A Hybrid Evolutionary Metaheuristics (HEMH) applied on 0/1 Multiobjective Knapsack Problems

Abstract : Handling Multiobjective Optimization Problems (MOOP) using Hybrid Metaheuristics represents a promising and interest area of research. In this paper, a Hybrid Evolutionary Metaheuristics (HEMH) is presented. It combines different metaheuristics integrated with each other to enhance the search capabilities. It improves both of intensification and diversification toward the preferred solutions and concentrates the search efforts to investigate the promising regions in the search space. In the proposed HEMH, the search process is divided into two phases. In the first one, the DM-GRASP is applied to obtain an initial set of high quality solutions dispersed along the Pareto front. Then, the search efforts are intensified on the promising regions around these solutions through the second phase. The greedy randomized path-relinking with local search or reproduction operators are applied to improve the quality and to guide the search to explore the non discovered regions in the search space. The two phases are combined with a suitable evolutionary framework supporting the integration and cooperation. Moreover, the efficient solutions explored over the search are collected in an external archive. The HEMH is verified and tested against some of the state of the art MOEAs using a set of MOKSP instances commonly used in the literature. The experimental results indicate that the HEMH is highly competitive and can be considered as a viable alternative.
Type de document :
Communication dans un congrès
Genetic and Evolutionary Computation Conference, Jul 2011, Dublin, France. pp.497-504, 2011
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00624096
Contributeur : Stéphane Bonnevay <>
Soumis le : jeudi 15 septembre 2011 - 17:03:32
Dernière modification le : mercredi 31 octobre 2018 - 12:24:08
Document(s) archivé(s) le : vendredi 16 décembre 2011 - 02:27:25

Fichier

p497.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00624096, version 1

Collections

Citation

Ahmed Kafafy, Ahmed Bounekkar, Stéphane Bonnevay. A Hybrid Evolutionary Metaheuristics (HEMH) applied on 0/1 Multiobjective Knapsack Problems. Genetic and Evolutionary Computation Conference, Jul 2011, Dublin, France. pp.497-504, 2011. 〈hal-00624096〉

Partager

Métriques

Consultations de la notice

234

Téléchargements de fichiers

179