Wave propagation across acoustic / Biot's media: a finite-difference method

Abstract : Numerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach.
Type de document :
Article dans une revue
Communications in Computational Physics, Global Science Press, 2013, 13 (4), pp.985-1012. <10.4208/cicp.140911.050412a>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00623627
Contributeur : Bruno Lombard <>
Soumis le : jeudi 5 avril 2012 - 14:24:26
Dernière modification le : mardi 10 mai 2016 - 22:07:29
Document(s) archivé(s) le : vendredi 6 juillet 2012 - 02:37:00

Fichiers

Ccp1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guillaume Chiavassa, Bruno Lombard. Wave propagation across acoustic / Biot's media: a finite-difference method. Communications in Computational Physics, Global Science Press, 2013, 13 (4), pp.985-1012. <10.4208/cicp.140911.050412a>. <hal-00623627v2>

Partager

Métriques

Consultations de
la notice

293

Téléchargements du document

145