Multi-feature information-theoretic image registration: application to groupwise registration of perfusion MRI exams

Abstract : Investigating multi-feature information-theoretic image registration, we introduce consistent and asymptotically unbiased kth-nearest neighbor (kNN) estimators of mutual information (MI), normalized MI and exclusive information applicable to high-dimensional random variables, and derive under closed-form their gradient flows over finite- and infinite-dimensional transform spaces. Using these results, we devise a novel unsupervised method for the groupwise registration of cardiac perfusion MRI exams. Here, local time-intensity curves are used as a dense set of spatio-temporal features, and statistically matched through variational optimization. Experiments on simulated and real datasets suggest the accuracy of the model for the affine registration of exams with up to 34 frames.
Type de document :
Communication dans un congrès
IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'2011), Mar 2011, Chicago, United States. pp.574-577, 2011, 〈10.1109/ISBI.2011.5872472〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00624716
Contributeur : Nicolas Rougon <>
Soumis le : lundi 19 septembre 2011 - 15:36:41
Dernière modification le : mercredi 29 novembre 2017 - 15:50:15

Identifiants

Citation

Sameh Hamrouni, Nicolas Rougon, Françoise Prêteux. Multi-feature information-theoretic image registration: application to groupwise registration of perfusion MRI exams. IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'2011), Mar 2011, Chicago, United States. pp.574-577, 2011, 〈10.1109/ISBI.2011.5872472〉. 〈hal-00624716〉

Partager

Métriques

Consultations de la notice

96