Stability of thin-shell structures and imperfection sensitivity analysis with the Asymptotic Numerical Method

Sébastien Baguet 1 Bruno Cochelin 2
1 DCS - Dynamique et Contrôle des Structures
LaMCoS - Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne]
Abstract : This paper is concerned with stability behaviour and imperfection sensitivity of thin elastic shells. The aim is to determine the reduction of the critical buckling load as a function of the imperfection amplitude. For this purpose, the direct calculation of the so-called fold line connecting all the limit points of the equilibrium branches when the imperfection varies is performed. This fold line is the solution of an extended system demanding the criticality of the equilibrium. The Asymptotic Numerical Method is used as an alternative to Newton-like incremental-iterative procedures for solving this extended system. It results in a very robust and efficient path-following algorithm that takes the singularity of the tangent stiffness matrix into account. Two specific types of imperfections are detailed and several numerical examples are discussed.
Type de document :
Article dans une revue
Revue Européenne des Eléments Finis, Hermès, 2002, 11/2-3-4, pp.493-509. <10.3166/reef.11.493-509>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00623497
Contributeur : Sébastien Baguet <>
Soumis le : jeudi 18 septembre 2014 - 11:43:49
Dernière modification le : mardi 10 mai 2016 - 11:06:03
Document(s) archivé(s) le : jeudi 30 mars 2017 - 14:51:29

Fichier

Baguet_Cochelin_REEF2002_HAL.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sébastien Baguet, Bruno Cochelin. Stability of thin-shell structures and imperfection sensitivity analysis with the Asymptotic Numerical Method. Revue Européenne des Eléments Finis, Hermès, 2002, 11/2-3-4, pp.493-509. <10.3166/reef.11.493-509>. <hal-00623497>

Partager

Métriques

Consultations de
la notice

234

Téléchargements du document

151