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Résumé

Soit G un graphe simple, non orienté, d’ensemble de sommets V . Pour v ∈ V
et r ≥ 1, on note BG,r(v) la boule de rayon r et centre v. Un ensemble
C ⊆ V est appelé un code r-identifiant dans G si les ensembles BG,r(v) ∩ C,
v ∈ V , sont tous non vides et distincts. Un graphe G admettant un code
r-identifiant est dit sans r-jumeaux, et dans ce cas la taille d’un plus petit
code r-identifiant dans G est dénotée par γr(G).

Nous étudions le problème structurel suivant : soit G un graphe sans
r-jumeaux, et G∗ un graphe obtenu à partir de G en ajoutant ou en retirant
un sommet, ou en ajoutant ou en retirant une arête. Si G∗ est encore
sans r-jumeaux, nous comparons le comportement de γr(G) et γr(G

∗), et
établissons des résultats sur leurs possibles différence et rapport.

Mots clés : Théorie des graphes, Graphes sans jumeaux, Graphes identi-
fiables, Codes identifiants.

1



Minimum Sizes of Identifying Codes

in Graphs Differing by One Edge or One Vertex

Irène Charon
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Abstract

Let G be a simple, undirected graph with vertex set V . For v ∈ V and
r ≥ 1, we denote by BG,r(v) the ball of radius r and centre v. A set
C ⊆ V is said to be an r-identifying code in G if the sets BG,r(v) ∩ C,
v ∈ V , are all nonempty and distinct. A graph G admitting an r-
identifying code is called r-twin-free, and in this case the size of a
smallest r-identifying code in G is denoted by γr(G).

We study the following structural problem: let G be an r-twin-free
graph, and G∗ be a graph obtained from G by adding or deleting a
vertex, or by adding or deleting an edge. If G∗ is still r-twin-free, we
compare the behaviours of γr(G) and γr(G

∗), establishing results on
their possible differences and ratios.

Key Words: Graph Theory, Twin-Free Graphs, Identifiable Graphs, Iden-
tifying Codes.
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1 Foreword

This preprint is a combination of the two submitted articles [9] and [10]
which deal with closely related topics. The Introduction and Bibliography
are put in common, but Part I, devoted to the addition or deletion of one
vertex, and Part II, about the addition or deletion of one edge, have been
made so that they can be read independently and in any order; consequently,
they have a (very) small intersection, see, e.g., the proofs of Propositions 10,
part (a), on page 11 and of Proposition 26, part (a), on page 25. Part I starts
at page 7 and Part II at page 18.

2 Introduction

We introduce basic definitions and notation for graphs, for which we refer
to, e.g., [1] and [12], and for identifying codes (see [18] and the bibliography
at [21]).

We shall denote by G = (V,E) a simple, undirected graph with vertex
set V and edge set E, where an edge between x ∈ V and y ∈ V is indifferently
denoted by {x, y}, {y, x}, xy or yx. The order of a graph is its number of
vertices |V |.

A path Pn = x1x2 . . . xn is a sequence of n distinct vertices xi, 1 ≤ i ≤ n,
such that xixi+1 is an edge for i ∈ {1, 2, . . . , n − 1}. The length of Pn is its
number of edges, n− 1. A cycle Cn = x1x2 . . . xn is a sequence of n distinct
vertices xi, 1 ≤ i ≤ n, where xixi+1 is an edge for i ∈ {1, 2, . . . , n − 1}, and
xnx1 is also an edge; its length is n.

A graph G is called connected if for any two vertices x and y, there is a
path between them. It is called disconnected otherwise. In a connected graph
G, we can define the distance between any two vertices x and y, denoted by
dG(x, y), as the length of any shortest path between x and y, since such a
path exists. This definition can be extended to disconnected graphs, using
the convention that dG(x, y) = +∞ if there is no path between x and y.

For any vertex v ∈ V and integer r ≥ 1, the ball of radius r and centre v,
denoted by BG,r(v), is the set of vertices within distance r from v:

BG,r(v) = {x ∈ V : dG(v, x) ≤ r}.

Two vertices x and y such that BG,r(x) = BG,r(y) are called (G, r)-twins; if
G has no (G, r)-twins, that is, if

∀x, y ∈ V with x 6= y, BG,r(x) 6= BG,r(y),

then we say that G is r-twin-free.
Whenever two vertices x and y are within distance r from each other

in G, i.e., x ∈ BG,r(y) and y ∈ BG,r(x), we say that x and y r-cover each
other. When three vertices x, y, z are such that x ∈ BG,r(z) and y /∈ BG,r(z),
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we say that z r-separates x and y in G. A set is said to r-separate x and y
in G if it contains at least one vertex which does.

A code C is simply a subset of V , and its elements are called codewords. For
each vertex v ∈ V , the r-identifying set of v, with respect to C, is the set of
codewords r-covering v, and is denoted by IG,C,r(v):

IG,C,r(v) = BG,r(v) ∩ C.

We say that C is an r-identifying code [18] if all the sets IG,C,r(v), v ∈ V ,
are nonempty and distinct: in other words, every vertex is r-covered by at
least one codeword, and every pair of vertices is r-separated by at least one
codeword.

It is quite easy to observe that a graph G admits an r-identifying code if
and only if G is r-twin-free; this is why r-twin-free graphs are also sometimes
called r-identifiable.

When G is r-twin-free, we denote by γr(G) the cardinality of a smallest
r-identifying code in G. The search for the smallest r-identifying code in
given graphs or families of graphs is an important part of the studies devoted
to identifying codes.

In this preprint and the forthcoming [9] and [10], we are interested in the
following issue: let G be an r-twin-free graph, and G∗ be a graph obtained
from G by adding or deleting one vertex, or by adding or deleting one edge.
Now, if G∗ is still r-twin-free, what can be said about γr(G) compared
to γr(G

∗)? More specifically, we shall study their difference and, when
appropriate, their ratio,

γr(G) − γr(G
∗) and

γr(G)

γr(G∗)
,

as functions of the order of the graph G, and r.
Note that a partial answer to the issue of knowing the conditions for

which an r-twin-free graph remains so when one vertex is removed was
given in [4] and [6]: any 1-twin-free graph with at least four vertices always
possesses at least one vertex whose deletion leaves the graph 1-twin-free; for
any r ≥ 1, any r-twin-free tree with at least 2r +2 vertices always possesses
at least one vertex whose deletion leaves the graph r-twin-free; on ther other
hand, for any r ≥ 3, there exist r-twin-free graphs such that the deletion of
any vertex makes the graph not r-twin-free. The case r = 2 remains open.

Of what interest this study is, can be illustrated by the watching of a
museum: we place ourselves in the case r = 1 and assume that we have to
protect a museum, or any other type of premises, using smoke detectors.
The museum can be viewed as a graph, where the vertices represent the
rooms, and the edges, the doors or corridors between rooms. The detectors
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are located in some of the rooms and give the alarm whenever there is smoke
in their room or in one of the adjacent rooms. If there is smoke in one room
and if the detectors are located in rooms corresponding to a 1-identifying
code, then, only by knowing which detectors gave the alarm, we can identify
the room where someone is smoking.

Of course we want to use as few detectors as possible. Now, what are
the consequences, beneficial or not, of closing or opening one room or one
door? This is exactly what we investigate here, in the more general case
when r can take values other than 1.

In the conclusion of [22], it is already observed, somewhat paradoxically,
that a cycle with one vertex less can require more codewords/detectors. In
the sequel, we shall exhibit examples of large variations for the minimum
size of an identifying code.

A related issue is that of t-edge-robust identifying codes, which remain
identifying when at most t edges are added or deleted, in any possible way;
see, e.g., [15]–[17], [19] or [20].

Let us mention that in the sequel, we shall consider two cases,
(i) both graphs G ands G∗ are connected,
(ii) the graph with one edge less or one vertex less may be disconnected,

and observe some significant differences. For r = 1, this distinction is mean-
ingless, since a vertex v which is linked to all the other vertices guaran-
tees that the graph is connected and does not change anything as far as
1-identification is concerned, in the sense given by the following two easy
lemmata.

Lemma 1 If G = (V,E) is not connected and 1-twin-free, and if G∗ is the
graph obtained by adding to G a vertex v which is linked to all the vertices
in V , then G∗ is (connected and) 1-twin-free.

Proof. First, v is the only vertex in G∗ which is connected to every vertex
in V . Second, for all vertices x ∈ V , we have BG∗,1(x) = BG,1(x) ∪ {v}, so,
by hypothesis on G, these balls are distinct. 4

Lemma 2 If a graph G = (V,E) is 1-twin-free and contains a vertex v
which is linked to all the other vertices, then there is an optimal 1-identifying
code C not containing v.

Proof. Assume that an optimal 1-identifying code C contains v. Since v
cannot 1-separate any pair of vertices in G, its only purpose as a codeword
is to 1-cover some vertices not 1-covered by any other codeword; because
these vertices are 1-separated by C, only one of them, which we denote by x,
can be such that IG,C,1(x) = {v}. Then C \ {v} ∪ {x} is also optimal and
1-identifying. 4
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Before we proceed, we still need some additional definitions and notation, we
state one theorem on cycles, and we also give two lemmata which, although
trivial, will prove useful in the sequel, even implicitly.

For a graph G = (V,E) and a vertex v ∈ V , we denote by Gv the graph
with vertex set V ′ and edge set E′, where

V ′ = V \ {v}, E′ = {xy ∈ E : x ∈ V ′, y ∈ V ′}.

When we delete the edge e ∈ E in a graph G = (V,E), we denote the
resulting subgraph by Ge = (V,Ee).

In both parts, I and II, we shall use the following result on cycles of even
length.

Theorem 3 [3] For all r ≥ 1 and for all even n, n ≥ 2r + 4, we have:

γr(Cn) =
n

2
.

4

If G = (V,E) is a graph and S is a subset of V , we say that two vertices
x ∈ V and y ∈ V are (G,S, r)-twins if

IG,S,r(x) = IG,S,r(y).

In other words, x and y are not r-separated by S in G. By definition, if C
is r-identifying in G, then no (G, C, r)-twins exist.

Lemma 4 [(G,S, r)-twin transitivity] In a graph G = (V,E), if x, y, z are
three distinct vertices, if S is a subset of V , if x and y are (G,S, r)-twins
and if y and z are (G,S, r)-twins, then x and z are (G,S, r)-twins. 4

Lemma 5 If C is an r-identifying code in a graph G = (V,E), then so is
any set S such that

C ⊆ S ⊆ V.

4
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Part I: Addition and deletion of one vertex

We present the main six results of this part in the following way. In Section 3
we consider the case r = 1: we study how large γ1(Gx) − γ1(G) can be
(Proposition 6), then Theorem 7 states exactly how small this difference
can be (namely, −1). In Section 4, we study how small γr(Gx) − γr(G) can
be for any r ≥ 2 (Proposition 10) and it so happens that the graphs we
use are connected; then we study how large this difference can be, in the
following three cases: (i) r ≥ 2, r is even and the graphs are connected
(Proposition 12 in Section 4.1); (ii) r ≥ 3, r is odd and the graphs are
connected (Proposition 14 in Section 4.2); (iii) r ≥ 2 and the graph Gx

is disconnected (Proposition 16 in Section 4.3). In all these sections, the
number n represents the order of either G or Gx. A general conclusion
recapitulates our results.

3 The case r = 1

Proposition 6 There exist two (connected) 1-twin-free graphs G and Gx,
with n = 4β + 6 and 4β + 5 vertices respectively, such that γ1(G) = 2β + 3
and γ1(Gx) = 3β + 3, where β is any integer greater than or equal to 1.

Remark preceding the proof. The difference γ1(Gx) − γ1(G) = β can
be made arbitrarily large; in terms of n, the order of G, we can see that we
have:

γ1(Gx) − γ1(G) =
n − 6

4
. (1)

We can also consider the ratio between γ1(Gx) and γ1(G):

γ1(Gx)

γ1(G)
=

3n − 6

2n
, (2)

which is equivalent to 3
2 when β, or n, goes to infinity. An open question is

to know whether these difference or ratio can be made larger.
On the other hand, we shall see in Theorem 7 that any two 1-twin-free

graphs H and Hx must satisfy γ1(H) − γ1(Hx) ≤ 1.

Proof of Proposition 6. Let β ≥ 1 be an integer.
For 1 ≤ i ≤ β + 1, we consider copies (Vi, Ei) of the path P4, with the

following notation:

Vi = {vi,1, vi,2, vi,3, vi,4}, and Ei = {{vi,j , vi,j+1} : 1 ≤ j ≤ 3}.

Let G = (V,E), where

V = ∪1≤i≤β+1Vi ∪ {x} ∪ {y} and
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Figure 1: The graphs G and Gx, for β = 2, in Proposition 6.

E = ∪1≤i≤β+1Ei ∪ {{y, s} : s ∈ V \ {y}} ∪ {{x, vi,2} : 1 ≤ i ≤ β + 1},

see Figure 1(a). Note that the vertex y is used only to make sure that Gx is
connected, which is not strictly necessary; the same construction could have
been done without y, with G a tree and Gx a forest.

Then G has n = 4β + 6 vertices, and we claim that: (a) γ1(G) = 2β + 3,
and (b) γ1(Gx) = 3β + 3, from which (1) and (2) follow.

Proof of (a). The code

{x} ∪ {vi,2, vi,3 : 1 ≤ i ≤ β + 1}

is clearly 1-identifying in G. To establish the lower bound, we use Lemma 2
and assume that C is an optimal 1-identifying code not containing y. Then
we need at least two codewords on each copy of P4, because each end must
be 1-covered by at least one codeword. Finally, since γ1(P4) = 3, it is
straightforward to see that the best we can do is to take advantage of x,
take it as a codeword, and have 2β + 3 codewords.

Proof of (b). Thanks to Lemma 2, this is obvious, using that γ1(P4) = 3.
4

Note that, here and also in Proposition 10, we could have contented ourselves
with inequalities, here γ1(G) ≤ 2β + 3 and γ1(Gx) ≥ 3β + 3, so as to obtain

γ1(Gx) − γ1(G) ≥ β =
n − 6

4
and

γ1(Gx)

γ1(G)
≥

3β + 3

2β + 3
=

3n − 6

2n
.

Theorem 7 Let G = (V,E) be any 1-twin-free graph with at least three
vertices. For any vertex x ∈ V such that Gx is 1-twin-free, we have:

γ1(Gx) ≥ γ1(G) − 1. (3)
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Proof. Cf. [13, Prop. 3]. For completeness, we still give a proof. Let x ∈ V
be such that Gx is 1-twin-free. Let Cx be a minimum 1-identifying code
in Gx: |Cx| = γ1(Gx). There are two cases: either (a) x is not 1-covered
(in G) by any codeword of Cx, or (b) x is 1-covered (in G) by at least one
codeword of Cx.

(a) In this case, let C = Cx ∪ {x}. Then C is clearly 1-identifying in G
(in particular, thanks to Lemma 5); therefore, γ1(G) ≤ γ1(Gx) + 1.

(b) x is 1-covered by y ∈ Cx. If Cx is 1-identifying in G, then γ1(G) ≤
γ1(Gx), and we are done. So we assume that Cx is not 1-identifying in G.
This means that either (i) at least one vertex in G is not 1-covered by Cx,
or (ii) at least two vertices in G are not 1-separated by Cx.

(i) Since Cx 1-covers any vertex in Gx and x is linked to y ∈ Cx, this case
is impossible.

(ii) Let u, v ∈ V be two distinct vertices which are not 1-separated by Cx.
One of them is necessarily x, and without loss of generality, we assume that
x = u.

Now, v is unique by Lemma 4: Cx is not 1-identifying in G only because
one pair of vertices, x and v, is not 1-separated by Cx.

Since G is 1-twin-free, there is a vertex z which 1-covers exactly one of
the vertices v and x. We set C = Cx ∪ {z}, and we obtain a 1-identifying
code in G, so γ1(G) ≤ γ1(Gx) + 1. 4

Corollary 8 If γ1(Gx) ≤ a and γ1(G) ≥ a + 1, then γ1(Gx) = a and
γ1(G) = a + 1. 4

Note that we made no assumption on the connectivity of G or Gx. Examples
where γ1(Gx) = γ1(G) − 1, or γ1(Gx) = γ1(G), are numerous and easy to
find.

Conclusion 9 Provided that the graphs considered are 1-twin-free, we can
see, using Proposition 6 and Theorem 7, that γ1(Gx) − γ1(G) cannot be
smaller than −1, but examples exist where it can be as large as, approxi-
mately, n

4 , and where the ratio γ1(Gx)
γ1(G) can be as large as, approximately, 3

2 .

4 The case r ≥ 2

Things are different for r ≥ 2, since we can exhibit pairs of graphs (G,Gx)
proving that γr(G) − γr(Gx) can be arbitrarily large or small.

We first give a result with γr(G) − γr(Gx) arbitrarily large. Note that
we obtain this result with connected graphs: we found no better with dis-
connected graphs.

Proposition 10 There exist two (connected) r-twin-free graphs Gx and G,
with n = pr + 1 and pr + 2 vertices respectively, such that

γr(Gx) = p + 2r − 3 =
n + 2r2 − 3r − 1

r
and γr(G) = r(p − 1) + 1 = n − r,
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Figure 2: The graphs Gx and G in Proposition 10.

where p is any integer greater than or equal to 3.

Remark preceding the proof. The difference

γr(G) − γr(Gx) = p(r − 1) − 3r + 4

can be made arbitrarily large; in terms of n, the number of vertices of Gx,
we can see that we have:

γr(G) − γr(Gx) =
(n − 3r)(r − 1) + 1

r
, (4)

which is equivalent to n(r−1)
r

when r is fixed and n goes to infinity. Also:

γr(G)

γr(Gx)
=

r(n − r)

n + 2r2 − 3r − 1
, (5)

which is equivalent to r when we increase n. Again, is it possible to improve
on (4) or (5)?

Proof of Proposition 10. Let r ≥ 2 and p ≥ 3 be integers; we put the
cart before the horse and, before defining G, we describe Gx in the following
informal way, partially illustrated in Figure 2(a): Gx consists of p copies of
the path Pr, and in each copy the last vertex is linked to v. This graph
has n = pr + 1 vertices. Next, we construct the graph G consisting of Gx

to which we add one vertex x, linked to each first vertex of all the copies
of Pr. See Figure 2(b). We claim that: (a) γr(Gx) = p + 2r − 3, and
(b) γr(G) = r(p − 1) + 1, from which (4) and (5) follow.
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Proof of (a). The code

C = {v1,i : 2 ≤ i ≤ r} ∪ {v2,i : 1 ≤ i ≤ r} ∪ {vj,1 : 3 ≤ j ≤ p}, (6)

i.e., the code consisting of all the vertices of the first two copies of Pr,
except v1,1, and the first vertex of each of the following copies, is r-identifying
in Gx; this it is straightforward to check. So γr(Gx) ≤ (r−1)+r+(p−2) =
p + 2r − 3. We now prove that γr(Gx) ≥ p + 2r − 3. The following two
observations will be useful. For 1 ≤ i ≤ p and 2 ≤ k ≤ r, we have:

BGx,r(vi,r−k+1)∆BGx,r(vi,r−k+2) = {vj,k : 1 ≤ j ≤ p, j 6= i}, (7)

where ∆ stands for the symmetric difference, and for 1 ≤ i < j ≤ p:

BGx,r(vi,r)∆BGx,r(vj,r) = {vi,1, vj,1}. (8)

The consequences are immediate. First, in order to have the vertices vi,r,
1 ≤ i ≤ p, pairwise r-separated in Gx, we see by (8) that we need at least
p − 1 codewords among the p vertices vi,1; second, for k fixed between 2
and r, we see, using (7), that we need at least two codewords among the
p vertices vi,k. So γr(Gx) ≥ (p − 1) + 2(r − 1) = p + 2r − 3, and Claim (a)
is proved.

Proof of (b). Note that in G, for i and j such that 1 ≤ i < j ≤ p, the
set of vertices

{x} ∪ {vi,k : 1 ≤ k ≤ r} ∪ {v} ∪ {vj,k : 1 ≤ k ≤ r}

forms the cycle C2r+2, which is r-twin-free and is denoted by C(i, j). On
such a cycle, we say that the vertex z is the opposite of the vertex y if z is
the (only) vertex at distance r + 1 from y.

We claim that, for k fixed between 1 and r, among the p vertices vi,k, at
least p− 1 of them belong to any r-identifying code C in G. Indeed, assume
on the contrary that two vertices, say v1,k and v2,k, are not in C; then their
opposite vertices in C(1, 2), v2,r−k+1 and v1,r−k+1 respectively, cannot be
r-separated by C.

Finally, the fact that BG,r(v)∆BG,r(x) = {v, x} shows that v or x belong
to C, and finally γr(G) ≥ (p − 1)r + 1. On the other hand,

{v} ∪ {vi,k : 2 ≤ i ≤ p, 1 ≤ k ≤ r}

is an r-identifying code in G, with size (p−1)r+1, thus Claim (b) is proved.
Note that this code contains all the vertices in G, except the r + 1 vertices
x and v1,k, 1 ≤ k ≤ r. 4

Conclusion 11 When r ≥ 2, Proposition 10 provides pairs of graphs prov-
ing that γr(Gx) − γr(G) can be, asymptotically, as small as approximately

−n(r−1)
r

, and γr(Gx)
γr(G) can be, asymptotically, as small as approximately 1

r
,

and this can even be obtained with connected examples.

Then we turn to examples where γr(Gx) − γr(G) is arbitrarily large. We
start with connected graphs, and have two subcases, r even and r odd.
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Figure 3: Graph G in Proposition 12, for r = 6 and k = 4. Squares and
circles, white or black, small or large, are vertices. The 19 black vertices
constitute a 6-identifying code in G.

4.1 Case of a connected graph Gx and r ≥ 2, r even

Proposition 12 There exist two (connected) r-twin-free graphs G and Gx,
with n + 1 and n vertices respectively, such that

γr(Gx) − γr(G) ≥
n

4
− (r + 1), (9)

γr(Gx)

γr(G)
≥

2n

n + 4r + 4
. (10)

Remark preceding the proof. The two lower bounds (9) and (10) are
equivalent to n/4 and 2 when n increases with respect to r. An open question
is whether these two inequalities can be improved.

Proof of Proposition 12. Let r ≥ 2 be an even integer, and n be an
(even) integer such that n = k · 2r, k ≥ 2; let Gx = Cn = x1x2 . . . xn be
the cycle of length n and G be the graph obtained from Gx by adding the
vertex x and linking it to the k vertices xj·2r, 1 ≤ j ≤ k. See Figure 3, which
illustrates the case r = 6, k = 4, n = 48 and G has 49 vertices.

We know by Theorem 3 that γr(Gx) = n
2 , and we claim that

γr(G) ≤ 1 + (k + 2)
n

4k
=

n

4
+ r + 1,

from which (9) and (10) follow. Proving this claim, by exhibiting an r-
identifying code for G, is tedious and of no special interest; therefore, we
content ourselves with showing how it works in the case r = 6, n = 48,
hoping that this will help the reader to gain an insight into the general case.
We consider a first set

S = {x, x1, x3, x5, x13, x15, x17, x25, x27, x29, x37, x39, x41},
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see the small black circles in Figure 3. It is now quite straightforward to
observe that the pairs {x48, x1}, {x2, x3} and {x4, x5} are pairs of (G,S, 6)-
twins, as well as {x12, x13}, {x14, x15}, {x16, x17}, {x24, x25}, {x26, x27},
{x28, x29}, {x36, x37}, {x38, x39} and {x40, x41}, for reasons of symmetry,
and that they are the only ones.

Let us consider the first three pairs, {x48, x1}, {x2, x3}, {x4, x5}. Using
edges going through x, they can be 6-separated, for instance, by the vertices
x16, x14 and x12 (see the large black circles), and these three vertices also 6-
separate the other pairs of (G,S, 6)-twins, except for {x12, x13}, {x14, x15},
{x16, x17}. These three pairs can however be 6-separated by three more
codewords, for instance x4, x2 and x48, see the black squares in Figure 3.
Now the code

C = S ∪ {x12, x14, x16, x48, x2, x4}

is 6-identifying in G and has 1 + (4 × 3) + (2 × 3) = 19 codewords.
In the general case,

S = {x} ∪ {x1+j·2r, x3+j·2r, . . . , xr−1+j·2r : 0 ≤ j ≤ k − 1},

there are k × r
2 pairs of (G,S, r)-twins, and C can be chosen, for instance,

as
C = S ∪ {xn, x2, . . . , xr−2} ∪ {x2r, x2r+2, . . . , x2r+(r−2)},

which shows that the cardinality of C is

1 + (k ×
r

2
) + (2 ×

r

2
) = 1 + (k + 2)

n

4k
,

and so γr(G) ≤ 1 + (k + 2) n
4k

. 4

Conclusion 13 When r is even, Proposition 12 gives pairs of connected
graphs proving that γr(Gx)−γr(G) can be, asymptotically, as large as approx-

imately n
4 , and γr(Gx)

γr(G) can be, asymptotically, as large as approximately 2.

4.2 Case of a connected graph Gx and r ≥ 3, r odd

Proposition 14 There exist two (connected) r-twin-free graphs G and Gx,
with n + 1 and n vertices respectively, such that

γr(Gx) − γr(G) ≥
n(3r − 1)

12r
− r, (11)

γr(Gx)

γr(G)
≥

6nr

n(3r + 1) + 12r2
. (12)

Remark preceding the proof. An open question is to know whether these
two inequalities can be improved. The two lower bounds are equivalent to
n(3r−1)

12r
and 6r

3r+1 when r is fixed and n goes to infinity.
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Proof of Proposition 14. Let r ≥ 3 be an odd integer, and n be an (even)
integer such that n = k · 2r, where k ≥ 3 is a multiple of 3; let Gx = Cn =
x1x2 . . . xn be the cycle of length n and G be the graph obtained from Gx

by adding the vertex x and linking it to the k vertices xj·2r, 1 ≤ j ≤ k.
See Figure 4, which illustrates the case r = 5, k = 6, n = 60 and G has 61
vertices.

We know by Theorem 3 that γr(Gx) = n
2 , and we claim that

γr(G) ≤
n

4
+

n

12r
+ r,

from which (11) and (12) follow. Again, proving this claim is of no interest
here, and we just show how it works in the case r = 5, n = 60. We consider
a first set

S = {x, x1, x3, x11, x13, x21, x23, x31, x33, x41, x43, x51, x53},

see the small black circles in Figure 4. It is straightforward to see that only
the following sets of (G,S, 5)-twins exist:
• (i) {x, x10, x20, x30, x40, x50, x60},
• (ii) {x59, x1, x2} together with the five symmetrical sets {x9, x11, x12}, . . .,
• (iii) {x3, x4} together with the five symmetrical sets {x13, x14}, . . .

The first two cases are annoying and will be “expensive” because they
present symmetries with respect to x. Define the set T as follows:

T = S ∪ {x5, x15, x35, x45},

see the large black circles in Figure 4. Now in Case (i), all the vertices are
5-separated by the vertices in T \ S, and so are x59 on the one hand and
x1, x2 on the other hand, as well as their symmetrical counterparts from

14



Case (ii). The remaining pairs of (G, T , 5)-twins are {x1, x2}, {x3, x4} and
the 10 pairs obtained by symmetry. As in the proof of Proposition 12, these
handle very economically: the vertex x60 5-separates the 5 pairs {x13, x14},
. . . , {x53, x54}, and so does x2 for {x11, x12}, . . . , {x51, x52}; finally, {x1, x2}
and {x3, x4} can be 5-separated, for instance, by x10 and x12, see the black
squares in Figure 4:

C = T ∪ {x60, x2, x10, x12}

is a 5-identifying code in G and has 1 + (6 × 2) + (4 × 1) + (2 × 2) = 21
codewords. In the general case,

S = {x} ∪ {x1+j·2r, x3+j·2r, . . . , xr−2+j·2r : 0 ≤ j ≤ k − 1}

contains 1 + (k × r−1
2 ) vertices; then

T = S ∪ {xr+j·2r : 0 ≤ j ≤ k − 1, j not congruent to 2 modulo 3}

contains |S| + 2k
3 elements, and finally we take

C = T ∪ {xn, x2, . . . , xr−3} ∪ {x2r, x2r+2, . . . , x2r+(r−3)},

which shows that

γr(G) ≤ 1 + (k ×
r − 1

2
) +

2k

3
+ (2 ×

r − 1

2
) =

n

4
+

n

12r
+ r.

4

Conclusion 15 When r ≥ 3 and r is odd, Proposition 14 gives pairs of
connected graphs proving that γr(Gx) − γr(G) can be, asymptotically, as

large as approximately n(3r−1)
12r

, and γr(Gx)
γr(G) can be, asymptotically, as large

as approximately 6r
3r+1 .

If we do not require to consider a connected graph Gx, then we can obtain
a much larger difference or ratio than in (9)-(12), we need consider only one
case, whatever the parity of r is, and moreover the construction is easy to
understand; see next section.

4.3 Case of a disconnected graph Gx and r ≥ 2, r even or odd

Proposition 16 There exist two graphs G and Gx, with p(2r + 1) + 1 and
n = p(2r + 1) vertices respectively, such that

γr(Gx) − γr(G) ≥
n(2r − 2)

2r + 1
− 2r, (13)

γr(Gx)

γr(G)
≥

nr

n + 4r2 + 2r
. (14)
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Remark preceding the proof. These two lower bounds are equivalent to
n(2r−2)

2r+1 and r when n increases. Can they be improved?

Proof of Proposition 16. Let r ≥ 2 and p ≥ 3 be integers; the graph
Gx consists of p copies of the path P2r+1, and G is obtained by adding the
vertex x and linking it to all the middle vertices of the path copies, see
Figure 5. We claim that: (a) γr(Gx) = 2pr and (b) γr(G) ≤ 2p + 2r, from
which (13) and (14) follow.

Proof of (a). The result comes from the obvious fact that γr(P2r+1) = 2r.
Proof of (b). It is not difficult to check that

C = {x} ∪ {vi,1, vi,2r+1 : 1 ≤ i ≤ p − 1} ∪ {vp,j : 1 ≤ j ≤ 2r + 1}

is indeed r-identifying in G. Note however that, for simplicity, we chose to
give the bound 2p + 2r, when actually, with a little more care, 2p + 2r − 3
can be reached, which would improve only slightly on (13) and (14). 4

Conclusion 17 Proposition 16 gives pairs of graphs (G,Gx), where Gx is
not connected, proving that γr(Gx) − γr(G) can be, asymptotically, as large

as approximately n(2r−2)
2r+1 , and γr(Gx)

γr(G) can be, asymptotically, as large as ap-
proximately r.

5 General conclusion

Table 1 recapitulates the results obtained in the previous sections, using in
particular the partial conclusions 9, 11, 13, 15 and 17 at the end of each
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section; these are stated for n large with respect to r, so it doesn’t matter
to know if n is the order of G or of Gx. We only consider the difference
γr(Gx) − γr(G) and the ratio γr(Gx)

γr(G) .

r r comment γr(Gx) − γr(G) γr(Gx)
γr(G) reference

= 1 impossible to have < −1 Concl. 9

= 1 connected graphs ' n
4 ' 3/2 Concl. 9

≥ 2 any (connected) graphs / −n(r−1)
r

/ 1/r Concl. 11

≥ 2 even connected graphs ' n
4 ' 2 Concl. 13

≥ 2 odd connected graphs ' n(3r−1)
12r

' 6r
3r+1 Concl. 15

≥ 2 any graphs ' n(2r−2)
2r+1 ' r Concl. 17

Table 1: The difference γr(Gx) − γr(G) and ratio γr(Gx)
γr(G) , as functions of n

and r.
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Part II: Addition and deletion of one edge

This part is organized as follows. Section 6 is devoted to the case r = 1;
here, the difference γ1(Ge) − γ1(G) must lie between −2 and +2. Then in
the beginning of Section 7, we study how small γr(Ge) − γr(G) can be for
any r ≥ 2, and it so happens that the graphs we use are connected; then we
study how large this difference can be, when Ge is connected (Section 7.1)
and when Ge is not connected (Section 7.2); in these three cases with r ≥ 2,
we obtain bounds on γr(Ge)− γr(G) depending on r, namely −r, r − 1 and
2r − 3. A conclusion recapitulates our results.

6 The case r = 1

The difference γ1(Ge) − γ1(G) can vary only inside the set {−2,−1, 0, 1, 2}
(Theorem 22), and these five values can be reached (Examples 19, 21 and 23).

We first study how small γ1(Ge)−γ1(G) can be. Putting the cart before
the horse, in the next theorem we first define Ge, and only then, G.

Theorem 18 Let Ge = (V,Ee) be a 1-twin-free graph with at least four
vertices, let x and y be two distinct vertices in V such that e = xy /∈ Ee,
and let G = (V,E) with E = Ee ∪ {xy}. Assume that G is also 1-twin-free.

If Ce is a 1-identifying code in Ge, then there exists a 1-identifying code C
in G with

|C| ≤ |Ce| + 2.

As a consequence, we have:

γ1(Ge) − γ1(G) ≥ −2. (15)

Proof. Since we add an edge when going from Ge to G, all vertices remain
1-covered, in G, by at least one codeword in Ce.

Since we only add the edge xy, only the balls of x and y are modified
in G. As a consequence, only the following pairs are possible (G, Ce, 1)-twins:

• x and y,
• x and u with u 6= x, u 6= y,
• y and v with v 6= x, v 6= y.

Moreover, x and u′, with u′ 6= u, u′ 6= x, u′ 6= y, cannot be (G, Ce, 1)-twins
since this would imply, by Lemma 4, that u and u′ are (G, Ce, 1)-twins, hence
(Ge, Ce, 1)-twins, which would contradict the fact that Ce is 1-identifying
in Ge. The same is true for y and v′, with v′ 6= v, v′ 6= x, v′ 6= y. So at most
three pairs of (G, Ce, 1)-twins can appear.

Similarly, if these three pairs of (G, Ce, 1)-twins all do appear, then u
and v are (G, Ce, 1)-twins, which leads to the same contradiction, unless
u = v. In this case, because G is 1-twin-free, we can pick an additional
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Figure 6: Graph Ge in Example 19.

codeword c1 1-separating x and u by, say, 1-covering x and not u. If c1

1-covers y, then c1 also 1-separates y and u; if c1 does not 1-cover y, then
c1 also 1-separates y and x. In both cases, we are left with one pair of
vertices not yet 1-separated by a codeword, which we can do with a second
additional codeword c2. Now C = Ce ∪ {c1, c2} is 1-identifying in G, and it
has |Ce| + 2 elements.

When at most two pairs of (G, Ce, 1)-twins appear, then obviously with
at most two more codewords added to Ce we can 1-separate them. 4

Note that we made no assumption on the connectivity of Ge. The following
example shows that graphs Ge and G with γ1(G) = γ1(Ge) + 2 do exist; we
do not know if this is the smallest possible example.

Example 19 Let Ge = (V,Ee) be the graph represented in Figure 6, and G
the graph obtained by adding the edge e = xy. We claim that: (a) γ1(Ge) ≤
10 and (b) γ1(G) ≥ 12, which by (15) implies that γ1(G) = 12 = γ1(Ge)+2.

Proof of (a). It is quite straightforward to check that Ce = {1, 3, x, 6, 8, 8′,
6′, y, 3′, 1′} is 1-identifying in Ge. Hence γ1(Ge) ≤ 10.

Proof of (b). Let C be a 1-identifying code in G. Because 1 and 2 must
be 1-separated by C, we have 3 ∈ C; and because 1 must be 1-covered by at
least one codeword, we have 1 ∈ C or 2 ∈ C. Similarly, C contains 6, 6′, 3′

and at least one element in each of the 2-sets {7, 8}, {8′, 7′} and {2′, 1′},
which amounts to eight codewords.

With simple arguments, we obtain the following fact:

• there are at least three codewords in {1, 2, 3, 4, x}.

The same is true for {x, 5, 6, 7, 8}, {y, 5′, 6′, 7′, 8′} and {y, 4′, 3′, 2′, 1′}. So,
if neither x nor y belongs to C, there are at least 3× 4 = 12 codewords, and
we are done.

If, on the other hand, both x and y belong to C, then we have already ten
codewords, and still x, y and z are not 1-separated by any codeword; this
will require two additional codewords, and again, |C| ≥ 12.

If we assume finally, without loss of generality, that x ∈ C and y /∈ C,
then we have already chosen (3×2)+5 = 11 codewords: three in each of the
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sets {4′, 3′, 2′, 1′} and {5′, 6′, 7′, 8′}, one in each of the sets {1, 2} and {7, 8},
plus 3, 6 and x; still, x and z are not 1-separated by any codeword, so again
we need at least twelve codewords, which proves Claim (b). 4

Next, we establish how large γ1(Ge) − γ1(G) can be.

Theorem 20 Let G = (V,E) be a 1-twin-free graph with at least four ver-
tices, let x and y be two vertices in V such that e = xy ∈ E, and let
Ge = (V,Ee) with Ee = E \ {xy}. Assume that Ge is also 1-twin-free.

If C is a 1-identifying code in G, then there exists a 1-identifying code Ce

in Ge with
|Ce| ≤ |C| + 2.

As a consequence, we have:

γ1(Ge) − γ1(G) ≤ 2. (16)

Proof. We assume that C is not 1-identifying in Ge anymore, otherwise we
are done. There can be two reasons why C is not 1-identifying:

1) at least one of the two vertices x and y, say x, is not 1-covered by any
codeword anymore:

BGe,1(x) ∩ C = ∅ = (BG,1(x) \ {y}) ∩ C,

which implies that BG,1(x) ∩ C = {y}, y ∈ C and x /∈ C; we see that in this
case y is still 1-covered by a codeword, namely itself.

If meanwhile all vertices remain 1-separated by C in Ge, then C ∪ {x}
is 1-identifying in Ge. But this first reason can go along with the second
reason:

2) (Ge, C, 1)-twins appear;
because only the edge xy is deleted when going from G to Ge, and similarly
to the proof of Theorem 18, only the following pairs can be (Ge, C, 1)-twins:
• x and y,
• x and u with u 6= x, u 6= y,
• y and v with v 6= x, v 6= y.

If x and y are (Ge, C, 1)-twins, this means that

BGe,1(x) ∩ C = BGe,1(y) ∩ C,

which implies that x /∈ C, y /∈ C, and so

BG,1(x) ∩ C = BG,1(y) ∩ C,

contradicting the fact that C is 1-identifying in G.
Assume next that x and u are (Ge, C, 1)-twins. Then

BGe,1(x) ∩ C = BGe,1(u) ∩ C = BG,1(u) ∩ C 6= BG,1(x) ∩ C,
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Figure 7: Graph G in Example 21.

and so
y ∈ C and BGe,1(x) ∩ C = (BG,1(x) ∩ C) \ {y}.

If x and u are the only (Ge, C, 1)-twins, then with two more codewords we
can both 1-cover x if necessary and 1-separate x and u in Ge. The same
argument would work if y and v were the only (Ge, C, 1)-twins. So we assume
that x and u, and y and v are (Ge, C, 1)-twins. This implies that both x
and y are codewords, each 1-covered by itself. All there is left to do is to
1-separate two pairs of (Ge, C, 1)-twins in Ge, which can be done using two
more codewords. 4

Note that we made no assumption on the connectivity of G and Ge. The
following example shows that graphs G and Ge with γ1(Ge) = γ1(G) + 2
exist. Here the graph Ge is disconnected, but by adding a vertex which is
linked to all the other vertices, we could also have, thanks to Lemmata 1
and 2, an example where Ge would be connected.

Example 21 Let G = (V,E) be the graph represented in Figure 7, and Ge

the graph obtained by deleting the edge xy. We claim that: (a) γ1(G) ≤ 12
and (b) γ1(Ge) ≥ 14, which by (16) will imply that γ1(Ge) = 14 = γ1(G)+2.

Proof of (a). It is quite straightforward to check that C = {1, 3, x, 6, 8, 9,
9′, 8′, 6′, y, 3′, 1′} is 1-identifying in G. Hence γ1(G) ≤ 12.

Proof of (b). Let Ce be a 1-identifying code in Ge. We are going to show
that the left part of the (now disconnected) graph Ge requires at least seven
codewords.

As in Example 19, we have 3 ∈ Ce, 6 ∈ Ce, and Ce also contains at least
one element in each of the 2-sets {1, 2} and {7, 8}, which amounts to four
codewords.

As in Example 19, we also have that:

• there are at least three codewords in {1, 2, 3, 4, x},

and three codewords in {x, 5, 6, 7, 8}. So, if x /∈ Ce, there are, because of 9
and 10, at least 3 + 3 + 2 = 8 codewords, and we are done. We now assume
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that x ∈ Ce, so that we have already taken five codewords. One more code-
word is not sufficient to 1-separate both 9 and 10, 9 and x, and 10 and x.
This proves Claim (b). 4

By Theorems 18 and 20, we have the following result.

Theorem 22 Let G1 and G2 be two 1-twin-free graphs, with same vertex
set and differing by one edge. Then

γ1(G1) − 2 ≤ γ1(G2) ≤ γ1(G1) + 2.

As a consequence, if for instance γ1(G1) ≤ a and γ1(G2) ≥ a + 2, then
γ1(G1) = a and γ1(G2) = a + 2. 4

We conclude the case r = 1 by mentioning that pairs of graphs G and Ge

such that γ1(Ge) − γ1(G) = 0 or γ1(Ge) − γ1(G) = ±1 exist.

Example 23 We give simple examples with (a) γ1(Ge) − γ1(G) = −1 and
(b) γ1(Ge) − γ1(G) = 1, omitting the easy case when the difference is 0.

(a) Let Ge = P9 = x1x2 . . . x9, and add the edge {x3, x5} in order to
obtain G. It is known ([3, Th. 3]) that γ1(P9) = 5, and it is easy to see that
γ1(G) = 6, so γ1(Ge) − γ1(G) = −1.

(b) Let Ge be the graph consisting of P1 and P4, and G be the graph
obtained by adding an edge between one extremity of P4 and the vertex of P1,
so that G = P5. We have γ1(P1) = 1, γ1(P4) = 3, and γ1(P5) = 3, which
shows that γ1(Ge) − γ1(G) = 1. 4

7 The case r ≥ 2

We first give a result with γr(G) − γr(Ge) equal to r; here, the graph Ge is
connected, but we have found no better result using a disconnected graph.

Proposition 24 There exist two (connected) r-twin-free graphs G and Ge

such that
γr(G) − γr(Ge) = r. (17)

Proof. Let r ≥ 2 and p ≥ 3 be integers; for 1 ≤ i ≤ p, we consider copies
(Vi, Ei) of the path Pr, with the following notation:

Vi = {vi,1, vi,2, . . . , vi,r}, and Ei = {{vi,j , vi,j+1} : 1 ≤ j ≤ r − 1}.

Let G = (V,E), where

V = ∪1≤i≤pVi ∪ {x} ∪ {v} and

E = ∪1≤i≤pEi ∪ {{x, vi,1} : 1 ≤ i ≤ p} ∪ {{v, vi,r} : 1 ≤ i ≤ p},

and build the graph Ge from G by deleting the edge xv1,1, see Figure 8.
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We claim that: (a) γr(G) = r(p − 1) + 1, and (b) γr(Ge) = r(p − 2) + 1,
from which (17) follows.

Proof of (a). Note that in G, for i and j such that 1 ≤ i < j ≤ p, the
set of vertices

{x} ∪ {vi,k : 1 ≤ k ≤ r} ∪ {v} ∪ {vj,k : 1 ≤ k ≤ r}

forms the cycle C2r+2, which is r-twin-free and is denoted by C(i, j). On
such a cycle, we say that the vertex z is the opposite of the vertex y if z is
the (only) vertex at distance r + 1 from y.

We claim that, for k fixed between 1 and r, among the p vertices vi,k, at
least p− 1 of them belong to any r-identifying code C in G. Indeed, assume
on the contrary that two vertices, say v1,k and v2,k, are not in C; then their
opposite vertices in C(1, 2), v2,r−k+1 and v1,r−k+1 respectively, cannot be
r-separated by C.

Finally, the fact that BG,r(v)∆BG,r(x) = {v, x} (where ∆ stands for the
symmetric difference) shows that v or x belong to C, and finally γr(G) ≥
(p − 1)r + 1. On the other hand,

{v} ∪ {vi,k : 2 ≤ i ≤ p, 1 ≤ k ≤ r}

is an r-identifying code in G, with size (p−1)r+1, thus Claim (a) is proved.
Note that this code contains all the vertices in G, except the r + 1 vertices
x and v1,k, 1 ≤ k ≤ r.

Proof of (b). The same argument about cycles of length 2r + 2 similarly
shows that for k fixed between 1 and r, among the p − 1 vertices vi,k, 2 ≤
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Figure 9: A pattern with 4r + 2 vertices, half of which are codewords.

i ≤ p, at least p − 2 of them belong to any r-identifying code in Ge. These
r(p − 2) codewords are not sufficient, but adding v1,1 gives an r-identifying
code Ce in Ge, for example

Ce = {v1,1} ∪ {vi,k : 3 ≤ i ≤ p, 1 ≤ k ≤ r}.

4

Note that we could have contented ourselves with the inequalities γr(G) ≥
r(p − 1) + 1 and γr(Ge) ≤ r(p − 2) + 1, so as to obtain γr(G) − γr(Ge) ≥ r.

We now investigate how large γr(Ge) − γr(G) can be. We start with con-
nected graphs.

7.1 Case of a connected graph Ge

Proposition 25 There exist two (connected) r-twin-free graphs G and Ge

such that
γr(Ge) − γr(G) ≥ r − 1. (18)

Proof. Consider the path P4r+2 represented in Figure 9, consisting of one
codeword, then r noncodewords, then r codewords, then one noncodeword,
then r codewords, then r noncodewords. This pattern was already described
in [3, Fig. 2] and can be used to construct periodic r-identifying codes in
chains or cycles, with density one half.

Now for k ≥ 2, we let Ge be the cycle with n = k(4r + 2) + 2r vertices
and construct the graph G by adding the edge e = xnx4r+1, see Figure 10
for k = 2, r = 4 and n = 44. We claim that the code C consisting of
k concatenated patterns given by Figure 9, starting at xr and ending at
xr+k(4r+2)−1, plus the codeword xr+k(4r+2), is r-identifying in G. Once we
have proved this, and since |C| = k(2r + 1) + 1 and γr(Ge) = k(2r + 1) + r
by Theorem 3, we have proved (18).

Checking C can be done in two steps: first, it is easy to observe that the
vertices xi for i ∈ {r, . . . , r + k(4r + 2) − 1} are r-covered and pairwise
r-separated by codewords, see also the proof of Th. 1 in [3]. Next, with
the crucial help of the edge e, the 2r vertices xk(4r+2)+r to xr−1 are r-
covered, pairwise r-separated, and r-separated fom the previous vertices by
codewords. 4
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Figure 10: Graph G in Proposition 25, for r = 4 and n = 44. The 19 black
vertices constitute a 4-identifying code in G.
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Figure 11: Graph G in Proposition 26.

7.2 Case of a disconnected graph Ge

We first give a result with γr(Ge)− γr(G) ≥ 2r − 3, then investigate how to
possibly reach 2r, and finally give a conjecture.

Proposition 26 There exist two r-twin-free graphs G and Ge such that

γr(Ge) − γr(G) ≥ 2r − 3. (19)

Proof. Consider the graph G given by Figure 11, with the edge e = vw,
where p and q are integers, p ≥ 3, q ≥ 3. We claim that: (a) γr(Ge) ≥
p + q + 4r − 6, and (b) γr(G) ≤ p + q + 2r − 3, from which (19) follows.

Proof of (a). If G(v) represents the “left part” of G, it is sufficient to
prove that γr(G(v)) ≥ p + 2r − 3. The following two observations will be
useful. For 1 ≤ i ≤ p and 2 ≤ k ≤ r, we have:

BG(v),r(vi,r−k+1)∆BG(v),r(vi,r−k+2) = {vj,k : 1 ≤ j ≤ p, j 6= i}, (20)
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and for 1 ≤ i < j ≤ p:

BG(v),r(vi,r)∆BG(v),r(vj,r) = {vi,1, vj,1}. (21)

The consequences are immediate. First, in order to have the vertices vi,r,
1 ≤ i ≤ p, pairwise r-separated in G(v), we see by (21) that we need at
least p − 1 codewords among the p vertices vi,1; second, for k fixed between
2 and r, we see, using (20), that we need at least two codewords among the
p vertices vi,k. So we obtain, after checking that G(v) indeed is r-twin-free,
that γr(G(v)) ≥ (p − 1) + 2(r − 1) = p + 2r − 3, and Claim (a) is proved.

Proof of (b). We set C = Cv ∪ Cw, with

Cv = {vi,1 : 2 ≤ i ≤ p} ∪ {vi,3, vi,5, . . . , vi,r : 1 ≤ i ≤ 2},

Cw = {wi,1 : 1 ≤ i ≤ q} ∪ {wi,3, wi,5, . . . , wi,r : 1 ≤ i ≤ 2},

when r is odd, and when r is even:

Cv = {vi,1 : 2 ≤ i ≤ p} ∪ {vi,3, vi,5, . . . , vi,r−1 : 1 ≤ i ≤ 2} ∪ {v},

Cw = {wi,1 : 1 ≤ i ≤ q} ∪ {wi,3, wi,5, . . . , wi,r−1 : 1 ≤ i ≤ 2} ∪ {w}.

We show that C, which has p + q + 2r − 3 elements, is r-identifying in G.
First, one vertex in the left part and one vertex in the right part of G can-

not be (G, C, r)-twins, thanks in particular to the q vertices wi,1: more specif-
ically, note that we take w1,1 in C (among other candidates, such as v1,1) in
order to r-separate w1,r and v1,r, and the consequence is that Cv and Cw are
not completely alike. Second, two vertices in the left part of G cannot be
(G, C, r)-twins because

– on each of the p copies of Pr, consecutive vertices are r-separated
alternatively by one codeword in Cw then one codeword in Cv;

– two vertices on different copies j1 and j2 are r-separated by vj1,1 or
vj2,1;

– and v is r-separated from the other vertices by v2,1 or v3,1.
The same argument works even better for the right part of G, by Lemma 5
and since w1,1 ∈ Cw. And obviously, all vertices are r-covered by at least
one codeword. 4

We now give a lead on how (19) could be improved, in Example 30. To do
this, we need some previously known results and one definition.

The r-transitive closure, or r-th power, of a graph G = (V,E) is the
graph denoted by Gr = (V r, Er) and defined by V r = V and

Er = {xy : x ∈ V, y ∈ V, 0 < dG(x, y) ≤ r}.

The following very easy lemma can be found in [5] or [8].

Lemma 27 In a graph G = (V,E), a code C ⊆ V is r-identifying if and
only if it is 1-identifying in Gr. 4
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Figure 12: Two copies of G∗, a graph with 10 vertices and γ2(G
∗) = 9.

The following result is from [2], but we prefer to refer to the shorter, more
elegant and more general proof of [14].

Theorem 28 Any minimum 1-identifying code in a graph with n vertices
has at most n − 1 codewords. 4

Corollary 29 For all r ≥ 1, any minimum r-identifying code in a graph
with n vertices has at most n − 1 codewords. 4

Graphs G of order n with γr(G) = n− 1 exist for all r and n ≥ 3r2 + 1, see
Theorems 4–6 in [5] or [8], or Theorems 4 and 5 in [7]; on this topic, see also
the more recent [13]. Our idea is to use two copies of such a “bad” graph,
and to link them with an edge.

Example 30 See Figure 12, where two different representations of the very
same graph G∗ with 10 vertices and γ2(G

∗) = 9 are given, forming a (discon-
nected) graph Ge with 20 vertices and γ2(Ge) = 18. If we link any two ver-
tices of the two copies, say v1,1 and z1,1, we obtain a graph G with 20 vertices
and γ2(G) ≤ 14: a 2-identifying code in G is C = {v1,1, v1,3, v1,4, v1,5, v2,2,
v2,3, v2,5, z1,1, z1,3, z1,4, z1,5, z2,2, z2,3, z2,5}, see the black vertices in Figure 12.
We have therefore an example with

γ2(Ge) − γ2(G) ≥ 4. (22)

4

We feel however that it is difficult to improve more than that (a decrease
by 4 when r = 2, and, in the general case, by 2r), and, together with the
case r = 1, see (16) and Example 21 in Section 6, this suggests the following
conjecture:

Conjecture 31 For all r ≥ 1, there exist two r-twin-free graphs Ge and G
such that

γr(Ge) − γr(G) = 2r. (23)
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Moreover, any two r-twin-free graphs Ge and G satisfy

γr(Ge) − γr(G) ≤ 2r. (24)

4

8 Conclusion

Table 2 recapitulates the results obtained in the previous sections, using
(in)equalities (15)–(19) and (22), and also restates Conjecture 31. We only
consider the difference γr(Ge) − γr(G).

r comment γr(Ge) − γr(G) reference
= 1 must be inside {−2,−1, 0, 1, 2} (15), (16), Th. 22
= 1 graphs with = −2, = −1, = 0, = 1, = 2 Ex. 19, 21 and 23

≥ 2 (connected) graphs with ≤ −r (17) in Prop. 24

≥ 2 connected graphs with ≥ r − 1 (18) in Prop. 25

≥ 2 graphs with ≥ 2r − 3 (19) in Prop. 26

= 2 graph with ≥ 4 (22) in Ex. 30

≥ 2 graphs with? = 2r? (23) in Conj. 31

≥ 2 impossible to have? > 2r? (24) in Conj. 31

Table 2: The difference γr(Ge) − γr(G), as a function of r.

It would be interesting to try and see whether the results in Propositions 24,
25 and 26 could be improved, namely: for r ≥ 2, are there graphs G and Ge

with
(i) γr(Ge) − γr(G) < −r,
(ii) γr(Ge) − γr(G) > r − 1, or
(iii) γr(Ge) − γr(G) > 2r − 3,

where in Cases (i) and (iii), the graph Ge may be disconnected.
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