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Three-Dimensional Unsteady MHD Modeling of a

Low Current - High Voltage Non-Transferred DC

Plasma Torch Operating With Air
Alexandre Lebouvier, Clarisse Delalondre, Francois Fresnet, Valerie Boch, Vandad Rohani, Francois Cauneau

and Laurent Fulcheri

Abstract—We present in this paper the MHD modeling of a
DC plasma torch operating with air under very peculiar high
voltage-low current conditions. The model developed is 3D, time-
dependent and assumes LTE. The study has been carried out
considering an axial injection of air with flow rates varying in
the range 0.16 - 0.5 g/s and currents varying in the range 300 -
600 mA.

The numerical modeling has been developed using
Code Saturne, CFD software developed by EDF R&D
which is based on co-located finite volume.

After a detailed description of the model, results are presented,
analyzed and discussed. The influence of current and air flow rate
over the arc characteristics are studied in terms of temperature,
velocity, electrical potential, Joule heating and arc root motion.
Regarding numerical issues, the MHD modeling of low current
- high voltage arc discharge is particularly tricky since, below
1 A, the self-induced magnetic field becomes negligible and
the convection effects induce a highly irregular and unstable
motion of the arc column. However, despite these difficulties, the
numerical model has been successfully implemented. Numerical
results have shown good correlation and good trends with
experimental ones despite a discrepancy probably due to the LTE
assumption. The model gave fruitful and significant information
on parameters that could hardly be obtained experimentally. This
preliminary work is likely to open the way towards a better
understanding of low current arc discharges, which technologies
are currently encountering an important development in many
application fields.

Index Terms—3D MHD unsteady modeling, Low current DC
arc discharge, non-transferred plasma torch.

I. INTRODUCTION

FOR many years, numerical modeling became a unique and

powerful tool for the development and the optimization

of plasma processes. With computing power improvement,

models get more and more sophisticated and close to real con-

ditions thus allowing today the simulation of three-dimensional

and unsteady systems with detailed geometry description.

Numerous fluid models have been reported in the literature

mostly on direct current (DC) arc discharge modeling using

Manuscript received February 2, 2011. This work was supported by Renault
SAS, Guyancourt, France.

A. Lebouvier, V. Rohani, F. Cauneau and L. Fulcheri are with MINES
ParisTech, Center for Energy and Processes, Rue Claude Daunesse, BP 207,
06904 Sophia Antipolis, France (email: laurent.fulcheri@mines-paristech.fr).

C. Delalondre is with EDF R&D, MFEE Department, 6 quai Watier, 78400
Chatou, France.

F. Fresnet and V. Boch are with Technocentre Renault, DREAM/DTAA -
Service 68240, 78288 Guyancourt, France.

Digital Object Identifier

high current above 100 A [1], [2] including: free burning

arcs [3], [4], transferred arcs [5]–[7] and non-transferred arcs

[8]–[11]. Many DC arc plasma torches models have been

developed for different applications [12] as: cutting [13],

welding [14], deposition and spraying [8]–[11], [15], [16],

steelmaking [7], waste disposal [17] and ultra fine particle

production [18]. These thermal plasmas generally work under

low-medium voltage between 30 and 500 V [2]. In non-

transferred plasma torch, the arc behavior can generally be

classified into three operation modes : steady, takeover and

restrike modes respectively [2]. The steady mode corresponds

to a fixed position of the arc attachment whereas the takeover

mode corresponds to a quasi-periodic fluctuation of the voltage

drop and hence of the arc movement. The restrike mode is

characterized by a highly unstable movement of the arc where

the reattachment phenomenon plays a significant role. The first

models were two-dimensional (2D) or 2D axisymmetric thus,

the vortex inflow and the arc root attachment could not be

perfectly reproduced [7], [19], [20]. With the improvement of

computing power, many research teams moved towards three-

dimensional models which are closer to real configurations

[4]. Most of these models assume the local thermodynamic

equilibrium (LTE) except e.g. Trelles et al. [21] and Park et

al. [22] who developed non-LTE (NLTE) models in argon.

The calculations are often realized in a simple gas, mainly

argon [4], [15], [18], [20] but also nitrogen [5], pure oxygen

[13], or a gas mixture: air [17], Ar/H2 [8], Ar/N2 [9]–[11].

The main focuses of arc plasma torch modeling are the arc

root displacement and attachment [16], [17], and the metal

electrode evaporation [14], [16]. Although the laminar flow

regime is commonly used for modeling plasma torch [6], [8],

[10], [17], [23], literature reports few studies using turbulent

k-ǫ model [15], [18], Rij-ǫ and low-Re models [24], comparing

laminar to standard k-ǫ model [25], or comparing several

turbulent models (standard k-ǫ, RNG k-ǫ, realizable k-ǫ) [13].

For several years, researches carried out at CEP (Center

for Energy and Processes, MINES ParisTech) in the field of

hydrocarbons reforming led to the development of a very

peculiar DC plasma torch technology operating under low cur-

rent - high voltage conditions: typically in the range 400 mA

and 2 kV respectively. This type of torch is a non-thermal

atmospheric plasma torch and, in some operating points, can

be assimilated to a LCGA (Low Current Gliding Arc) as we

work under 1 A [26]. The high degree of non-equilibrium of

this torch is promising for chemical applications to support
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chemical reactions selectively [26], but suffer from a lack of

knowledge of its physics and chemistry. Our researches led

to the development of basic knowledge on both experimen-

tal [27], [28] and numerical [29], [30] sides. Unfortunately,

whereas many studies have been dedicated to high current

plasma discharges, the literature on MHD modeling of low

current - high voltage plasma torches is very poor and the

domain remains almost unexplored. One of the main reason

explaining the lack of studies dedicated to this purpose is

probably due to the fact that, at low current, the self-induced

magnetic field becomes negligible and the convection effects

induce a highly irregular motion of the arc column. These arc

motion instabilities imply very unstable physical phenomena.

Thus, one of the most challenging issue in the field of plasma

modeling for the next coming years is to be able to simulate

very low-current arc discharges owing to important numerical

instabilities deriving from physical instabilities.

Different numerical models developed for plasma reforming

addressing thermodynamics and kinetics issues have been

reviewed in Ref. [31]. On the other hand, Bromberg et al. [32]

and Fridman et al. [33] used computational fluid dynamics

(CFD) codes to simulate the hydrodynamic flows in the torch

with considering neither kinetic reactions nor MHD equations.

In the first paper, the plasma is not considered and the study

has been focused on the methane/air mixing at the location of

the plasma. In the second one, the plasma is considered as a

source term of power and the reverse vortex flow influence on

the plasma is investigated.

In the first part of this paper, the model assumptions,

boundary conditions, equations and simulation parameters are

successively presented. In the second part of this paper, the

low current arc discharge behavior is presented, analyzed and

discussed in terms of temperature, velocity, electrical potential,

Joule heating and arc root velocity with a special attention

being paid to evaluate the influence of arc current and air

flow rate.

II. MATHEMATICAL MODEL

A. Assumptions

The three-dimensional model studied is based on the fol-

lowing main assumptions:

• The plasma is considered as a single continuous fluid

(Air).

• The plasma is optically thin and at Local Thermodynamic

Equilibrium (LTE).

• The gas is treated as semi-compressible because the Mach

number is lower than 0.2.

• The gas flow is laminar and time-dependent.

• Gravitational effects are taken into account (-x direction).

Let us point out that whereas high current arcs or high

power-density plasmas [34] are commonly assumed to be in

LTE. For low current or low power density arcs, which has

a high degree of non-equilibrium, this hypothesis is generally

not correct. It has been demonstrated that this assumption can

imply great differences in the arc behavior and characteristics

[21]. However, even if this is a strong assumption, the LTE

assumption has been considered due to highly challenging

numerical issues linked with the low current. The objective

of this study was to get preliminary information on transport

phenomena including mass, momentum, and energy as well

as on the gas flow and temperature fields. Obviously, it would

be interesting subsequently, in a later phase, to develop more

sophisticated NLTE models such as two-temperature models.

B. Governing equations

The model can be defined by the set of following equations

based on fluid dynamics Navier-Stokes and Maxwell electro-

magnetic equations respectively. All the equations are written

in a Cartesian system (Ox, Oy, Oz). In thermal plasmas, which

are assumed to be electronically neutral, the only resulting

force applied on a volume element is the Lorentz Force

(N/m3):

~FL = J × B (1)

where J and B correspond to the electric current density

vector (A/m2) and the magnetic field (T) respectively. The

generalized Ohm’s law approximation commonly used in

electric arc modeling [2] is :

J = σE (2)

where σ and E represent the electric conductivity (S/m) and

the electric field (V/m) respectively. Neglecting the Neumann’s

electromotive field, the electrical field can be linked to the

electrical potential φ(V) by the following relation:

E = −∇φ (3)

In absence of external magnetic field, the electric potential

equation is approximated to:

−∇ · (σ∇φ) = 0 (4)

The magnetic field and the magnetic vector potential (T.m) are

related by the following relation:

B = ∇× A (5)

The Maxwell-Ampere equation is:

∆A = −µ0J (6)

where µ0 is the vacuum permeability.

The set of Navier-Stokes fluid conservation equations is

presented below.

Mass conservation

∂ρ

∂t
+∇ · (ρV) = 0 (7)

where ρ and V are the mass density and the velocity vector.

Energy conservation equation

∂ρh

∂t
+∇ · ρhV −∇ ·

λ

Cp

∇h = J · E − Srad (8)

where h, λ, Cp and Srad are the gas enthalpy, the thermal

conductivity, the specific heat and the radiation losses respec-

tively.
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Fig. 1. Schematic of the plasma torch.

Momentum equation

∂ρV

∂t
+∇ · (ρV ⊗ V) = −∇p+∇ · τ + J × B + ρg (9)

where p, τ and g are the pressure, the shear stress tensor and

the gravity vector respectively.

The study was carried out for an arc discharge operating

with air. The properties data have been taken from [35]

for enthalpy, density, specific heat, electrical conductivity,

dynamic viscosity and thermal conductivity. For the source

radiation, the net emission coefficients have been taken from

[36].

The resistive MHD equations have been solved us-

ing Code Saturne v. 1.3, developed by EDF R&D. The

Code Saturne electric arc module has been used. This

CFD software is based on co-located finite volume [37].

Code Saturne’s capabilities enable the handling of incom-

pressible and expandable flows with heat transfer using SOLU

convective scheme (Second Order Linear Upwind) and SIM-

PLEC pressure correction scheme (Semi-Implicit Method for

Pressure-Linked Equations, Consistent) [38].

C. Computational grid and boundary conditions

The torch geometry corresponding to the real experimental

set-up, is presented on Fig. 1. It is composed of two separated

zones: the plasma zone and the post-discharge zone with

70 mm / 4 mm and 100 mm / 11 mm length / inner radius

respectively. Let us point out that, under real reactive operating

conditions, the plasma zone is the part where the arc plasma

really takes place whereas the post-discharge zone is an active

or passive zone, located downstream the plasma zone where,

reactions ignited in the plasma zone continue to take place.

Usually, in DC plasma torches, the tip electrode is the cath-

ode. In our case, the system operates under inversed polarity.

The tip electrode, on which a positive electrical potential is

applied, being the anode whereas the cylinder electrode is

grounded and acts as the cathode. Indeed, previous works have

demonstrated this configuration was the most suitable for low

current systems [30].

The grid mesh, shown on Fig. 2, is exclusively composed

of hexa-elements and contained 339 000 cells. Cubic cells

of ∆x = 0.044 mm compose the center of the computational

grid. The mean axial and radial spacing grid are 0.7 mm and

0.21 mm respectively. These values are very similar to the ones

used by Freton et al. [17]. This very fine grid was chosen to

compute correctly the gradients of all transport variables into

the arc column. The grid is axially finer near the anodic and

the cathodic arc root attachment position.

The boundary conditions are detailed in Table I. The atmo-

spheric pressure is imposed at the outlet. The temperature of

Fig. 2. Computational grid of the plasma torch.

the injected air is 600 K. The walls are considered adiabatic. At

the first time step, an atmospheric pressure and a temperature

of 600 K is applied to the whole domain.

The potentiel to the cathode is imposed to 0 V, and the

potential to the anode is calculated from the previous time

step. The voltage drop in the sheath is not included in the

model. The potential results correspond to the voltage drop in

the arc column. In our case, the electrical current is very low,

so it is difficult to assume a value of electrical voltage drop

in the cathodic and anodic sheaths. For high intensity electric

arcs, authors generally used an imposed value of 3 to 10 V

for the potential drop in the sheaths [4], [8], [39].

A null-flux condition is applied for the heat conduction at

the electrodes. Even if this assumption is strong, it can be

justified by the fact that the electrodes are not water-cooled

so the losses at the electrodes are not as significant as they

are in thermal torches.Nevertheless, in a next step model, we

will take into account the electrode sheath by introducing a

global model based on the energy exchange in the cathodic

and anodic sheath [8], [40].

D. Simulation parameters

The time step ∆t is set to 10 µs as Chemartin et al. [3], [41].

This time step allows obtaining fair plasma characteristics with

a reasonable computation time. Freton et al. [17] and Park et

al. [42] have used a 5 µs time step after a parametric study.

At the first time step, a hot temperature channel is artificially

created to ignite the arc such as proposed, for example, by

Moreau et al. [8]. The channel has a 0.8 mm radius. The

temperature imposed in the initial channel is 6000 K for

starting calculation (cf. Fig. 3). The initial anode voltage drop

is set to 1000 V. For the first 50 time steps i.e. 500 µs, the

inflow is 1 % of the total inflow in order to allow the correct

arc ignition. Subsequently, for the 150 following time steps,

a linear velocity ramp is applied at the inlet to increase the

inflow from 1 to 100 %.

The current target is set between 300 mA and 600 mA. The

current is mesured by the integral of the current density in

a z-normal plane Sz (cf. Eq. 10), located 1.5 mm after the
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TABLE I
BOUNDARY CONDITIONS OF THE 3D MHD MODEL.

Inlet Outlet Walls Anode Cathode

u (m/s) 0
∂u

∂n
= 0 0 0 0

v (m/s) 0
∂v

∂n
= 0 0 0 0

w (m/s) 6.1 to 19.1
∂w

∂n
= 0 0 0 0

T (K) 600
∂T

∂n
= 0

∂T

∂n
= 0

∂T

∂n
= 0

∂T

∂n
= 0

φ (V)
∂φ

∂n
= 0

∂φ

∂n
= 0

∂φ

∂n
= 0 φ(n) 0

P (Pa)
∂P

∂n
= 0 1.013 105

∂P

∂n
= 0

∂P

∂n
= 0

∂P

∂n
= 0

Ax (T.m)
∂Ax

∂n
= 0 0

∂Ax

∂n
= 0

∂Ax

∂n
= 0

∂Ax

∂n
= 0

Ay (T.m)
∂Ay

∂n
= 0 0

∂Ay

∂n
= 0

∂Ay

∂n
= 0

∂Ay

∂n
= 0

Az (T.m)
∂Az

∂n
= 0 0

∂Az

∂n
= 0

∂Az

∂n
= 0

∂Az

∂n
= 0

Fig. 3. View of the initial hot temperature channel at the first time step.

anode. At each time step, the anodic electrical potential φn is

fitted to maintain the current target from Eq. 11.

I =

∫∫

Sz

J · dS (10)

φn =
Itarget

Imesured

φn−1 (11)

2000 time steps have been considered, corresponding to a

numerical time of 20 ms. The calculations have been realized

on 8 processors (Intel Xeon 2.66 GHz) for 30 hours. That

corresponds to a calculation time of around 55 s for each

time step. The number of under iteration is around 2300 for

pressure, 1300 for potential vector, and under 100 for enthalpy

and velocity.

III. RESULTS

A. Results for I = 400 mA and Qair = 0.32 g/s

In this section, we present results for an electrical current

of 400 mA and an air flow rate of 0.32 g/s.

Fig. 4 represents the evolution of the temperature. We can

observe that the arc root moves along the same plane as the

ignition plane (Oy, Oz) due to the axial injection. Once the

arc root has reached the cathode tip, it remains attached to

the cathode tip at approximately 1.30 mm above the exit.

The arc root path follows the cathode shape at the exit.

Indeed, in this zone, the velocity magnitude is close to zero

(cf. Fig 5) because of the dead zone created by the sudden

section enlargement. In this zone, the cathodic arc root is less

disturbed by the gas inflow and the dead zone constitutes a

favourable arc root attachment point.

The magnetic field is produced by the local curvature of the

current path and the self-induced magnetic field. The arc dy-

namics inside the torch is the result of the imbalance between

the electromagnetic forces and the flow drag. As expected,

the magnetic field magnitude is very low. Its maximum value

reaches 0.7 mT at the cathode tip where tip effect is the

highest. As a result, the Lorentz forces are also very low (up

to 120 N/m3). Around the arc core, the mean value of the

magnetic field magnitude is around 0.1 mT. These very low

values explain mainly the instabilities observed in low current

plasma torches compared to high current plasma torches, much

more stable. The magnetic field is so low that the arc column

is only stabilized by the hydrodynamic effects, especially by

the wall or vortex stabilization commonly used in low current
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Fig. 4. Representation of the temperature field displaying the evolution of
the arc shape in a cross-section for three specific times (t = 2, 5 and 20 ms).
I = 400 mA. Qair = 0.32 g/s.

Fig. 5. Representation of the velocity magnitude distribution. I = 400 mA.
Qair = 0.32 g/s.

- high voltage torch.

The maximum velocity is 67 m/s and is located at the cath-

ode tip. The velocity magnitude distribution is not symmetric

due to the arc curve. Once the inlet velocity has reached its

maximum, the arc root velocity can be estimated to 15.2 m/s

along the cathode inner surface. This calculated velocity is

higher than the average velocity in the nozzle (w = 11 m/s)

because of the thermal effects. On the other hand, the Lorentz

force is so low that the induced convection effect can be

neglected.

The anodic and cathodic arc root temperature values are

around 5500 and 5100 K respectively. This temperature cor-

responds to the temperature of the plasma at the interface

between the electrode sheath region and the arc column. The

arc column is very stable inside the cathode essentially due

to the axial injection and the laminar flow assumption. One

can observe on Fig. 6 that the arc core temperature in the

cathode reaches 5300 K with a significant temperature gradient
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Fig. 6. Numerical temperature profile in the radial direction taken in the
middle of the cathode. I = 400 mA. Qair = 0.32 g/s.

Fig. 7. Photographs of the experimental plasma torch tip for Qair = 0.32
g/s. I = 400 mA. Vortex injection.

between the center of cathode and its borders (∼ 1500 K/mm).

Fig. 7 presents a real photographs of the plasma from

experiments in close conditions. This picture confirms the

phenomenon predicted by the simulation, previously presented

on Fig. 4. The plasma plume observed by the experiment has

the same shape as that numerically obtained. The cathodic arc

root becomes attached to a point located above the exit.

We can also observe on Fig. 7 that the arc root radiations

are higher than the arc core radiations. This difference is

not observed by the simulation (cf. Fig. 8), the arc root is

as bright as the arc core. This phenomenon can probably

be explained by the fact that the model does not take into

account the electrode metal evaporation. Indeed, the cathode

being composed of stainless steel, it is composed by more than

60 % of iron and it is well known that iron net emission is

very high [43]. We can also see on this picture that the plasma

plume length, which is about 55 mm numerically, is close to

the experimental one, which is around 45 mm.

As assumed by Selvan and coworkers [11], the arc core

radius is the radial distance along the anode from the centerline

to the point where the current density is zero. In practice,

the zero current density is supposed being achieved when

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 9, SEPTEMBER 2011 © 2011 IEEE 
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Fig. 8. Representation of the radiation emission distribution. I = 400 mA.
Qair = 0.32 g/s.

Fig. 9. View of the current density and isopotentials. I = 400 mA. Qair =
0.32 g/s.

the current density is 2 orders of magnitude smaller than the

maximum current density which is 115 A/cm2. The current

density is shown on Fig. 9. By this technique, the arc core

radius can be estimated to 0.5 mm. This information is hardly

accessible by the experiment.

On the other hand, the radius of the most emitting zone,

has been experimentally estimated, to the naked eye, to 1 mm

at the torch exit. It can be compared to the radius value

of the most emitting zone found by the simulation. From

Fig. 8, this value is around 0.83 mm, so demonstrating the

good correlation between the numerical and the experimental

results.

The voltage drop and the inlet velocity ramp are presented

on Fig. 10. After 500 µs, the arc is blown by the air flow rate.

The higher the arc length, the higher the voltage. Indeed, it

is well known that the arc voltage varies quasi-linearly with

the arc length. We can observe few low instabilities (f = 20

kHz) in the range 1.3 - 6 ms. These instabilities are probably

numerical instabilities due to the sudden high stretch of the

low current arc.

Once the arc root has reached the cathode tip, the mean

voltage is equal to 2.7 kV and corresponds to a deposited

plasma power of 1.1 kW. For that case, a typical experimental

oscillogram is displayed on Fig. 11 and gives a mean voltage

30 % (1.9 kV) lower than the simulated one. As demonstrated

by Trelles et al. [21], the total voltage drop for a NLTE

model of a high current plasma torch can be 50 % lower

than for a LTE model. Indeed, for NLTE models, the electron

temperature and the electrical conductivity are higher than

in LTE models. Hence the resistance to the current flow

decreases and leads to a decrease of the voltage drop decrease.
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Fig. 10. Simulated arc voltage versus time. I = 400 mA. Qair = 0.32 g/s.
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Fig. 11. Typical experimental voltage oscillogram. Qair = 0.32 g/s. I = 400
mA.

Thus, the LTE assumption is probably the main reason of this

discrepancy, even if some other factors could intervene e.g.

the metal vapor near the electrodes.

After the arc has reached the tip, we can also observe

numerically, on Fig. 10 the apparition of voltage instabilities.

These instabilities arise from a coming and going motion

of the arc bend, which change the arc length and thus the

voltage drop. Instabilities are also observed experimentally

and can be seen on Fig. 11. The normalized FFT of both

experimental and simulated voltage oscillograms (for t > 10

ms) are presented on Fig. 12, in a semilogarithmic scale.

The experimental spectrum is broad, whereas the simulated

is thinner but shows several frequency peaks. The oscillation

frequency peaks are in the same range of frequencies. The

highest peak is for a frequency of 1.85 kHz and 3.2 kHz

for the numerical and experimental spectrum, respectively.

Let us point out that the 43 kHz peak directly comes from

the power supply frequency which is based on a resonance

converter. Hence the instabilities over 10 ms could be due

mainly to hydrodynamic forces. Even if the arc root stays at

a fixed position (similar to the steady mode) these periodic

fluctuations, coming from the arc plume length, remind the

takeover mode [44].

The Joule heating (J · E) balances the radiation losses and

the convective cooling effect driven by the Lorentz forces
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Fig. 12. Comparison between the normalized FFT of the experimental and
the numerical voltage oscillograms, plotted in a semilogarithmic scale. I =
400 mA. Qair = 0.32 g/s.

[18], almost negligible in our case. In low current plasma

torches, the convective cooling effect mostly comes from the

gas inflow. The Joule heating is strong (27 kW/cm3) in the

anodic zone, where the current density is maximum, but lower

than 1 kW/cm3 in the rest of the arc due to the low current

used.

B. Influence of the current

The current influence has been investigated in the range of

300 mA - 600 mA for an air flow rate of 0.32 g/s.

Fig. 13 shows photographs of the plasma plume vs. elec-

trical current. The higher the current, the higher the power

and the stability. Indeed, for I = 300, 400 and 600 mA,

the experimental deposited power is 640, 770 and 950 W

respectively.

Fig. 14 shows the numerical oscillograms for I = 300,

400 and 600 mA and on Figs. 11 and 15 the associated

experimental oscillograms. On Fig. 14, we can observe that,

before the arc root reached the cathode tip (t < 10 ms), the

higher the current, the lower the instabilities magnitude.

The mean voltage drop, showed on Fig. 16, and the standard

deviation for the three cases, both experimental and simulated,

have been reported on Table II. The model follows the

experimental voltage trends: the higher the current, the lower

the voltage but the higher the deposited power. This is a typical

characteristic of non-thermal plasmas. For I = 300, 400 and

600 mA, the numerical deposited power is 1000, 1100 and

1200 W respectively.

Moreover, one can observe that the higher the current, the

higher the instabilities magnitude. The oscillation frequencies

are in the same frequency range for the three currents.

We can also notice that the lower the current, the higher the

difference between simulated and experimental mean voltage.

This phenomenon is probably due to the non-equilibrium

effects which increase when decreasing the current.

The radial profile of the temperature in the middle of the

cathode is shown on Fig. 17. The higher the current, the higher

the temperature and the wider the arc core temperature profile.

As a result, the higher the temperature, the higher the arc root

����������

����������

����	�����

Fig. 13. Photographs of the experimental plasma for three currents. Qair =
0.32 g/s.
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Fig. 14. Numerical arc voltage vs. time for three different currents. Qair =
0.32 g/s.

TABLE II
COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS OF

THE MEAN VOLTAGE AND STANDARD DEVIATION IN FUNCTION OF THE

CURRENT. Qair = 0.32 G/S.

I (A) Mean voltage (kV) Standard deviation (kV)

0.3 Exp. 2.13 0.61
Num. 3.31 0.10

0.4 Exp. 1.92 0.17
Num. 2.70 0.09

0.6 Exp. 1.58 0.14
Num. 2.00 0.05

velocity: 14.3, 15.2 and 16 m/s for I = 300, 400 and 600 mA,

respectively.
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Fig. 15. Experimental oscillograms for I = 300 and 600 mA. Qair = 0.32
g/s.
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Fig. 16. Comparison of mean voltage drop between experimental and
numerical results vs. current. Qair = 0.32 g/s.
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Fig. 17. Radial temperature profile at z = 35 mm (middle of the cathode)
for three different currents. Qair = 0.32 g/s.

C. Influence of the air mass flow rate

The influence of the air flow rate has been investigated in

the range of 0.16 - 0.5 g/s for a current of 400 mA.

Fig. 18 shows that the increase of the air flow rate results

in the increase of voltage instabilities. For an air flow rate of

0.5 g/s, the arc shape is very disturbed by the flow instabilities

appearing in the post-discharge zone. An example is shown on

�

�

�

�

�

�

�

�

� � �� �� ��

	


��


�
�
��
�
	
�

���������

�������

��������

��������

Fig. 18. Numerical arc voltage versus time for three different air flow rates.
I = 400 mA.

Fig. 19. Temperature distribution and velocity vectors field illustrating the
instabilities. Qair = 0.5 g/s. I = 400 mA. t = 20 ms.

Fig. 19. The simulated oscillations of the jet implies a periodic

and significant arc voltage increase in order to maintain the

arc. The voltage shapes remind the three operation modes

[44]: steady, takeover and restrike for 0.16, 0.32 and 0.5 g/s

respectively. Even if those are simulated results, two candidate

mechanisms for such instabilities should need further studies

to confirm or not their role in this case: the instability of a jet

in a cavity, and the Kelvin-Helmholtz instability.

The first process involves the instability of the pressure field

surrounding the jet near the inlet. This is a classical version of

the Coanda instability, and has been reported even in the case

of thermal jets [45]. In our case, it results in an oscillation

of the jet, but observational evidence reports that in similar

cases, wall-hugging jets can be also observed.

Table III shows that, as observed experimentally, the higher

the air flow rate, the higher the voltage drop and the higher

the instabilities. We can also observe that the higher the mass

flow rate, the higher the discrepancy between simulated and

numerical mean voltage. Indeed, the higher the mass flow rate,

the higher the cooling of the arc by convection heat transfer,

and the higher the non-equilibrium effects.

The radial profiles of the temperature and velocity in the
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TABLE III
COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS OF

THE MEAN VOLTAGE AND STANDARD DEVIATION IN FUNCTION OF THE

AIR FLOW RATE. I = 400 MA.

Qair (g/s) Mean voltage (kV) Standard deviation (kV)

0.16 Exp. 1.73 0.17
Num. 1.61 0.01

0.32 Exp. 1.92 0.17
Num. 2.70 0.09

0.5 Exp. 1.94 0.21
Num. 3.49 0.92
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Fig. 20. Numerical radial temperature profile at z = 35 mm for different air
flow rates. I = 400 mA.

middle of the cathode are shown on Figs. 20 - 21 respectively.

The lower the mass flow rate, the wider the temperature

profile. We can notice that the maximum temperature reached

in the center of the arc core for the three mass flow rates

are very close (between 5140 and 5230 K). Hence, the arc

core temperature depends mainly of the current and the mass

flow tends to cool down the arc core outline. The maximum

velocity is equal to 30 m/s for Qair = 0.16 g/s and 62 m/s for

Qair = 0.5 g/s.

At low flow rates, the velocity profile is relevant of the

pure laminar parabolic case. It can also been seen that at

higher air flow rates, deviations to this reference profile are

retrieved, even if no turbulence model is activated in the code.

At the corresponding regimes (Re = 2000, typically) transi-

tional mechanisms toward turbulence are strictly impossible

to inhibit, so this distortion of the velocity profile can be

linked with several candidate processes, from purely numerical

effects to physical mechanisms, such as the Kelvin-Helmholtz

instability that generally develops in the shear-stress zone

surrounding jets. In our case, the vortex creation that should

progressively occurs at scales between the grid size and the jet

diameter, resulting in an increase of the mean velocity in this

mixing layer is not observable, but there remains the evidence

of a macro-scale shear-stress effect. This has already been

described by Trelles et al. [21].

IV. CONCLUSION

The MHD unsteady modeling of a non-thermal DC non-

transferred low current - high voltage plasma torch operating

with air has been successfully implemented. The low current
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Fig. 21. Numerical radial velocity profile at z = 35 mm for different air flow
rates. I = 400 mA.

arc discharges are characterized by a highly irregular and

unstable motion of the arc column which is particularly

difficult to simulate due to numerical instabilities. Significant

information, experimentally hardly accessible, have been ob-

tained.

Among the most important results to point out, one can

quote:

• The numerical arc moves linearly along the same plane

and has the same shape as the experimental one. Due

to a velocity dead zone at the cathode tip, the arc root

is attached few mm above the cathode tip as observed

experimentally.

• The magnetic field and the Lorentz force are very low

because of the low current applied to the anode. The

arc column is very stable in the nozzle because of the

wall-stabilization of the arc. At the nozzle tip, the low

current leads to instabilities in the arc length and thus in

the voltage which could be linked to pure hydrodynamic

effects.

• The model overestimates the voltage drop probably be-

cause of the LTE assumption. Indeed, the non-equilibrium

effects are significant and result in a discrepancy between

experimental and numerical voltage values.

• The temperature gradients are significant and lead to a

highly non-homogeneous arc discharge.

• The arc root radiation is underestimated because the

electrode metal evaporation is not taken into account.

• The arc core radius can be estimated between 0.5 and

0.83 mm by the model.

• For t > 10 ms, the numerical oscillation frequency range,

similar to the experimental one, could probably be due

to the hydrodynamic forces.

• The higher the current, the lower the voltage, the higher

the deposited power, the higher the arc core temperature

and radius, the lower the voltage instabilities.

• The higher the current, the lower the voltage discrepancy

between the experimental and numerical results. The

higher the air flow rate, the higher the voltage difference

between experimental and numerical results. These two

phenomenon are probably due to the non-equilibrium

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 9, SEPTEMBER 2011 © 2011 IEEE 
Digital Object Identifier 10.1109/TPS.2011.2160208



IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 00, NO. 00, 0000 0000 10

effects which decrease with increasing the current and

decreasing the mass flow rate.

• The higher the air flow rate, the higher the voltage

instabilities. Maximum temperatures are similar but the

temperature and velocity profiles become narrower.

• For Qair ≥ 0.5 g/s, the jet appears progressively as

instable and broadens. Such behavior for the model indi-

cate that experimental confirmation for possible candidate

mechanisms may be searched for : Coanda instability and

Kelvin-Helmoltz instability.

In a further work, the development of a NLTE model will be

considered to take into the high non-equilibrium effects of the

plasma torch. The perspective of this preliminary model are

also the implementation of a enthalpy flux and a sheath zone

at the electrodes and a better description of the inlet zone. The

full anode and inlet zone with tangential entry will be meshed

in order to take into account the real vortex flow. The laminar

flow regime is a strong assumption in our case and turbulent

models will be tested to observe their influence on the arc

shape and the voltage drop.

The restrike mode will also be implemented to simulate

the glidarc behavior, happening for certain values of current

and air flow rate. A hot gas column reattachment process,

based on the overcome of a fixed value of the electric field,

is considered.

This preliminary work is likely to open the way towards a

better understanding of low current arc discharges which tech-

nologies are currently encountering an important development

in many application fields.
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