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We consider bipartite quantum systems characterized by a continuous angular variable θ ∈ [−π, π[,
representing, for instance, the position of a particle on a circle. We show how to reveal non-locality
on this type of system using inequalities similar to CHSH ones, originally derived for bipartite spin
1/2 like systems. Such inequalities involve correlated measurement of continuous angular functions
and are equivalent to the continuous superposition of CHSH inequalities acting on bidimensional
subspaces of the infinite dimensional Hilbert space. As an example, we discuss in detail one applica-
tion of our results, and we derive inequalities based on orientation correlation measurements. The
introduced Bell-type inequalities open the perspective of new and simpler experiments to test non
locality on a variety of quantum systems described by continuous variables.

PACS numbers: 03.65.Ud;03.67.-a;33.20.Sn

Introduction: The pioneering discussions of Einstein,
Podolsky and Rosen (EPR) [1], which rose the possibility
of eventual conflict between the classical an the quantum
definitions of realism and locality, dealt with measure-
ments of continuous variables (CV) of a quantum system,
as position q and the kinetic momentum p. Almost 30
years elapsed before J. S. Bell promoted a regain of inter-
est on the subject, deriving a quantitative criteria estab-
lishing the border between quantum and classical physics
concerning locality and realism [2]. The discretized ver-
sion of the EPR paradox and of the Bell inequalities us-
ing spin-1/2 like systems came with the work of Bohm [3]
and Clauser, Horne, Shimony and Holt (CHSH) [4] and
was motivated by the necessity to find simpler setups
for experimentally testing the, up to then, Gedankenex-
periments exposing the quantum-classical contradiction
[5]. The almost 30 years following such pioneering ex-
periments led to theoretical and experimental advances
pointing out that using CV may provide advantages with
respect to discrete systems. Higher intensity signals al-
lowing to circumvent the detection loophole are among
the announced advantages [6, 7]. Most of these works are
based on canonical unbounded variables, as (q, p). They
can correspond, for instance, to the sum and the differ-
ence of two quadratures of the electromagnetic field. The
first attempts to build CV non-locality tests consisted on
finding ways to discretize the continuum to reuse con-
cepts developed for the discrete case. It was shown in [8]
that dichotomizing the phase space according to a state’s
parity and its displacement in phase space can lead to
Bell type inequalities that can be violated by gaussian
continuous variable entangled states. Other phase space
dichotomizations are possible, as the one proposed in [9].
However, dichotomization does not correspond to a gen-
uine CV measurement, since it provides an observable
with a discrete, rather than genuinely continuous spec-

trum.

Reid and co-workers [7] proposed variance based Bell-
type inequalities not demanding dichotomization, that
are independent of the spectrum of the measured ob-
servables. Another possible approach are entropy based
inequalities that may be advantageous to detect entan-
glement in non-gaussian states, since they go beyond the
usual criteria that use second-order moments [10, 11].

Up to now, most of the results on CV entanglement and
non locality have been devoted to the case of canonical
variables with an unbounded spectrum, as position and
momentum. In the present work, we consider a different
type of CV. We deal here with two quantum systems, A
and B, characterized by angular variables θi ∈ [−π, π[,
i = A,B on a circle, instead of a position q in the full
real line. θ can represent, for instance, the position of
a particle on a circle, a rotator on a plane (for exam-
ple, molecules confined to a plane [12]), or the polar an-
gle locating the photon field in the plane transverse to
its propagation, as illustrated in Fig. 1. The main re-
sult of the present paper is to build inequalities involv-
ing correlated measurement of continuous, real and pe-
riodic angular functions fi(θi) (i = A,B). Surprisingly,
the derived inequalities share similarities to CHSH-like
ones. As a matter of fact, their general form is given by
a properly balanced continuous superposition of CHSH-
type inequalities. Exploiting the possibility of revealing
non locality using angular measurements is an approach
that can be particularly useful and suitable for a num-
ber of physical systems in atomic and molecular physics,
photonics and mesoscopic systems in condensed matter
physics.

Theoretical model: As a starting point, we recall the
CHSH inequalities for a bipartite two-level system. It
can be written in a simple form as |〈B(a, a′, b, b′)〉| ≤ 2,
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with:

B(a, a′, b, b′) = σa⊗σb+σa⊗σb′ +σa′⊗σb−σa′⊗σb′ (1)

where σα is the Pauli matrix in one direction α of the
tridimensional space. a and a′ refer to different di-
rections of the spin projection of subsystem A while b
and b′ are associated to subsystem B. The inequality
|〈B(a, a′, b, b′)〉| ≤ 2 is fulfilled in the framework of lo-
cal hidden variable (LHV) theories. The fact that there
exist quantum states violating these inequalities disproof
quantum mechanics as a local or EPR realistic theory.
For quantum mechanical systems, (1) is bounded by the
Tsirelson bound of 2

√
2 [13].

We now consider a different situation of mea-
surement providing continuous and 2π-periodic out-
comes. In other words, the underlying Hilbert space
is the square integrable 2π-periodic functions space
(L2([−π, π[, dθ)). Such functions can be spanned by
the basis {|mi〉;mi ∈ Z}, which are angular momentum
eigenstates: Jz|mi〉 = m|mi〉. An alternative continu-
ous basis is {|θi〉; θi ∈ [−π, π[}, and it can be obtained
from the |mi〉 basis by Fourier transform: 〈mi|θi〉 =

1√
2π
eimiθi . In this representation, a local observable for

each party can be written as Fi =
∫ π
−π dθifi(θi)|θi〉〈θi|,

with fi(θi) real, bounded and periodic.
Our guidelines to obtain continuous variables Bell in-

equalities is to build a CHSH [4] Bell–operator similar to
the one given by (1), but based on the correlated mea-
surements of Fi for each particle. It is clear that, un-
der the assumption that the spectra of Fi are bounded,
this property is preserved by every unitary transforma-
tion Ui(φi) such that F (φi) = Ui(φi)FiU

†
i (φi). It is also

straightforward to show that, for a LHV theory, we have:

|〈B(φa, φ
′
a, φb, φ

′
b)〉| =

|〈FA(φa)⊗ FB(φb) + FA(φ′a)⊗ FB(φb)

+FA(φa)⊗ FB(φ′b)− FA(φ′a)⊗ FB(φ′b)〉| ≤ 2, (2)

if the maximum value of fi(θi) is normalized to 1. What
are the conditions the functions fi(θi) and the trans-
formed operators Fi(φi) should satisfy to violate (2) and
allow for non-locality and entanglement tests? In order to
answer this question, we focus on fi(θi) = cos(θi) which
is a function that can be measured on a variety of phys-
ical systems. The results derived in the following can be
straightforwardly generalized to all 2π periodic functions
such that f(θ) = −f(θ − π) ∀θ ∈ [0, π].
Example of application: The observables C = Fi cor-

responding to fi(θi) = cos(θi), can be expressed on the
|m〉 basis as:

C =
∑
m∈Z

1

2
(|m+ 1〉〈m|+ |m〉〈m+ 1|) . (3)

For a particle rotating on a circle, this operator corre-
sponds to the projection on the x axis of the particle

position; it can also be related to the spatial orientation
of a two dimensional rotor, or to the phase of a supercon-
ducting circuit. Operator C has a spectrum of doubly de-
generated eigenstates |θ〉 and |−θ〉, both with eigenvalue
cos θ. For this operator, we can define an equivalent to
the rotation of a spin 1/2 system: it is the unitary op-

erator eiJ
2
zφ, (that is, the free evolution operator during

a time t = 2~φ, for a free particle with unit mass and
angular momentum Jz, constrained to move on an unit
circle). From C, we can define C(φi) ≡ Fi(φi) as:

C(φ) = eiJ
2
zφCe−iJ

2
zφ =

1

2

∑
m∈Z

ei(2m+1)φ|m〉〈m+ 1|+

e−i(2m+1)φ|m+ 1〉〈m|, (4)

and for a bipartite system (particles A and B) the
Bell operator (2) reads: B(φa, φ

′
a, φb, φ

′
b) = CA(φa) ⊗

CB(φb)+CA(φ′a)⊗CB(φb)+CA(φa)⊗CB(φ′b)−CA(φ′a)⊗
CB(φ′b), where CA(B)(φ) are operators defined as in
Eq. (4) acting on the Hilbert space of particle A(B). The
spectrum of C(φ) does not depend on φ. Diagonalizing
C(φ) shows that its spectrum is bounded, with |〈C〉| ≤ 1.
Thus, for a LHV theory, |〈B(φa, φ

′
a, φb, φ

′
b)〉| < 2 holds.

However, for some set of phases φis and some quantum
states, this inequality is violated. In order to show that,
we calculate the spectra of B(φa, φ

′
a, φb, φ

′
b) operators.

Actually, such spectra depend only on the relative phases
φa − φ′a and φb − φ′b [14, 15]. We can define B(ξa, ξb) =

B(φ′a−φa, φ′b−φb) ≡ B(0, φ′a−φa, 0, φ′b−φb) = eiJ
2
Azφa⊗

eiJ
2
BzφbB(φa, φ

′
a, φb, φ

′
b)e
−iJ2

Azφa⊗e−iJ2
Bzφb . B(ξa, ξb) and

B(φa, φ
′
a, φb, φ

′
b) are related by an unitary transforma-

tion. Therefore, the variation of only the two phases
(ξa, ξb) is enough to explore the spectrum of all the
B(φa, φ

′
a, φb, φ

′
b).

As a first approach to the study of the dependence
of operators B(ξa, ξb) with the phases ξi , we discretize
the possible outcomes of the correlation measurements.
For this purpose we consider that the measured quantum
states lie on a 2M+1 finite dimension space generated by
the basis set {|m〉;m ∈ Z, |m| ≤M}. We thus define the
projection C(M)(ξ) of the C(ξ) operator on this reduced
space as :

C(M)(ξ) =
1

2

∑
|m|≤M

ei(2m+1)ξ|m〉〈m+1|+e−i(2m+1)ξ|m+1〉〈m|

(5)
and C(M) = C(M)(0). We also define discretized Bell
operators B(M) and B(M), analogously to the continu-
ous case, but where the C(ξi) operators are replaced by
C(M)(ξi) operators, which act on the considered finite di-
mensional space only. Discretization allows to explicitly
compute the 2M+1 eigenstates and corresponding eigen-
values of C(M), providing thus a more intuitive physi-
cal image of the considered operators. Also, it enables
the numerical study of the spectrum of B(M)(ξa, ξb) and
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FIG. 1. Examples of physical systems for which our results
can be applied: (a) The transverse profile of a propagating
light beam (b) Particles moving on a circle (as charged parti-
cles in an electromagnetic trap) (c) rigid rotators confined to
two dimensional motion.

FIG. 2. Plot of the maximum eigenvalue of B(M)(ξa, ξb), b
(M)
max,

in the region of violation (b
(M)
max > 2) as a function of ξa and

ξb for M = 2 (inner blue plot), and M = 5 (outer red plot).

its phase dependency. Defining b
(M)
max(ξa, ξa) as the high-

est eigenvalue of B(M)(ξa, ξb) we see in Fig. 2 that, for

M = 2 and M = 5, b
(M)
max(ξa, ξa) reaches its maximum

at ξa = ξb = π/2. We verified numerically that this
fact is independent of M for 1 ≤ M ≤ 20. In addi-
tion, |b(π/2, π/2)| increases as M increases, being already
greater than 2 (i.e., enabling the Bell-type inequality vi-
olation) for M = 2.

The study of the discretized operators is now used as a
starting point to the derivation of the main results of this
Letter, which are non-locality and entanglement tests in
the continuous limit. We start by analyzing the point
ξa = ξb = π/2, since it is the one that provides the
highest contrast between bmax(ξa, ξa) and the violation
threshold value (2).

We then move to the continuous limit (M → ∞) and
search for the highest possible value of violation and the
corresponding non local states for this choice of phases.
Using the expression of C(ξ) (4) and the anti-symmetric

property of cos θ, we compute 〈θ′|C(π2 )|θ〉 explicitly:

C(
π

2
) =

∫ π

0

dθ cos θ [i|θ − π〉〈θ| − i|θ〉〈θ − π|] . (6)

It is now convenient to define the following operators :

σx(θ) = |θ〉〈θ|+ |θ〉〈θ|
σy(θ) = i

(
|θ〉〈θ| − |θ〉〈θ|

)
(7)

σz(θ) = |θ〉〈θ| − |θ〉〈θ|,

for θ ∈ [0, π[ and with θ ≡ θ−π. These operators consti-
tute an orthogonal continuous set of Pauli-like operators,
and they fulfill relations analog to the usual Pauli matri-
ces: σj(θ)σk(θ′) = iσl(θ)δ(θ − θ′) where (j, k, l) denotes
circular permutations of (x, y, z). They also fulfill orthog-
onality relations σj(θ)σj(θ′) = δ(θ− θ′)(|θ〉 〈θ|+

∣∣θ〉 〈θ∣∣).
Eq.(6) can thus be recast as:

C =

∫ π

0

dθ cos θ σz(θ) (8)

C(
π

2
) = −

∫ π

0

dθ cos θσy(θ). (9)

Thus, the Bell operator Bm ≡ B(π2 ,
π
2 ) can be written as

the following direct sum:

Bm =

∫ π

0

∫ π

0

dθdθ′ cos θ cos θ′X(θ, θ′) (10)

where

X(θ, θ′) = [σzA(θ)⊗ σzB(θ′)− σyA(θ)⊗ σzB(θ′)

− σzA(θ)⊗ σyB(θ′)− σyA(θ)⊗ σyB(θ′)] , (11)

and σjA(θ) and σjB(θ) (j = x, y, z) are operators defined
by Eqs. (7) on the Hilbert space of parties A and B re-
spectively. The X(θ, θ′) operators are orthogonal:

X(θa, θb)X(θ′a, θ
′
b) = 4δ(θa − θ′a)δ(θb − θ′b)×

(|θa〉 〈θa|+
∣∣θa〉 〈θa∣∣)⊗ (|θb〉 〈θb|+

∣∣θb〉 〈θb∣∣) (12)

and completely analog to the usual 2–qubits (4-
dimensional) CHSH operators. We have thus the sur-
prising result that the Bell operator Bm is the weighted
continuous direct sum of 2–qubit-like CHSH Bell opera-
tors X(θ, θ′), with the weights being given by cos θ cos θ′.
Thanks to the orthogonality property (12), finding the
spectrum and eigenstates of Bm is a simple task. Indeed,
for each θ and θ′ it is enough to diagonalize the 4 × 4
matrix representing X(θ, θ′). We find that Bm can thus
be written in diagonal form as:

Bm = 2
√

2
∑
n=±1

n

∫ π

0

∫ π

0

dθdθ′ ×

cos θ cos θ′ |χn(θ, θ′)〉 〈χn(θ, θ′)| (13)
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where :

|χ±1(θ, θ′)〉 =
1

N±
[|θ〉 ⊗ |θ′〉+ |θ〉 ⊗ |θ′〉

∓ i(
√

2∓ 1)
(
|θ〉 ⊗ |θ′〉+ |θ〉 ⊗ |θ′〉

)
] (14)

are the eigenvectors of X(θ, θ′) and of Bm with non-zero

eigenvalues and where N± =
[
2(2∓

√
2)
]1/2

is a nor-

malization factor such that : 〈χn′
(θ′a, θ

′
b)|χn(θa, θb)〉 =

δnn′δ(θ′a − θa)δ(θ′b − θb).
Therefore, the spectrum of Bm is continuous and equal

to [−2
√

2, 2
√

2]. |〈Bm〉| is thus bounded by 2
√

2 as in the
2-qubit CHSH inequality. However, the values ±2

√
2 are

only reached by eigenstates of Bm which are not physi-
cal states since they are composed of perfectly oriented
states, namely |0〉 and |π〉. In the angular representa-
tion, these states are expressed by delta functions, since
〈θ|θ′〉 = δ(θ − θ′).

In order to explicitly construct physically sound states
violating our Bell inequality, we should consider wave
packets consisting of continuous superposition of eigen-
states |χ+1(θ, θ′)〉, with θ and θ′ localized around θ =
θ′ = 0, point of the maximum eigenvalue of Bm. An
example of such wave packet is given by:

|Ψ〉 =

∫ π

0

dθ

∫ π

0

dθ′ga(θ)gb(θ
′)|χ+1(θ, θ′)〉. (15)

where ga(θ) and gb(θ) are normalized L2(]0, π[, dθ) func-
tions with support containing θ = 0. The expectation
value of Bm for this state is

〈Bm〉Ψ = 2
√

2

∫ π

0

dθ

∫ π

0

dθ′ cos θ cos θ′|ga(θ)|2|gb(θ′)|2

(16)
The wave packet (15) can be produced making a linear
combination of the one–particle wave packets

|g〉 =

∫ π

0

dθg(θ)|θ〉 and |g〉 =

∫ π

0

dθg(θ)|θ〉, (17)

taking the same coefficients of Eq. (14):

|Ψ〉 =
1√

2N+

[(|ga〉 ⊗ |gb〉+ |ga〉 ⊗ |gb〉) (18)

− i(
√

2− 1) (|ga〉 ⊗ |gb〉+ |ga〉 ⊗ |gb〉)].

It is useful now to obtain a simple relation between the
wave packet localization and the violation of the Bell
inequality. For such, we take for g(θ) the ideal case of an
angular slit with aperture δθ, given by :

ga(θ) = gb(θ) =

{ 1√
δθ

for θ < δθ

0 otherwise
(19)

Using Eq. (16), the value of 〈Bm〉Ψ can be written as
function of the aperture δθ of the slit as follows:

〈Bm〉Ψ = 2
√

2

(
sin δθ

δθ

)2

. (20)

This equation above shows that we can obtain values of
〈Bm〉Ψ > 2, violating the Bell inequality, with an aper-
ture of δθ < 18◦ which is not a too restrictive condition.
There is thus a relatively broad collection of simple two–
particles non local pure states involving coherent super-
position of one–particle wave packets localized around
θ = 0 and θ = π that violate the derived Bell inequality.

We now study the example of even more real-
istic states, which are non-pure ones, establishing
some conditions for them to violate the derived Bell-
type inequalities. We consider the analog of the
Werner states [16] : ρ(η) = ηρA ⊗ ρB + (1 −
η) |Ψ〉 〈Ψ| [17], where ρA(B) = TrB(A) [|Ψ〉 〈Ψ|] =
1
2

(∣∣ga(b)

〉 〈
ga(b)

∣∣+
∣∣ga(b)

〉 〈
ga(b)

∣∣), with |Ψ〉 given by (18).
As 〈χn(θa, θb)|ρA ⊗ ρB |χn(θa, θb)〉 does not depend on
n = ±1 for all θa, θb ∈ [0, π], then Tr [BmρA ⊗ ρB ] = 0.
It turns out that the expectation of Bm for the state
ρ(η) is simply given by (1 − η)〈Bm〉Ψ. In the ideal case
where ga and gb are given by (19), the maximal allowed
value of the mixing coefficient η for the Bell equation
to be violated is a simple function of the slit aperture :

Tr [Bmρ(η)] > 2⇒ η < 1− 1√
2

(
δθ

sin δθ

)2
, providing condi-

tions for this type of mixed states to violate non-locality.
Conclusion: we derived general CHSH-like Bell-type in-
equalities for continuous variables using measurements of
bounded observables with anti-symmetric and periodic
spectra. Such observables are relevant for a number of
experimental systems, ranging from the photonic orbital
angular momentum to the movement of material parti-
cles on a circle and the phase of superconducting cur-
rents. We discussed in detail an example of observable,
but the results obtained are valid for all observables with
the same spectral properties and symmetries. Our results
exploit angular variables from an original approach, and
open the path to novel experiments with a wide range
of quantum devices, throwing some light on the difficult
task of non-locality violation with genuinely continuous
variables.
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