Wong Zakai approximation for 2D hydrodynamical stochastic evolution equations

Abstract : We describe the support of the distribution for a class of abstract nonlinear stochastic models with multiplicative noise, which covers many 2D hydrodynamical models including the 2D Navier-Stokes equations, 2D MHD models and 2D magnetic Bénard problems as well as some shell models of turbulence. Both inclusions are proved by means of a general Wong--Zakai type result of convergence in probability for nonlinear stochastic PDEs driven by a Hilbert-valued Brownian motion and some adapted finite dimensional approximation of this process.
Type de document :
Communication dans un congrès
Evolution Equations: Randomness and Asymptotics, Oct 2011, Bad Herrenalb, Germany. 2011
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00624585
Contributeur : Annie Millet <>
Soumis le : lundi 19 septembre 2011 - 11:22:03
Dernière modification le : jeudi 27 avril 2017 - 09:45:52

Identifiants

  • HAL Id : hal-00624585, version 1

Collections

Citation

Annie Millet, Igor Chueshov. Wong Zakai approximation for 2D hydrodynamical stochastic evolution equations. Evolution Equations: Randomness and Asymptotics, Oct 2011, Bad Herrenalb, Germany. 2011. <hal-00624585>

Partager

Métriques

Consultations de la notice

159