#N
#CIiCj +1 #Ci #CiCj +1 #Cj

L3=10 (#N +3-#CiCj)’
9| lecicj +1)deciC) +)feCic +1)
L4= (#N—#Ci—#Cj)Eﬂogz(—#N +2_N#Ciqj

where #Ci (resp.#Cj) is the number of occurrences of Ci (resp. @ﬁ):iC_Ij (resp #C_)iCj) is the number of

occurrences of Ci without Cj (resp. Cj without @id # N is the total number of occurrencdsl represents the

codelength saved by replacing co-occurrences ah@iCj with Ck.L 2 is the increase of codelength for Ci and Cj,

19

due to their lower frequencyL.3 corresponds to the codelength necessary to définehunk Ck: Ci Cj, and_4 is

the decrease of codelength for all the chunks toltiee smalledN .

All the new chunks that help decreasing the togslcdption length are created, beginning by theleading to the
highest decrease. This implementation is sub-optheeause creating the best chunks first does mmire global
optimality. Another search algorithm, like simuldtannealing (Kirkpatrick et al, 1983), may in pijple improve
the performance of the model. However, the bemafiild be null because the overall cognitive plailigfwould
not improve. Here we would like to make a point @hthe distinction between plausibility of repretsgions and
plausibility of processes. For instance, a plaesitldpresentation can be obtained by means of aitoeiy
implausible search. There is a trade-off betweentwo: improving the plausibility of representatiooften means
more computation and therefore less plausibilityppicesses. With MDLChunker, we would like to playoth
ways but for the moment we only concentrate on gikality of representations. Our search process thas
selected on a criterion of simplicity. Thereforejyasearch algorithm that would increase plausipilitf
representations at a higher expense of implausibdf processes is not worth implementing. In frarfttwo

algorithms identically implausible, we keep the trgmple.

Only co-occurrences of chunk pairs are considevadake MDLChunker as simple as possible. Consebyemw
chunks merge always two old chunks. Since thisgs®ds iteratively performed, n-ary chunks aretedbly simple
aggregation of binary chunks. An example can bendokig. 2 where a ternary chunk C1 C2 C3 is creéated
merging chunk C8: C1 C2 and chunk C9: C8 C3. Ndtiet the intermediate chunk C8 serves only tonge€9
and is not used in any representation. Its codéteisgvery high compared to that of C9 and its fisléhus very
limited. The distinction between binary and n-anyigks can easily be established using the coddlefge chunks

never used to represent the stimuli (i.e. the chumaving a great codelength), only serve to defieen-ary chunks.

Considering n-ary chunks as composed of smallaarpiohunks has cognitive justifications. Evidentat thumans
process in the same way is detailed section 7.vahéshing sub-chunk effect described by Giroux & R2009)
favours the hypothesis that humans creates bigkshiop aggregating smaller chunks that are thenofteg. This
forgetting would correspond in MDLChunker to a clesigth increase, as described above for C8 whas it

replaced by the bigger chunk C9.

20

4. Experiment

4.1. Design

The main problem to compare MDLChunker with humarfgrmance on concept induction comes fromatipegiori
knowledge humans may possess. If MDLChunker andansgndo not start to learn on similar grounds, any
comparison is flawed. There are two ways of oveliognthis problem. The first one is to have infaris
participants because of their limitacpriori knowledge. French et al. (2004) for instance peréml a categorization
experiment with infants. The second one is to usderals that are unfamiliar to humans (pseudo-gjord
meaningless symbols, etc...). For instance, Fis&sBn (2001) create such an artificial environmeamposed of
grids of unfamiliar symbols organized accordin@tpredefined structure. They show that humans atéy@ble to
learn that structure from repeated exposure togtids. Our experiment belongs to this second apmbrosith

symbols similar to those used by Fiser & Aslin.

Basically, such experiments are based on stimulegged by means of a grammar designed beforefdre.
classical experimental paradigm used in induct@agring (Miller, 1958), called artificial grammagarning (AGL),
is based on an artificial grammar producing sheduences of letters. After a learning phase on gratical
sentences, participants are given new sentencesrandsked to determine whether they are gramnhaticaot.
Using an artificial grammar is an attempt to litie effect of participant prior knowledge. Howev&GL usually
provides very limited data to compare the modelTtoe various types of model validation that one roagsider,

sorted by increasing demands are:

- prediction of the percentage of participant caranswers;

- prediction of the precise sequence of participagponses;

- prediction of the chunks created by the participa

- prediction of the time course of chunk creation.

Most of the time, only the first type is used, tlnisoducing some bias in the validation process (Redington &

Chater (1996) for a discussion). This is the casetlie Competitive Chunker validation (Servan-Sitiee &

21

Anderson, 1990). However, the percentage of coraestwers (or other statistics) is only one of theltipie
consequences of the chunks but does not tell ud mbout the chunks themselves. By using such g&eédhdmount
of information from the experimental data (in theliogorov sense), the risk is to validate a wrorgglel because
many models may be compatible with these statislicether words, many models may reproduce a péage of
participants’ correct answers but few of them abke do reproduce the dynamics of chunk creationc&ithe
classical AGL paradigm does not allow us to propedlidate MDLChunker, we designed a new experinient
which participants have to make explicit the contedhey learn in order to compare them step by siiép the

chunks created by our system.

Because of the deterministic processes involvadi.Chunker, the model may be considered as a uniytal
participant. It cannot reproduce inter-participaatiability. We expect MDLChunker to only capturensistent
behavior among participaritsA deterministic model inferring both the consigtand the variable chunks would be

a very bad predictor of the participant generaldvédr.

Its aim is to explain typical behaviors and noptedict the variance of such behavior in a popaothgtivhich is an
important information in cognitive modeling. Onevadtage of deterministic models is that all th@infation they
bring about is extracted in one single run whestashastic models require theoretically an infimitenber of run.

The drawback is that deterministic models cannptwe the variability around this central behavior.

If the variance is due to differences in the envinent (in our case, the particular data the indialgl are exposed to
in the experiment), the results of deterministicdels will differ accordingly. One may then determihe variance
of the model predictions by applying it to a larmgenber of different trials, which is out of the peoof this paper.
Notice however that in cognitive modeling both smsr of variance (inter-individual and inter-triaf-exist, and it
would be difficult to disentangle them from eaclest In fact, MDLChunker could easily be “stochast” by

introducing an additive Gaussian noise in equadioklowever, in the present paper we do not stovenddel the

° Generally, results produced by non-deterministadets are averaged in order to capture regularities make

consistent predictions.

22

complete distribution of responses. Our aim is &ednine to what extent the chunking mechanism imay

explained using the simplicity principle.
4.2. Material

In our artificial environment participants are rafpeely exposed to sets of artificial symbols. Vere asked to drag
and drop all of them into a given area, which igteyfastidious when done one by one. They are eaged to
group symbols together because their task is tlggrtehed. This may be done at any time by a drafydaop
operation. Each group is then represented by aemblcircle on the screen. Although grouping taleaestime, the
benefit is that later these symbols may be dragdetbgether in a single operation, exactly likeawtoffers the
"group” command in a drawing software. There isrestriction on associations, and participants exe fo create
useful, incomplete or even completely useless ggop feedback is given about the quality of theoamtions.
Participants are successively presented 75 setsioony a variable quantity of symbols. There aepdssible
symbols which are organized through 11 chunks aB8gevel predefined structure that participardsndt know
(see Fig. 5). No hint is given about the numbechafnks or the number of levels in this hierarchattiipants are
just told that they may create groups and thatoagmay be dragged and dropped like a single symthay are
also told that associations of groups and symhelstowed. Each of the 75 set is constructed enfoflowing way:
each of the 11 chunks has a 10 percent probatilibe part of the current set, which selects ali@usymbols per

set® A random noise generator adds an extra symbdéletes one of them, about once every 2.5 sets.

[Chunk 7 | [Chunk 8 | [chunk 9 | [Chunk 10] Chunk 11 Level 3
Chunk 1 Chunk 2 [Chunk 3 | [Chunk 4 | [Chunk 5 | [Chunk 6] Level 2
¢ d1LTaH XeF [l SLOAd7 P4 X Levelt

Fig. 5. Hierarchy of the 11 chunks used to generatbe 75 sets of the experiment.

19 Empty sets are removed.

23

All the participants have been presented the satssek” without time limit to perform the task. Howeven, order
to avoid any accidental association based on thgmoetogy of symbols, they are randomly assignedhionks at
the beginning of each experiment. Fig. 6 showsitherface of our experimental setting in the cousfeone
experiment. Symbols have to be dragged and drofipedthe left pane to the empty area next to iheDtareas
represent previously seen sets, so that partigpdmtiot need to memorize too much informationsT&idone to
avoid differences between participants due to bédiig in memory capacity. To avoid position andopimity

effects, symbols are randomly positioned in ea¢h™®ee current participant has already createda®igs (lower
left). Each time the symbols occur together, theyraarked with the corresponding color and theylmmoved in

a single operation. A symbol may be marked witlfiedé&nt colors because it can belong to severalggou

o] K 0 yy RS . s
P X a ¥ f
t X X R
P -9 K,
< e O
g
* OO0 Xy " x x4
x E E (\J 4 4 4
-_a ._a x - P
k 3 KX R ol ‘e X
- X : LY
X * ¥ %

Fig. 6. Interface used for the experiment. The 7 sybols in the current pane (left side of the screerfjave to be
moved to the empty area. The 2 symbols at the tog the current pane are part of the same group andan be

moved together in only one drag-and-drop operation.

4.3. Participants

18 participants were recruited. In order to moev#tiem, they were told that the appropriate creatibgroups

would give them points and that a ranking will Iséablished but the grading scale was not provided.

1 This is of central importance to compare the tesul

24

4.4, Results

The experimental results exhibit some variabilityomg participants: chunks are not exactly the santkare not

created at the same iteration. However, the 82mifit chunks created by the participants may Issifiad into two

categories:

- 71 chunks created by a minority of participamsn(significant chunks). Most of them (54 chunks)

are created by only one participant;
- 11 chunks created by a majority of participastgriificant chunks).

The threshold between significant and non-significunks is arbitrarily set to one half of thetfgdpants. Results
are not sensitive to this value and remain unchauge¢he range one third to one half. Non-significahunks are

created in average by 1.25 participants, whileiiggmt chunks are created in average by 13.5@pstnts.

MDLChunker was run on the exact same data humans evgosed to. Chunks created by MDLChuftkare then
compared to the groups created by the particip@#sause MDLChunker is intended to reproduce trerame
human behavior, it is validated according to it8itgtto create the significant chunks only. The dn-significant
chunks carry information about the variability dfet results around this central behavior, due tdigigant

idiosyncratic characteristics. As already discusgegldo not expect MDLChunker to reproduce thisiinfation.

12 As explained section 3.5, chunks that are onlylusalefine higher order n-ary chunks are not atersid here.

25

Chunk 1

=%

Chunk 2 :

o LanH

Chunk 3 :

p'e o

Chunk 3

ieoX

Chunk 5 :

A7

Chunk 6 :

eI

Chunk &'

X

Chunk ¥ :

Qe LaxX

Chunk 9 :

p'C X OIS ¢

Chunk 11 :

FOAd7 %X

Steps ilIIIIIIIIiIIIIIIIIIiIIII |||||i|||1|||||;|||||||||;|||||||||i|||||||||i||||| »
o 10 1] 0

o

Fig. 7. List of the 13 chunks created by MDLChunkerat the step indicated by a vertical line. All are

significant excepted chunks 3" and 6'. Each horizatal line corresponds to a participant: the left enl indicates

26

the step at which the chunk was created, its lengtindicates its duration. Results for MDLChunker-cog

presented section 7.1 are indicated by a verticalotted line.

All the 11 significant chunks are successfully teeaby MDLChunker and are created approximatelghatsame
iteration as the majority of the participants (ireeage two iterations later with a standard desiatf 7 iterations).
MDLChunker only created 2 non-significant chunksdaach participant created in average 4.9 norifsignt

chunks. Thus, MDLChunker is a better predictor yhid¢al participant behaviour than any randomly ehos

participant. A quantitative evaluation of its pretdbility is given at the end of this section.

The 13 chunks created by MDLChunker are composetieofll significant chunks found by the majoritythé
participants and 2 non-significant chunks also tbby 2 and 4 participants respectively. The timerse of their

creation over the 75 sets is presented on Figgéther with the results of the participants.

The 11 significant chunks are not exactly the lanis of the generative grammar. All the chunkshef $econd
level (chunks 1 to 6) are significantly found b tharticipants as well as 3 of the 5 chunks othire level (chunks
7, 9 and 11). The participants and MDLChunker alssated 2 significant chunks not included in thigioal

material, noted 3' and 4' in Fig. 7 because theyariations of the corresponding chunks 3 andh. ability of our
system to create chunks 3' and 4', and not chursksd8L0, is of central importance because MDLChuak®as at
predicting the human representations and not reyging the original grammar. It is important to haveystem able

to make the same "errofé'than humans do.

Another representation of the relative distancevbet the model and the participants is obtaineglbtfing them
as points in the chunk space. This space beingnoérision 82, we performed a bi-dimensional progecof the
chunk space in the highest inertia subspace (FjgsBowing the position of MDLChunker (filled cie} and the

participants (empty circles) at six different tisteps equally distributed over the 75 steps.

131t is probable that these "errors" are highly defet of the used dataset, and that the statistmsded by the

experiment are not sufficient to discover the uhdleg grammar.

27

X2

X2

13th step

o]

X1

X1

X2

25th step

[e]

X2

X2

38th step

[e]

& °
ES
co o0
S}

X1

75th step

X1

Fig. 8. Bi-dimensional scaling presenting the relate positions of MDLChunker (filled circle) and the 18

participants (empty circles) during the experiment.X1 and X2 are the highest inertia axis. Results aralso

given for MDLChunker-cog presented in section 7.1hatched circle).

The central position of the system may also beadtarized in a more rigorous way (Fig. 9), by phajtthe ranks

over time. At a given step, the best representativehe participants’ behavior, the participant ingvthe most

central position in the chunk space, is assignedihallest rank.

By averaging the ranks over time, we obtain a ganestimator of model predictability for the 75 peof the

experiment. We found that the system has the #mrdllest average rank among 19. Only two parti¢gare better

predictors. It is interesting to notice that althuhe predictive power of MDLChunker is not comstaver steps, it

converges to the most central position after 4Bsst&his suggests that MDLChunker is a pretty gpaatlictor of

the time course of chunk creation and is also #s asymptotic predictor of the chunks createchbyparticipants.

28

Participant 18
Participant 17
Participant 16 "~ ey
Participant 15 =~
Participant 14
Participant 13
Participant 12
Participant 11
Participant 10~k vl
Participant 9
Participant 8
Participant 7 ~
Participant 6
Participant 5
Participant 4
T T T et 71 11 8 e et o 1) F e . it T) e it e i

Participant 2

Participant 1 : e
MDLChunker-cog = = ="' ' * e
MDLChunker

T e

Steps iIIII\\Illi\ll\\\llli\\lll\ll\i\\\i\\\\Ii\\\III\\Ii\\\'\I\\\\i|\\ll\\\li\\\\l
0 10 20 30 40 50 60 70

Fig. 9. Ranks of the participants over the 75 stepshe lowest rank corresponding to the most centrgbosition.
MDLChunker (bold filled line) is considered as a witual participant. Results for MDLChunker-cog presented

in section 7.1 are indicated by a bold dotted line.

The best possible deterministic model should hheditst rank all over the 75 iterations, but a mlosthose rank is
close to the average rafikthe 9th rank in our case) is a good model. A rhbdeing a constant rank has a constant
predictive power. Fluctuations are due to partioctpabehaviors. A perfectly constant rank is nosgble, but a
good model is expected to have a non-increasing Between two models having the same average thakone
having the most constant rank has the most conptadlictive power over time, and thus is bettenthamodel
exhibiting huge variations. Having a good asymptqiiedictive power (small rank for high iteratioris) also
important for the sake of comparison with other eledin particular, let us remark that models sasi?PARSER or

Competitive Chunker are usually tested on theifitgktio reproduce asymptotically the behavior oftfmdpants.

14 Such a model has the performance one may exmeutdn unknown participant, but it is not the bestictor of
what an unknown participant would do. Models havingank smaller than the last rank are better prexdi than

the last rank participant would predict.

29

Results show that among 18 participants, MDLChurng&ehe best asymptotic predictor, and is a goadliptor at

each time step.

5. Theoretical comparison with other computational moels

A basic requirement for a cognitive model is itdigbto incrementally process the stimuli, whichdlosely related
to its capacity of using information already praz=bin order to guide the representation of nemvuti This is the
perception shaping effect (Perruchet et al., 2008. present now different models in the light détherception

shaping effect, and compare them to MDLChunker.

The idea of applying the MDL principle to descritfeunking mechanisms is not new. Brent & Cartwrigi96)
used it in order to account for the ability of chén to segment a stream of phonemes into wordsalveady
discussed in section 2.2, word segmentation cavidyeed as grouping into chunks phonemes which termtcur
together, and MDL is a way to select the most podbaegmentation from a set of possible ones. EnB&
Cartwright's model, finding the shortest descriptics not incremental: it is done by testing all fibke
segmentations of the input stream considered dsodewThe authors themselves notice the cognitiy@ausibility
of this exhaustive exploration of the chunk spauoe l@t open the possibility of using an incrememggbroach. In
contrast, the optimization process of MDLChunkeitésatively performed during the learning proceas:each
stage new chunks are created whenever they hetpaf#eg the overall description length. A secondaathge of
MDLChunker over Brent & Cartwright’s model is itbility to reproduce the way existing chunks shapegeption

of new stimuli (see section 3.4), and in partictifee vanishing sub-chunk effect described in sactio

Some models are designed to account for this @n-perception shaping process in the field of speech
segmentation. One of them is PARSER (Perruchet 8tevj 1998). Without explicitly using the MDL priipte,
PARSER is based on three processes (chunk credtimetting and interference) leading to a genbedtavior
similar to that of MDLChunker. At each time ste@yFSER randomly selects between 1 and 3 units inrjpet to
form a new candidate chunk or reactivate an exjathunk. Then a constant forgetting process isieghpb existing
chunks. As a consequence, the life span of lowugaqy chunks is very short, and only those havirggh

frequency remain after some iterations. These ioreatnd forgetting processes are somehow equivaterihe

30

optimization performed by MDLChunker to only creatdevant chunks. An interference mechanism is used
PARSER to decrease the weight of small chunks destbigger ones. This is one of the side effclett tve have
observed through the factorization process perfdriog MDLChunker. When run on the same sequences of
concatenated artificial words, PARSER and MDLChurdgi®e similar results (see section 7). They aréh kable to

extract the words of the language together withtithe course of word extraction.

Since the percept shaper used by PARSER is patigom, its efficiency on extracting only relevatiuoks
depends on the forgetting process. The BootLex in@ichelder, 2002) uses mechanisms very similahose of
PARSER, replacing the random size of the input dgt@rministic parsing process. In this case, #imaton of the
chunk performance is required, and the author afesquency-based heuristic to guide the searcBobitlLex, the
process of chunk creation is under the guidanca Miaximum Likelihood Estimator (MLE). Since thistiesator
imposes no constraint on the complexity of chucksinks tends to become longer as the algorithmegs®ss the
stimuli. To solve this problem, the author useseaternal parameter (called OptLen) to fix the agerahunk
length. In MDLChunker, the estimation of chunkitgfiis also based on frequency, but the superiaitylDL over
MLE is its ability to deal with model complexity (dnyi, 2005). MDLChunker does not suffer from thigerfitting

problem, thus avoiding the use of external pararedteconstrain the chunk length.

MDLChunker can be qualitatively compared with otimeodels of stream segmentation, using the claasidic

proposed by Batchelder (2002) based on functiomatacteristics (Table 1). The characteristics inedlare:

- Lexicon: specifies whether the model containggplicit representation of the created chunks;

- Cluster or divide: distinguishes between the telisg strategy consisting of merging existing

chunks (cluster) or inserting boundaries (divide);

- Cumulate: indicates the ability of the model togess the dataset incrementally;

- Feedback from output: indicates the ability oé tthodel to use its own output to shape the

perception of the current input;

- Constraints: indicates the free parameters.

31

Table 1. Table reproduced from Batchelder (2002) wether with the corresponding characteristics for he

MDLChunker and SP (Wolff, 2006).

Model Build lexicon ? Cluster or divide ? Cumulate Feedback from Constraints ?
outputs

BootLex Lexicon Cluster Cumulate Feedback Optldneva

Networks® No Divide Cumulate No Threshold value

MDL*® Lexicon Cluster No No Compute-intensive

MBDPY’ Lexicon Divide Cumulate Feedback External pararsete

MDLChunker Lexicon Cluster Cumulate Feedback No

SP Lexicon Cluster Cumulate Feedback External petens

Other MDL-based chunking models such as Goldsn2ifio{) and Argamon et al. (2004) are able to accfmrrihe
segmentation of words into affixes. Such modelsnatedescribed here because their architecturerisspecialized

for this specific task and cannot easily generatizether domains.

Since it is very similar to MDLChunker, we now debe the Simplicity and Power (SP) model (Wolff 0B). As it
is shown in Table 1, this model is able to incretaliy shape perception using existing chunks. A am point
with MDLChunker is that SP can be applied to vasidields: from word segmentation (Wolff, 2000) to
probabilistic reasoning (Wolff, 1999) and medic#&ghosis (Wolff, 2006). While not explicitly usindgpe MDL

principle, SP is also a simplicity-based chunkingdel. It uses a Shannon-Fano coding to searchhéoshortest

5 The three connectionist networks reported areinAsi al. (1996), Christiansen et al. (1998) andrr@aet al.

(1994).

1 The two MDL-based models reported are: de Mar¢k&85) and Brent & Cartwright (1996).

" The two Model Based Dynamic Programming modelsntep are: Brent (1999) and Venkataraman (2001).

32

encoding of the current stimulus. This "alignmerdgess” of the new stimulus with old perceived dsuis the key
mechanism in SP. It is similar to alignment of D¥Aquences, and the heuristic involved is baseddalength
minimization. The better the alignment, the higther compression of the encoded stimulus with respethe raw
stimulus. In SP the way existing chunks may shhpeperception of new stimuli is addressed throbghalignment
process; the simplicity principle is involved onfpr stimulus alignment but not for chunk creatiolm

MDLChunker, both the factorization and the optinti@a processes are under the guidance of the MDicipte.

6. Experimental comparison to competing models

The rank defined section 4.4 is a natural and ebgdéndicator of model performance, but it canbet used to
compare the performances of different models ondtdit@sets found in the literature. PARSER and Caithee
Chunker explicit the chunks, but this informatianriot available from the participants due to thpeexnental
setting. On the other hand, applying other modelsur data is not straightforward because in méshem the

order of symbols inside chunks is important

In the following we compare the performance of MDiu@ker to that of Competitive Chunker and PARSERte
data of the well-known experiment by Miller (195&esults of Competitive Chunker on these data Hmseen
published by Servan-Schreiber & Anderson (1990). Mieplemented PARSER based on Perruchet & Vinter

(1998) and personal communication with the firghar, and ran it on the same data.

Miller's data come from a typical artificial leangi experiment in which participants are exposestriogs of letters
either produced by a finite state automaton reptespa formal grammar (L), or randomly generateyl There are

four sets of data, two of them grammatical (L1, B2J two random (R1, R2). Each one contains 9gstrin

. L1: SSXG, NNXSG, SXSXG, SSXNSG, SXXXSG, NNSXNSEXSXNSG, SXXXSXG, SXXXXSG

8 Most of them have been designed for studying cmgnkn the field of language acquisition where date

intrinsically ordered and considering unorderedni{sus irrelevant.

33

. L2: NNSG, NNSXG, SXXSG, NNXSXG, NNXXSG, NNXXSXBINXXXSG, SSXNSXG, SSXNXSG

. R1: GNSX, NSGXN, XGSSN, SXNNGN, XGSXXS, GSXXGNSSXXGSG, SGXGGNN, XXGNSGG

. R2: NXGS, GNXSG, SXNGG, GGSNXG, NSGNGX, NGSXXNE5XXGGN, SXGXGNS, XGSNGXG

A block of 9 strings is presented to participaimsa random order, one string at a time duringé®sds each. Then
participants are required to recall as many stramgghey can. When they have finished, a new legins with the
same 9 strings in another random order. The depéndgiable studied is the mean number of stringsectly

recalled after each of ten trials.

In order to assess which are the strings recaljetido models, we follow the criterion proposed leyv@an-Schreiber

& Anderson (1990): a string is considered recalfethe model creates the corresponding chunk. Caibyee
Chunker has been tested (Servan-Schreiber & Andei€90) through 10 simulated users, and its twarpaters,
decay and competition, were adjusted in order tml fthe best fit to Millers' experimental resulte. bur
implementation of PARSER we used the default patareeMDLChunker has no free parameters. We ma@e 10

runs both with PARSER and MDLChunker to have a go@tision in the results in a reasonable compuidtme.

Both PARSER and MDLChunker did not learn much afieing exposed to 10 trials: only about 1 or hgsiwere
correctly recalled in L lists, although humans eotly recalled almost all strings. Actually, effeadf stimuli
exposure may vary according to the duration ofgmtgtion. Humans were presented each string désngut the
results would have been different with a shortea tmnger presentation. MDLChunker always processesuli in
the same way: there is no mechanism to changerdrggsh of a stimuli. With PARSER, we could havaged the
weight which is given to a new stimuli (the defaudiue is 1), but we preferred to use the defaaliies rather than

adjusting parameters.

In order to solve the problem, we doubled eachudtjrim order to mimic the fact that participantens exposed to
stimuli during a long time compared to normal pssieg of letters. Since PARSER showed bad resgfscially

with the R list, we also ran it with tripled stinmuResults are presented in Figure 10:

34

=
(=]

4

35

3

@ Humains L 25
== CC L

¥ MDLChunkerL 2
PARSERX2 L
#=PARSERX3L 15

“®Humains R

== CCR

¥ MDLChunker R
= PARSERX2 R
#»=PARSERX3 R

N W e U0 N O O

1

05

=

Figure 10: Mean number of string correctly recalledfor humans, Competitive Chunker, MDLChunker and

PARSER, for L and R lists.

Results for the L lists shows that MDLChunker conegawell to other models. It is slower to learn bat similar
results after 10 trials. These results obviouslyetel on the number of strings that are presentadaw. PARSER
is much better when strings are tripled than whwesy tare doubled (especially in lists R). The sampglyafor
MDLChunker which even learns too fast when strimgs tripled. As we said earlier, we could have sidjd
PARSER parameters to have a better fit. We codd have introduced a new parameter in MDLChunkéretter
fit the data, but we believe that computational eiedshould be tested on default parameters orerbetihould
contains no parameters. However, in the partioctdge of cognitive modeling, parameters are somstimeeessary

to reproduce inter-participant variability or extal constraints.

7. Model robustness and cognitive limitations

The version of the model discussed in the precesingions does not take into account cognitive tcaims such as
memory limits. We have resigned cognitive plaugipiio test the principle of "chunking by MDL" wHicproved to
successfully account for the way humans tend togitems. In this section we investigate how MDLGker can
be extended to account for cognitive limits. Tottbad, we designed a version of MDLChunker thatdpoes

equally good results and is more plausible fronegnéive point of view.

35

7.1. MDLChunker-cog

There are two motivations for introducing MDLChunk®g. The first is to test whether the resultsaoi®d in
section 4 can be reproduced with an implementhtitimat takes into account the brain limited comparet

capacity (Oaksford & Chater, 1993; Van Rooij, 2008)e second is to test the robustness of theexppliinciples:
results have to be consistent over different péssibplementations of these principles. MDLChunkeffers from
both requiring an infinite memory (to store reprgsdions), and using brute-force computations durihe
factorization phase. To overcome these two prohléii3LChunker-cog does not explicitly store repreaéons,
and computations are based on local informatiol, @rbcessed in parallel. Its architecture is avoet composed
of weighted oriented links and nodes hierarchicaltganized into layers (see Fig. 11). Describingcigely
MDLChunker-cog is far beyond the scope of this papeprecise description may be found in Robin€0®@) (in

French).

(chunk 9) (Chunk 3*)

/TX]

(cnumkl) Crer)y (1) (cnunk:) (Cl'mnk4)(!!l’)(€lumk3) (trr)(chunks (121) (chunke)

SN DTN/

@@@@@@@ @9 @9 & @ @) @ @ @ @
—:o'\.-nlr(-:-; X X e 07z 4 P X %

Fig. 11. State of MDLChunker-cog when trained on tk dataset used in section 4. Nodes C1 to C20 areth
canonical chunks whose corresponding symbols are peesented below. Nodes of layers 2 and 3 are the
chunks created during the learning process. To sinliy the comparison with MDLChunker, the names are

those of section 4.

MDLChunker and MDLChunker-cog are based on the sameesses: the updating of codelengths, the faatan

and the optimization. MDLChunker-cog starts witheampty fully connected N-layer feedforward netwdxkbeing

¥ The aim is to show that such an implementatiostexit is not to find the best one.

36

the highest hierarchy level of chunks that the rha@® reach. At the beginning, tHé nodes of layerL are

connected to nodes of layér+1 throughk —1 inactive links and one active link.

Stimuli are incrementally processed following theee steps procedure described in section 3.1, fiescanonical
chunks involved in the stimulus are activated (@otiayer). Then activation propagates through tevark from
the bottom to the top. A node having all its chéldractivated becomes active (i.e. represents thekcrouping its
children) and inhibits its children. The greatee tfifference between the children and the paredéleagths the
faster the activation process. As a consequencenwhunks overlap, the one saving the largest end#i is
activated first. Since its children are inhibitemther competing nodes (chunks) are not activateid: i the

factorization process (see Fig. 12).

Codelengths are updated according to node activating equation (3) wherg, corresponds to the number of

activation of nodd .

@\/\/ SRA >'\ \/\/ A

@E@OGOEe OO ™ E @@@

Fig. 12. Example of factorization for the stimulusl 2 3 4 5 6. Canonical chunks C1 C2 C3 C4 C5 C6 diest
activated. Then activation propagates to chunks CZ4 C9 because codelength saving is more importansing

C7 than C8. The stimulus is finally factorized intoC7 C10.

Links having both father and son activated arengfiteened. This process, similar to a Hebbian mesha(Hebb,
1949), allows the creation of new chunks (optim@aprocess). The link strength is used to accéamthe number
of co-occurrences between two nodes. The highendiue, the stronger the confidence that the afdlde has to
be part of the parent chunk (see Fig. 13). A paaedta child may by merged by activating the liekween them.
Two nodes are merged if the codelength of the tieguthunk is smaller than the codelength of the tvades

considered separately. The criterion used to detiadink is the same as the one used by MDLChutikereate a

37

chunk (equation (4)). Activating a link increasée tchunk arity: unary chunks (simple nodes) becbmary,

ternary, etc.

b))
@ @

A

HEo® @@ @@ ®

Fig. 13. Figure a) presents a 3-layer network withthree canonical chunks at the beginning of the leaing.
Unary chunks and inactive links (dotted) are represnted. Figures b) and c) presents how joined actitians of
C1 and C6 strengthens the link C1-C6, thus leadingp its activation. The corresponding binary chunk &

becomes ternary.

MDLChunker-cog uses links to extract the co-ocawes between nodes. It is an implicit way of swprthe
relevant information provided by the Stimuli|Churgart of MDLChunker without requiring an infiniteamory.
Despite the sub-optimality of the optimization dadtorization processes with respect to those destisection 3,
results obtained by MDLChunker-cog are quite sintibathose of MDLChunker. Results of the first esipent are

presented Fig. 7, 8 and 9. We now provide a dempaparison of the two models.

7.2. Experimental validation

In order to compare our two models, we replicatad experiment with several changes. First of dimsli are
created with a new grammar randomly generated épted in Fig. 14). It exhibits several differenceith the
previous one of section 4.2 (Fig.5). The 20 symloésseparated into two non-overlapping clustet®as one more
level and the chunk arity is lightly highep=4.0, 0=1.2 compared tqu=3.3, 0=1.0 in the first experiment).
Moreover, it has a couple of identical chunks (¢h@nand chunk 10) which may be seen as a way dicatly
increasing the corresponding chunk probabilitieemvigenerating the experimental data. Secondlygémerated

stimuli do not contain any noise: no extra symischdded and no symbol is deleted. These changéstia@uced

38

to test the robustness of the results. The reshefexperiment follows exactly the same protocotlescribed in

section 4.
|Chunk 11| Level 4
[chunk 6 | | Ch;nk$<hunk\8 | [chunk 9 | [Chunk 10] Level 3
Chunk 1 Chunk 2 [Ch7r§< 3| [chunk 4 | Level 2
FPIXI e TLeNe D37 = d ol #Slad Levelt

Fig. 14. The grammar used for the second experiment

The performance of 18 recruited participants onsétguence of 75 sets of symbols is compared toethdts of our

two models on the same set of stimuli.

MDLChunker created 6 chunks: C1, C2, C4, C5, C6(&@9C10 which is the same as C9), that is all sddevel
chunks except C3, plus 2 third-level chunks. Thetfolevel chunk C11 was not created. MDLChunkeg-ceeated
the same 6 chunks together with 4 incomplete chtimisare part of the second-level chunks C1, Rad C5 in

which one or two symbols are missing.

A total of 52 different chunks were created by @dirticipants, but their number of occurrences shawdear
distinction between 46 non-significant chunks (88ated by only one participant, 6 created by twidigipants and
1 created by 4 participants) and 6 significant &sucreated by most participants. These 6 chunksxaetly those

created by the two models. Their number of occugerare presented in Table 2.

Table 2. Number of occurrences of the significantheinks

Chunks C1 Cc2 Cc4 C5 C6 c9/C1

Number of occurrences 17 18 18 17 10 18

Fig. 15 shows the time course of chunk creationtlimse 6 chunks. Vertical lines represent the madsneien

chunks are created by MDLChunker (solid green liwa) MDLChunker-cog (dashed blue line). Models ta@a

39

chunks at roughly the same time as the majorifyasficipants. Chunk 6 was generated quite late B)-®hunker,

but only half of the participants had created thenk at that time.

Chunk 1 :

XX ¢

Chunk 2 :

1S\ e

Chunk 4 :

=d

b

i

Chunk 5 :

o|l# (<a X

napyye

Chunk 6 :

PIX QLYo

Chunks 9, 10 :

Sdell M [CaX =

Steps i||||\l||ni||\||||||i|||||\|||i\||||\|||i||||||||\i||1||||||i1|||||\||i|\||| >
0 10 20 30 40 50 80 70
Fig. 15. Time course of chunk creation for the 6 gnificant chunks. Results are presented for the 18

participants, MDLChunker (solid green line) and MDLChunker-cog (dashed blue line).

It is worth noting that chunk C3 was neither crddty any participant nor by the models, althoughgsfimbols of
that chunk appear in 39 of the 75 stimuli. Thisudddoe compared with chunk C1 which was creatdubaljh its
symbols only appear in 29 stimuli. The symbols lnfirck C3 nonetheless appear 5 times in a row irs228go 26,
but right after MDLChunker and most participantgeated their first second-level chunk: C9. It midjet that
participants were busy dealing with this new higlesel chunk and did not realize that some new Symlkvere
worth to be grouped. Concerning the models, théaagtion is the following: the creation of a newink increases
the frequency of all the other chunks. For instaclas a frequency of 20% in ABCBC but 33% after thunk
BC has been created. Therefore, their codelengtbsrbe shorter and new chunks are less likely torémted. This

corresponds to the part P4 of equation (4).

40

A model which would only be based on stimulus femey would have created chunk C3 before chunk Gtlthis

is not what happened. Both models are able to mingdact that creating a chunk is harder whenrathanks have

already been created.

Like previously, Fig. 16 shows the bi-dimensionakition of participants at six different time ste@eth models

appear quite central in the cloud of participa®snilarly to the previous experiment, results avitegconsistent

over time.
13th step 25th step 38th step
G o]]
& o =
o
° o &2
o o %
X2 © X2 9 X2 Q o °
[4 © ® °°
o q o o
Q o ©
©
o
X1 X1 X1
50th step 63th step 75th step
5] 5] 0
@ o o o
7] © o® @
o o o @ OQO
oe) o
X2 o . X2 o o X2 2 o
D 5 © & a
o
® o
o i
o
o a o 0 °@ o o)
X1 X1 X1

Fig. 16. Bi-dimensional representation of the relate positions of MDLChunker (filled circle), MDLChu nker-

cog (hatched circle) and the 18 participants (emptgircles) at different time steps of the experimentX1 and

X2 are the highest inertia axis.

Like in the previous experiment, Fig. 17 displagsiks over time. MDLChunker has the best averag& edn
iteration 75 among 20 participants (including tiv® tmodels). It is therefore the best prototypelaf participant
behavior. MDLChunker-cog ends up at rank 11. Tlifeince between the rank curves of figures 9 ahid Hue to
the absence of noise in the second experimentihgeWithout that noise, both the models and thdigipants

create less idiosyncratic chunks. The learningisategher with two third of the chunks createddrvefiteration 10.

41

MDLChunker is a good asymptotical predictor. Asoasequence, the convergence to the first rankstgifan this
experiment where the learning rate is higher. BeeddDLChunker-cog is sub-optimal compared to MDLGKer,

the results provided by MDLChunker are necesshaelyef° than those of MDLChunker-cog.

Rank
Participant 15
Pattiipant 17 18
Partizipant: 16 b 1a
Partizipant 15 AR Ney J— = - 7
Partizipart 14 "“ J Y el .- e
Partizipart 13 Py - ’_. e \ 1z
Fartizipant 12 : \ & e : o 1s
Participant 11 ; .r i L8 ..‘ r! v " J- - 413
Pattizipant 10 : : ..\- ; Vel m e ; S SRS ER Ot = | |
Partizipart : (_] ;] s : 11, sy
Partizipart & ' : ! 1 y 1g
Participart 7 --- -} ; ! : e 49
Partizipart & b : : :' 1
Participant & [4
Participant 4 15
Participant 3]
Partizipant 2 44
Participant 1 43
MOLChurkercog = = / \ 15
MDLChuRker __1
B3 U7 ' E-S t L
0 10 20 30 40 50 &0 70

Fig. 17. Ranks of the participants over the 75 stepp MDLChunker (bold filled line) and MDLChunker-cog

(bold dashed line) are considered as virtual partipants.

Results are similar to those obtained in the previexperiment. A clear distinction exists betweigmi§icant and
non-significant chunks, and both MDLChunker and MIblunker-cog are able to reproduce all the significa
chunks which are not all the chunks of the inigeammar. The two models are thus efficient predsctd human
behaviour and not simple grammar extractors. Clmgngome parameters of the grammar does not dectiease

quality of the results, suggesting that the undeglyprinciples of both models are quite robust.tifigsthe exact

20 Each creation of a new chunk implies a loss ofrimation about co-occurrences. For example in E&y.the
inactive link C1-C6 stores information about co4mtences between C1 and C6. By creating the chkCT C2
C3, it is impossible to recover the number of cowsrences between other chunks Cx and C6: C1 CRdaBthe

co-occurrences between Cx and C6: C2 C3.

42

range of validity of the models, which requiresréplicate the experiments varying different pararsebf the

stimuli generator (chunk arity, noise level, ets.hot the purpose of this paper.

7.3. Application to word segmentation

In order to test the robustness of the model, waiexgb it to the domain of word segmentation. Ineangal paper,
Saffran et al. (1996) showed that, when exposed stream of phonemes corresponding to a concabenafi
artificial words, humans are able to segment ctisrend learn the words from the sole transitiopadbabilities
between syllables. According to Swingley's (2008)minology, MDLChunker follows a clustering strayeg
creating new units by grouping frequent ones, gmsgd to a bracketing strategy which would attetophsert

boundaries in the flow of phonemes.

In contrast with the experiment described in sectipthe input is now a stream of units without dejimiter. We
adapted the factorization process in order to #ipditcurrent input into units. There are variouysvaf splitting the
beginning of the current input according to therdtsualready created. In MDLChunker, the best segatien is
the one which has the smallest codelength. Thetfirs units are then candidates for forming a néwnk. As

usually, the new chunk is created only if its d@atiecreases the description length.

We tested MDLChunker on data from Giroux & Rey (200who designed a new experiment to compare
recognition performances of adults hearing either 20 min of an artificial spoken language. Theglaage is
composed of 6 words, formally represented here B€,ADEF, GH, IJ, KL and MN. Participants just listeo a
random concatenation of these words, uttered atatieeof 3.3 syllables per second by a speech egizr without
any prosodic information. After 10 min trainingcognition performances on dissyllabic words (sust@H") are
significantly higher than those obtained on disgyit sub-words (such as "BC"), while no differesceurs after 2
min training (Fig. 18 a)). This result credits tblestering strategy by suggesting that sub-woragasition is a

necessary step in the word learning process.

43

f=1)
~
0o

|

b)%— C) -

I words vs non-words
[sub-words vs non-words

80 80
|

Percentage of correct answers
40

20
|
20
|
20
I

- Humans Humans - PARSER PARSER T MDLChurker MDLChunker
2 minutes 10 minutes 400 syllables 2000 syllables 15 syllables 75 syllables
Humans 2Zmin 10min PARSER 400sy | 2000sy MDLChunker 15sy 75sy
p-value _ _ p-value p-value _ 16
et | =056 | =0.01 A ns. | <0.01 et =0.41 | <10

Fig. 18. Results from Giroux & Rey (2009) presentip the percentage of correct answers obtained for 32
human participants (a) and for 32 PARSER virtual paticipants (b). We added the corresponding result$or

1000 MDLChunker virtual participants (c).

MDLChunker was run on the same artificial langutmeheck whether it reproduces this vanishing sobdveffect
(Robinet & Lemaire, 2009). 1000 simulations weréqrened with random input sequences. At the begignihere
is no difference, and both the dissyllabic wordd aob-words are created, but after about 30 sg$atite model
behavior begins to change: non-words cost morenzoré to be represented, whereas actual words,disgkllabic

and trissyllabic, are efficiently coded.

We used the test designed by Giroux & Rey to compDLChunker to PARSER (Perruchet & Vinter, 1998)la
to human production. The words GH, 1J, KL, MN agsted against the non-words CK, FM, CG, Fl andsiite
words AB, DE, BC, EF are tested against the nordwdill, JK, LM, NG. In this test, the task is to oke the
dissyllabic unit that best matches with the tragnianguage (in our case, it is the unit with thebest codelength).
The two tests (wordes non-words and sub-words non-words) are performed eight times for eachigipént (real
or virtual). Averaged performances are presentedrign 18 c) together with the results obtained BARBER b)

(Perruchet & Vinter, 1998).

44

No significant difference between performance orrdsoover sub-words was obtained with MDLChunkef &t
syllables (F(1, 999)=0.69 ; p=0.41), whereas aifiigmt difference (F(1, 999)=465 ; p<1? is observed at 75
syllables. MDLChunker was therefore able to repoadine main effect. However, it learns much too $asce only

75 syllables are necessary to distinguish betwestiabic words and sub-words.

The main reason of this too fast learning rateha MDLChunker has an infinite memory. We desigaedew
version of the model that uses a memory buffer whistricts the amount of previous data availablechunk
construction. This buffer plays the role of a skttertn memory (STM) whereas the set of existing &suis
analogous to a long-term memory. Chunks are thexefieated if their creation decreases the sizkeoflata in the
buffer plus the existing chunks. Old data unitseexting memory size are removed from STM (see Ey.lhstead
of modeling STM as limiting the number of itemsy &amework naturally considers it as restricting guantity of

information. We will discuss in the conclusion bfst paper this novel way of considering STM.

45

Stimuli (input stream)

a) ABCABCCBCBABCABCCBABCCB ...
L
AB CAB CC ...
Stimuli | Chunks Chunks
AB CAB CABCABCABCCBCB ABCCBABCABCABC a
B
e
2 AB: AB
el ol o5
ABC: ABC

Stimuli (input stream)

b) ABCABCCBCBABCABCCBABCCE ...
ABCABC C ...
Stimuli | Chunks 3 Chunis
I ¥ .
ABCABC ABCABCABC CB CB ABC C BABC ABC ABC ABC ; ‘J A
+ 1]
4. I \¢————— fixed memory size ——————————p | B
o
AB: AB
o o o
ABC: AB C

Fig. 19. Moadifications introduced in order to apply MDLChunker to a stream segmentation task. Fig. a)
presents the factorization (step 1) and the optimation (step 2). Because the input stream is orderganly
adjacent chunks are candidates to form a new chunKhere ABC). Fig. b) presents the corresponding

updating of memory (step 3) and the deletion of itas exceeding the memory size (step 4).

By supplementing MDLChunker with a finite memorye wdded a parameter (the memory size) that neebls to
adjusted. With a huge memory (1000 bits), the méehains at a very high rate, like in its previoession. With a
too small memory (100 bits), no learning occuralatbecause there is not enough data availalifeeagame time in
memory to find regularities. With a buffer size T80 bits, the model reproduces both the vanishuigzveords

effect and the time course of learning observe@gergentally in humans. After 2 minutes (400 syle)Ithere is no

46

significant difference (F(1, 999)=-0.21; p=0.64}ween words and sub-words. This difference becosiggsficant

(F(1, 999)=48.4; p<1®) after a 10 minute (2000 syllables) training.

8. Conclusion

In this paper we presented MDLChunker, a modehdfictive learning integrating two research areasoignitive
science: chunking and simplicity. Chunking mechausidhave been broadly described in the cognitivelpspgy
literature. Simplicity provides a plausible expltioa of the way humans extract regularities fromghty patterned
stimuli (Chater, 1999). Chunking models and sigiplibased models involving refinements to accdontwell-
known cognitive limits (interferences, forgettirgfc.) have been proposed in various domains. Swtels are of
particular interest to analyze the mechanisms weain the resolution of particular ecological tas&enerally they
correctly reproduce humans' productions but thesults are consequences of interacting mechanigficiid to
disentangle. Our approach is different: we areimetrested in modeling a specific task but ratbesttidy a general

cognitive principle, the association of simplicitgd chunking.

According to algorithmic information theory, thesbenodel of empirical data, i.e. the one with higheedictive
power, has the shortest codelength. Models withgdoncodes necessarily include spurious informatioot,
supported by the data, introducing biases in thdictions. This principle is at work in most stiic models. In
this context it is called the Occam's razor prifeignd states that among models explaining a giveamomenon,
the best one is that with less parameters. Inpeer we extend this idea to humans. In our viemdns implement
the same principle to induce knowledge from theiremment, encoding the available data into churtiat t
minimize the description length of the stored infation. Not only "short" models are more likelyrn@ake correct

predictions, they also require fewer resourceschkvhiay be considered an ancillary benefit.

Paraphrasing simplicity as Minimum Description Lengve propose a computational cognitive modelhef way
humans perform induction: MDLChunker. Our modelt tailored for any specific task, integrates chugkand
simplicity using a Minimum Description Length tweupp coding criterion to guide the chunking proceEke
description language of both chunks and repredentatis homogeneous in order to fulfil the themaiti

requirements of the MDL framework. The strengthMiDLChunker over existing models is that it does have

47

any adjustable parameter, so that a posteriorititexperimental results cannot be realized. Thi®fi central

importance for validation of the simplicity-chunfgiassociation.

In this paper we showed that MDLChunker behaves tikmans in several experimental tasks that retuiitding

and selecting models of the environment. We beltba¢ models of inductive learning should not bt jualidated
through their ability to reproduce percentagesasfact answers, as is often the case in the frameuwfoartificial

grammar learning. Creating chunks at the same asrteumans is much more difficult to reproduce, ragiires the
design of specific tricky experiments in order ttack the time course of chunk creation by humatigjpants. Our
model predicts the time of chunks creation, a frtvidence of its appropriateness. Moreover, gréopnance of
our parameter-free model on experimental data ftoenliterature is comparable to that of models waitustable

parameters.

After introduction of memory limitation, a cognigwonstraint not included in our first design, wstéd the quality
of our model with a second experiment. Not only rognimitation does not spoil its ability to reprace human
behaviors but the way we view the creation of clsuh@is repercussions on short-term memory moddlagally
short-term memory is viewed as a buffer with a cégdimited to a fixed number of items. Howevell,the chunks
do not convey the same amount of information, dwdikl occupy different space in memory. For instar@cchunk
of letters like IBM may need fewer resources torbaintained in short-term memory than GWIC (for Glbb
Warming International Center), especially becadmelatter is less frequent. This is precisely ttheai on which
codelengths are based: short or frequent items $lavder representations, ceteris paribus. Thighig we propose
to limit the short-term memory capacity to a fixeamber of bits (a quantity of information) insteafdtems. With
this idea we reconsidered experiments of the titeeaon word segmentation, where memory has toobeded in
order to reproduce the participants' learning dyinafuning the short-term memory capacity, i.e. thunber of

bits it may store, allows correct reproductiontod published results.

MDLChunker predicts which chunks are created, giative time of their creation and their codelesgthhe latter
represent the usefulness of chunks because thegnaakter the more frequent their use. In the fuitirgould be
interesting to capture the degree to which humaseaste and store chunks. A specific experiment wpubdbably be

necessary to measure, for example, reaction timeske decisions involving the use of particulasrdts.

48

Our model can be viewed as a learning process masadnotion of cost, the description length. Hogrewnly the
cost of representations has been considered ipréeent work, not the cost of their creation ontiation. For
instance, given the chunks ABC and DA, the modeglhiprefer to view DABCDA as DA+B+C+DA rather than
D+ABC+DA, based on the respective codelengths. Sdech over the possible encoding of a stimulusdhtinks
bears a cost. This cost was neglected in our malttedugh it may be quite important. This cost plipaplays an
important role in the dynamics underlying new cguiseinduction. Including it in the model shouladeto sub-

optimal decisions from the codelength point of viemuch in the manner of MDLChunker-cog.

49

9. Bibliography

Argamon, S., Akiva, N., Amir, A., Kapah, O. (2004fficient unsupervised recursive word segmentatising
minimum description length. IrProceedings of the 20th International Conference @omputational

Linguistics (Coling04)Morristown: ACL.

Aslin, R. N., Woodward, J. Z., LaMendola, N. P.,B&ver, T. G. (1996). Models of word segmentatiorilirent

maternal speech to infants. In J. L. Morgan & Knid¢h (Eds.)Signal to syntax]17-134.

Batchelder, E.O. (2002). Bootstrapping the lexican:computational model of infant speech segmemtatio

Cognition,83(2), 167-206.

Bishop, C.M. (2006)Pattern recognition and machine learnirigerlin: Springer.

Brent, M. R. (1999). An efficient, probabilisticalsound algorithm for segmentation and word discpvdachine

Learning 34, 71-105.

Brent, M.R., Cartwright, T.A. (1996), Distributionaregularity and phonotactic constraints are uUséfu

segmentationCognition,61(1-2), 93-125.

Cairns, P., Shillcock, R., Chater, N., & Levy, 1997). Bootstrapping word boundaries: a bottom-opes-based

approach to speech segmentati@agnitive Psychologyd3, 111-153.

Chaitin, G.J. (1966). On the length of programsdomputing finite binary sequencekurnal of the ACM13(4),

547-569.

Chater, N. (1996). Reconciling simplicity and lilkelod principles in perceptual organizatioRsychological

Review,103, 566-581.

Chater, N. (1999). The Search for Simplicity: A Bamental Cognitive PrinciplePhe Quarterly Journal of

Experimental Psychology, 22, 273-302.

50

Chater, N., Vitanyi, P.M. (2003). Simplicity: a @iying principle in cognitive sciencel*ends in Cognitive Sciences,

7(1), 19-22.

Christiansen, M. H., Allen, J., & Seidenberg, M. ($998). Learning to segment speech using multiples: a

connectionist modeLanguage and Cognitive Process#8 (2/3), 221-268.

Cleeremans, A. (1997). Principles for implicit leiag. In D. Berry (Ed.How Implicit is Implicit Learning?195-

234. Oxford: OUP.

de Marcken, C. (1995). The unsupervised acquisitiba lexicon from continuous speedhl. Memo No. 1558

MIT Atrtificial Intelligence Lab.

Feigenbaum, E.A., Simon, H.A. (1984). EPAM-like retsdof recognition and learnin@ognitive Scienceg(4),

305-336.

Fiser, J., Aslin, R.N. (2001). Unsupervised stat#dtlearning of higher-order spatial structuresnirvisual scenes,

Psychological Sciencd2(6), 499-504.

French, R.M., Mareschal, D., Mermillod, M., Quirfa,C. (2004). The role of bottom-up processing irceptual
categorization by 3-to 4-month-old infants: Simidat and dataJournal of Experimental Psychology:

General,133(3), 382-397.

Giroux, I., Rey, A. (2009). Lexical and sublexicalits in speech perceptioBognitive Science33(2), 260-272.

Gobet, F. (1993). A computer model of chess memiorroceedings of the Fifteenth Annual Conferencehef t

Cognitive Science Socie#63-468, Lawrence Erlbaum Associates.

Gobet, F., Lane, P., Croker, S., Cheng, P., J&@aeQliver, I., Pine, J.M. (2001). Chunking mectsmns in human

learning.Trends in Cognitive Scienceg6), 236-243.

Goldsmith, J. (2001). Unsupervised learning of m@phology of a natural languagépmputational Linguistics,

27(2), 153-198.

51

Grunwald, P., Myung, 1.J., Pitt, M.A. (2005). Adwaes in Minimum Description Length: Theory and Apalions,

MIT Press.

Hebb, D.O. (1949)The organization of behavioifNew York: Wiley.

Kirkpatrick, S, Gelatt, C.D., Vecchi, M.P. (198&)ptimization by Simulated Annealin§cience220(4598), 671—

680.

Kolmogorov, A.N. (1968). Three approaches to thamjtative definition of informationinternational Journal of

Computer Mathematic2(1), 157-168.

Leung-Yan-Cheong, S., Cover, T. (1978). Some edpivses between Shannon entropy and Kolmogorov

complexity.IEEE Transactions on Information TheoB4(3), 331-338.

Li, M., Vitanyi, P.M. (1997). An introduction to Kmogorov complexity and its applications. Berlipriiger.

Miller, G.A. (1956). The magical number seven, plusminus two: Some limits on our capacity to psxe

information,Psychological Revievf3(2), 81-97.

Miller, G.A. (1958). Free recall of redundant sggof letters,Journal of Experimental Psycholodh6, 485-491.

Oaksford, M., Chater, N. (1993). Reasoning theoaied bounded rationality. In K.I. Manktelow and D@®ver

(Eds),Rationality: Psychological and philosophical persprees 31-60. International Library of Psychology.

Pearl, J. (1984). Heuristics: intelligent searchtegies for computer problem solving, Boston: Addi-Wesley.

Perruchet, P., Vinter, A. (1998). PARSER: a model Word segmentationlournal of Memory and Language,

39(2), 246-263.

Perruchet, P., Vinter, A., Pacteau, C., Gallegd2002). The formation of structurally relevant tgnin artificial

grammar learningThe Quarterly Journal of Experimental Psychologgti®a A,55(2), 485-503.

Redington, M., Chater, N. (1996). Transfer in @i@ grammar learning: a reevaluatialgurnal of Experimental

Psychology: General, 25, 123-138.

52

Rissanen, J. (1978). Modeling by shortest datarge®n, Automatica,14(5), 465-471.

Robinet, V. (2009)Modélisation cognitive computationnelle de I'appiesage inductif de chunks basée sur la

théorie algorithmique de I'informatiqrPh.D Thesis, Institut Polytechnique de GrenoBlenoble, France.

Robinet, V., & Lemaire, B. (2009). MDLChunker: a Mibased model of word segmentation. In N. Taatged.&
Van Rijn (Eds.) Proceedings of the 31th Annual Conference of thgn@ive Science Society (CogSci 2009)

Amsterdam, Netherland: Cognitive Science Society.

Saffran, J.R., Aslin, R.N., Newport, E.L. (1996}atsstical learning by 8-month-old infantScience274(5294),

1926-1928.

Servan-Schreiber, E., Anderson, J.R. (1990). LegrAirtificial Grammars With Competitive Chunkindgpurnal of

Experimental Psychology: Learning, Memory, and Gogm, 16(4), 592-608.

Shannon, C. (1948). A mathematical theory of comiation.Bell System Tech. Journ&7(3), 379-423.

Solomonoff, R.J. (1960). A preliminary report omeneral theory of inductive inference, Report V-13ator Co,

Cambridge Mass.

Solomonoff, R.J. (1964). A formal theory of indwetiinference. Parts | and Ihformation and Control7(2), 224-

254,

Sun, R. (2004). Desiderata for cognitive architeegiPhilosophical Psychology,7(3), 341-373.

Swingley, D. (2005). Statistical clustering and tiloatents of the infant vocabulai@pgnitive Psychology50(1),

86-132.

Turing, A.M. (1936). On computable numbers: Withagplication to the entscheidungsproblétmceeding of the

London Mathematical Societ, 230-265.

van Rooij, I. (2008). The tractable cognition tise€iognitive Science32(6), 939-984.

Vapnik, V.N. (1998). The Nature of Statistical Leizug Theory. Berlin: Springer.

53

Venkataraman, A. (2001). A statistical model forrdvdiscovery in transcribed spee@omputational Linguistics

27(3), 352-372.

Vereshchagin, N.K., Vitanyi, P.M. (2004). Kolmogei® structure functions and model selectidEEE

Transactions on Information Theoy0(12), 3265-3290.

Vitanyi, P.M. (2005). Algorithmic statistics and Kwmogorov's structure function. In P.D. Grinwald,Myung,

M.A. Pitt (Eds),Advances in Minimum Description Length: Theory apglications 151-174, MIT Press.

Wolff, J.G. (1999). Probabilistic reasoning as mmfiation compression by multiple alignment, unificat and

search: an introduction and overvielaurnal of Universal Computer Sciené4€7), 418-462.

Wolff, J.G. (2000). Syntax, parsing and productidmatural language in a framework of informatiammpression

by multiple alignment, unification and seardburnal of Universal Computer Scien&£8), 781-829.

Wolff, J.G. (2006). Medical diagnosis as pattercognition in a framework of information compresstmnmultiple

alignment, unification and seardbecision Support Systen&2(2), 608-625.

54

