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Abstract. Programs with floating-point computations are tricky to de-
velop because floating-point arithmetic differs from real arithmetic and
has many counterintuitive properties. A classical approach to verify such
programs consists in estimating the precision of floating-point computa-
tions with respect to the same sequence of operations in an idealized
semantics of real numbers. Tools like Fluctuat—based on abstract
interpretation—have been designed to address this problem. However,
such tools compute an over-approximation of the domains of the vari-
ables, both in the semantics of the floating-point numbers and in the se-
mantics of the real numbers. This over-approximation can be very coarse
on some programs. In this paper, we show that constraint solvers over
floating-point numbers and real numbers can significantly refine the ap-
proximations computed by Fluctuat. We managed to reduce drastically
the domains of variables of C programs that are difficult to handle for
abstract interpretation techniques implemented in Fluctuat.

Key words: Program verification; Floating-point computation; C pro-
grams; Abstract interpretation-based approximation; Interval-based con-
straint solvers over real and floating-point numbers

1 Introduction

Numerous critical software applications rely on floating-point computations: in
particular, simulation or control applications for physical systems in various do-
mains as transportation, nuclear energy, medicine, or avionics and aerospace.
These applications are often based on algorithms and mathematical models de-
signed for real numbers. Floating-point numbers are then an additional possible
source of errors and famous computer bugs are due to errors in the floating-point
computations, e.g., the Ariane 5 rocket explosion or the Patriot missile failure.
Indeed, for a same sequence of operations, floating-point numbers do not behave
identically to real numbers. The finite nature of floating-point numbers has con-
sequences that are counterintuitive with regards to real number arithmetic [12,
22]. For instance, some decimal real numbers are not representable (e.g., 0.1 has
no exact representation with binary floating-point numbers), arithmetic opera-
tors are not associative and may be subject to phenomena such as absorption



(e.g., a + b is rounded to a when a is far greater than b) or cancellation (sub-
traction of nearly equal operands after rounding that only keeps the rounding
error). Despite the IEEE 754 standard, these intrinsic phenomena of floating-
point arithmetic depend on various factors such as compilers, operating systems,
or computer hardware architectures.

Although these phenomena are well known, ensuring that a program with
floating-point computations reasonably approximates its original mathematical
model on reals remains difficult. Formal verification methods have been devel-
oped to estimate the accuracy of floating-point computations and to show the
absence of some runtime errors like arithmetic overflows, invalid operations, or
division by zero. Existing automatic tools are mainly based on abstract inter-
pretation techniques. In particular, the static analyzer Fluctuat [9] was suc-
cessfully applied to study rounding error propagation in critical industrial C
programs1. Fluctuat computes two over-approximations of the domains of the
variables of a program respectively considered with a semantics on real num-
bers and with a semantics on floating-point numbers. Fluctuat is then able to
bound the error made by floating-point computations. The computed approxi-
mations are precise enough for the analysis needs in many cases. However, some
program constructs may lead to over-approximations so large that the analysis
is not conclusive.

In this paper, we show that constraint solvers over floating-point numbers
and real numbers can significantly refine the approximations computed by Fluc-

tuat. The goal is to take advantage of the refutation capabilities of the filtering
algorithms to reduce the domains computed by abstract interpretation. Imple-
mentation uses interval-based constraint solvers: RealPaver [15] which is a
safe and correct solver for constraints over real numbers, and FPCS [20, 19]
which is a safe and correct solver for constraints over floating-point numbers.
We managed to reduce drastically the domains of variables of C programs that
are difficult to handle for the abstract interpretation techniques implemented in
Fluctuat.

Section 2 illustrates our approach with a small example and discusses related
works. Section 3 details our approach and the tools it relies on: Fluctuat,
RealPaver, and FPCS. In Sect. 4, we discuss the results of our approach on
several representative programs.

2 Motivation

In this section, we illustrate our approach with a motivating example, then we
discuss how our approach relates to existing works.

2.1 Example

The program in Fig. 1 is mentioned in [11] as a difficult program for abstract
interpretation based analyses. On floating-point numbers, as well as on real

1 Critical applications of interest for formal verification of floating-point computations
are often embedded and predominantly written in C language.



Fig. 1. Abstract domain intersection.

1 /∗ Pre−condition : x ∈ [0, 10] ∗/
2 double conditional(double x) {

3 double y = x*x - x;

4 if (y >= 0)

5 y = x/10;

6 else

7 y = x*x + 2;

8 return y;

9 }

numbers, this function returns a value in the interval [0, 3]. From the conditional
statement of line 4, we can derive the following information:

– if branch: x = 0 or x ≥ 1, hence y ∈ [0, 1];

– else branch: x ∈]0, 1[, hence y ∈ [2, 3].

However, classical abstract domains (e.g., intervals, polyhedra), as well as the
abstract domain of zonotopes used in Fluctuat, fail to obtain a good approxi-
mation of this value. The best interval obtained with these abstractions is [0, 102],
both over the real and the floating-point numbers. The difficulty for these analy-
ses is to intersect the abstract domains computed for y at lines 3 and 4. Actually,
they are unable to derive from these statements any constraint on x. As a con-
sequence, in the else branch, they still estimate that x ranges over [0, 10].

In the approach we propose here, we compute an approximation of the do-
mains in both execution paths. CSP filtering techniques are strong enough to re-
duce the domains of the variables for the generated constraints systems. Consider
for instance the constraint system over the real numbers {y0 = x0 ∗x0−x0, y0 <

0, y1 = x0 ∗ x0 + 2, x0 ∈ [0, 10]} which corresponds to the execution path2

through the else branch of the function conditional. From the constraints
y0 = x0 ∗ x0 − x0 and y0 < 0, an interval solver can reduce the initial domain of
x0 to [0, 1]. This reduced domain is then used to compute the one of y1 via the
constraint y1 = x0 ∗ x0 + 2, which yields y1 ∈ [2, 3.001]. Likewise, a constraint
solver over the floating-point numbers will reduce x0 to [4.94 × 10−324, 1.026]
and y1 to [2, 3.027].

To sum up, we build the constraint systems that correspond to each exe-
cutable path in a function and use filtering techniques to reduce the domains of
the variables computed by Fluctuat. Execution paths are explored on-the-fly
and interrupted as soon as the inconsistency of the associated constraint system
is detected. Over real numbers, we use the combination of hull and box consis-
tencies implemented in RealPaver [15]. Over floating-point numbers, we use

2 Statements are converted into SSA (Static Single Assignment) form where each
variable is assigned exactly once on each program path.



Table 1. Return domain of the conditional function.

Domain Time

Exact real and floating-point domains [0, 3] n.a.

Fluctuat (real and floating-point domains) [0, 102] 0.1 s

Constrained zonotopes (real domain) [0, 9.72] n.a.

FPCS (floating-point domain) [0, 3.027] 0.2 s

RealPaver (real domain) [0, 3.001] 0.3 s

3B-consistency [18] as implemented in FPCS [20], which is correct over floating-
point numbers. Table 1 collects the results obtained by the different techniques
on the example of the function conditional. On this example, contrary to Fluc-

tuat, our approach computes very good approximations of both floating-point
and real domains. Analysis times are very similar (n.a. stands for not available).
In [11], the authors proposed an extension to the zonotopes—named constrained

zonotopes—which attempts to overcome the issue due to program conditional
statements. This extension is defined for the real numbers and is not yet imple-
mented in Fluctuat. The approximation computed with constrained zonotopes

is better than the one of Fluctuat but remains still less precise than the one
computed with RealPaver.

2.2 Related works

Different methods address static validation of programs with floating-point com-
putations: abstract interpretation based analyses, proofs of programs with proof
assistants or with decision procedures in automatic solvers.

Analyses based on abstract interpretation represent rounding errors due to
floating-point computation in their abstract domains. They are usually fast,
automatic, and scalable. However, they may lack of precision and they do not
generate any counter-example. Astre [7] is probably one of the most famous
tool in this family of methods. The tool estimates the value of the program
variables at every program point and can show the absence of runtime errors,
that is the absence of behaviors not defined by the programming language (e.g.,
division by zero, arithmetic overflow). Fluctuat, which is detailed in Sect. 3.1,
estimates in addition the accuracy of the floating-point computations, that is, a
bound on the difference between the values taken by variables when the program
is given a real semantics and when it is given a floating-point semantics [9].

A second group of methods endeavors to formalize floating-point arithmetic
in proof assistants like Coq [2] or HOL [16]. Proofs of program properties are
done manually in the proof assistant which guarantees proof correctness. These
formalisms are not suitable for estimating the domains of program variables.
Moreover, a property that cannot be proven is not necessarily false. Therefore,
in these approaches, no counter-example can be generated. The Gappa tool [10]
combines interval arithmetic and term rewriting from a base of theorems. The
theorems rewrite arithmetic expressions so as to compensate for the shortcomings



of interval arithmetic, e.g., loss of dependency between variables. Whenever the
computed intervals are not precise enough, theorems can be manually introduced
or the input domains can be subdivided. The cost of this semi-automatic method
is then considerable. In [1], the authors propose an axiomatization of floating-
point arithmetic within first-order logic to automate the proofs conducted in
proof assistants such as Coq by calling external SMT (Satisfiability Modulo
Theories) solvers and Gappa. Their experiments show that human interaction
with the proof assistant is still required. Because of the size of the domains
of floating-point variables, the classical bit-vector approach of SAT solvers is
ineffective. An abstraction technique was devised for CBMC in [4]. It is based
on under and over-approximation of floating-point numbers with respect to a
given precision expressed as a number of bits of the mantissa. However, this
technique remains slow.

3 Proposed approach

The approach we propose here consists in refining the intervals computed by
Fluctuat with constraint solvers over real and floating-point numbers. Before
going into the details, we recall the characteristics of Fluctuat (Sect. 3.1),
RealPaver (Sect. 3.2) and FPCS that are useful to understand the rest of the
paper. (Sect. 3.3). The whole process we propose is described in Sect. 3.4.

3.1 Fluctuat

Fluctuat [9] is a static analyzer for C programs specialized in estimating the
precision of floating-point computations. The tool compares the behavior of the
analyzed program over real numbers and over floating-point numbers. In other
words, Fluctuat allows to specify ranges of values for the program input vari-
ables and computes for each program variable:

– bounds for the domain of the variable considered as a real number;

– bounds for the domain of the variable considered as a floating-point number;

– bounds for the maximum error between real and floating-point values;

– the contribution of each statement to the error associated with the variable;

– the contribution of the input variables to the error associated with the vari-
able.

Fluctuat proceeds by abstract interpretation. It uses the weakly relational
abstract domain of zonotopes [13], which is a good trade-off between perfor-
mance and precision. Zonotopes are sets of affine forms that improve over inter-
val arithmetic: linear correlations between variables are preserved. To increase
the analysis precision, the tool allows to use arbitrary precision numbers or to
subdivide input variable intervals.



Fluctuat is developed by CEA-List3 and was successfully used for indus-
trial applications of several tens of thousands of lines of code in transportation,
nuclear energy, or avionics areas.

3.2 RealPaver

RealPaver4 [15] is an interval solver for numerical constraint systems over the
real numbers. Constraints can be non-linear and can contain the usual arith-
metic operations and transcendental elementary functions. Not equal and strict
inequality operators are not handled, neither is disjunction of constraints.

The solver computes reliable approximations of continuous solution sets using
correctly rounded interval methods and constraint satisfaction techniques. More
precisely, the computed domains are closed intervals bounded by floating-point
numbers. RealPaver implements several partial consistencies: box, hull, and
3B consistencies for instance. An approximation of a solution is described by
a box, i.e., the Cartesian product of the domains of the variables. RealPaver

either proves the unsatisfiability of the constraint system or computes a union
of boxes that contains all the solutions of the system.

3.3 FPCS

FPCS [20, 19] is a constraint solver that was designed to solve correctly, i.e.,
without losing any solution, a set of constraints over floating-point numbers.
To this end, FPCS uses a 2B-consistency [18] along with projection functions
adapted to floating-point arithmetic [21, 3]. The main difficulty lies in computing
inverse projection functions that preserve all the solutions. Indeed, if direct pro-
jections, i.e., computing the domain of y from the domain of x for a constraint
like y = f(x), only requires a slight adaptation of classical results on interval
arithmetic, inverse projections, i.e., computing the domain of x from the one of
y, do not follow the same rules because of the properties of floating-point arith-
metic. All these results are described in [20] and extended in [3]. FPCS also
implements stronger consistencies—e.g., kB-consistencies [18]—to deal with the
classical issues of multiple occurrences and to reduce more substantially the
bounds of the domains of the variables.

Contrary to most of the works mentioned in Sect. 2.2, the floating-point
domains handled by FPCS are not limited to numerical values, but they also
include infinities. Moreover, FPCS handles all the basic arithmetic operations,
as well as most of the usual mathematical functions. Type conversions are also
correctly processed.

The behavior of programs containing floating-point computations may vary
with the programming language or the compiler used, but also, with the oper-
ating system or the hardware architecture on which the program is executed.

3
Fluctuat web site: http://www-list.cea.fr/labos/fr/LSL/fluctuat/index.

html
4

RealPaver web site: http://pagesperso.lina.univ-nantes.fr/info/perso/

permanents/granvil/realpaver/



FPCS targets C programs, compiled with GCC without any optimization op-
tion and intended to be run on an x86 architecture managed by a 32-bit Linux
operating system.

3.4 Process

We can now detail our approach. The steps of the process we propose are the
following ones:

1. For a given C program, we compute with Fluctuat a first approximation
of the domains of the variables over the real and over the floating-point
numbers.

2. We parse the C program and build two constraint systems for each executable
path (see details below): one with floating-point variables and one with real
variables. We assign the domains estimated by Fluctuat to the program
variables.

3. For each constraint system, we filter the domains with a partial consistency.

– We use FPCS and a 3B(w)-consistency on systems with floating-point
variables.

– We use RealPaver and its BC5-consistency on systems with real vari-
ables. BC5-consistency is a combination of interval Newton method,
hull-consistency and box-consistency.

4. For each output variable, we compute the union of all the domains that were
obtained at step 3.

During step 2, we explore each execution path of a program, i.e., each path
of the control flow graph, using a forward analysis (going from the beginning
to the end of the program). Statements are converted into SSA (Static Single
Assignment) form where each variable is assigned exactly once on each program
path [8]. Lengths of the paths are bounded since recursive function calls are for-
bidden and loops are unfolded a user-defined number of times. Possible states of
the program at any point of an execution path are represented by a constraint
system made up of a finite set of variables and constraints over these variables.
With FPCS, variables have domains that correspond to the implementation on
machine of the types of the C language (int, float and double); with Real-

Paver, domains are intervals over the reals. Rules define how each program
statement modifies the possible program states by adding new constraints and
variables.

Execution paths are explored on-the-fly and interrupted as soon as the incon-
sistency of the associated constraint system is detected: simple 3B-consistency
filtering with FPCS and hull HC4-consistency filtering with RealPaver. This
allows to limit the combinatorial explosion of the number of paths by only
exploring those that are executable. This technique for representing programs
by constraint systems was introduced for bounded verification of programs in
CPBPV [5]. The implementation of the approach proposed in this paper relies
on libraries developed for CPBPV.



RealPaver modeling language does not provide strict inequality and not
equal operators, which can be found in program conditional expressions. As a
consequence, in the constraint systems generated for RealPaver, strict inequal-
ities are replaced by non strict ones and constraints with a not equal operator are
ignored. This may lead to over-approximations, but this is safe since no solution
is lost.

4 Experiments and discussion

In this section, we present the results of our approach on characteristic programs
that show when our approach is able to improve the approximation computed
by Fluctuat. Results are rounded to three decimal places for the sake of read-
ability and were obtained on an Intel Core 2 Duo at 2.8 GHz with 4 Go memory
running Linux. We used Fluctuat version 3.8.22 opt and RealPaver ver-
sion 0.4. In the tables that follow, we denote real and floating-point domains
with the symbols R and F respectively.

4.1 Conditionals

We have presented in Sect. 2.1 the issue of intersecting abstract domains in
abstract interpretation based analyses. Here, we illustrate how our approach
performs in this case with a program that computes the roots of a quadratic
equation. This program is listed in Fig. 2 and was extracted from the GNU
scientific library (GSL [24]). Roots are computed in variables x0 and x1. The
program calls two functions from the C library: fabs and sqrt, the absolute
value and the square root function, respectively. The function sqrt is incidentally
one of the few functions defined in the IEEE 754 standard. These functions are
directly handled by FPCS and thus can appear in constraints as is. RealPaver

has a predefined sqrt function, but fabs(x) was replaced by max(x,-x).

Table 2 shows analysis times and the approximations of the domains of vari-
ables x0 and x1 obtained with two configurations of the domains of the input
variables. The first two rows in the table present the results of Fluctuat and
RealPaver over the reals. The next two rows present the results of Fluctuat

and FPCS over the floating-point numbers.

In the first configuration, where a ∈ [−1, 1], b ∈ [0.5, 1] and c ∈ [0, 2], the
Fluctuat over-approximation is so large that it does not give any information
on the domain of the roots, whereas our approach is able to drastically reduce
these domains both over R and F. Nevertheless, intersection of abstract domains
does not always impact so significantly on the bounds of all domains. This is
illustrated by the domain over F of x0 in the second configuration where a, b, c ∈
[1, 1 × 106]. Even though the domain computed by Fluctuat is still an over-
approximation, our approach does not succeed in reducing it. In contrast, for
this same configuration, our approach performs again a very good reduction of
the domain of x1.



Fig. 2. Quadratic equation roots.

int quadratic(double a, double b, double c) {

double r, sgnb, temp, r1, r2

double disc = b * b - 4 * a * c;

if (a == 0) {

if (b == 0)

return 0;

else {

x0 = -c / b;

return 1;

}

}

if (disc > 0) {

if (b == 0) {

r = fabs (0.5 * sqrt (disc) / a);

x0 = -r;

x1 = r;

} else {

sgnb = (b > 0 ? 1 : -1);

temp = -0.5 * (b + sgnb * sqrt (disc));

r1 = temp / a;

r2 = c / temp;

if (r1 < r2) {

x0 = r1;

x1 = r2;

} else {

x0 = r2;

x1 = r1;

}

}

return 2;

} else if (disc == 0) {

x0 = -0.5 * b / a;

x1 = -0.5 * b / a;

return 2;

} else

return 0;

}

In order to increase the analysis precision, Fluctuat allows to divide the do-
mains of at most two input variables into a user-defined number of sub-domains.
Analyses are then run over each combination of sub-domains and the results
are merged. Without any a priori knowledge of which sub-domains should be
divided, all the combinations of one and, next, two domains should be tried if
necessary for the required precision. The number of subdivisions of each domain
is difficult to determine too: it must be the largest possible while maintaining an



Table 2. Domains of the roots of the quadratic function.

conf. #1: a ∈ [−1, 1]
conf. #2: a, b, c ∈ [1, 1 × 106]

b ∈ [0.5, 1] c ∈ [0, 2]
x0 x1 Time x0 x1 Time

R
Fluctuat [−∞,∞] [−∞,∞] 0.1 s [−2 × 106, 0] [−1 × 106, 0] 0.1 s
RealPaver [−∞, 0] [−8.011,∞] 1.5 s [−1 × 106, 0] [−5.186 × 105, 0] 0.5 s

F
Fluctuat [−∞,∞] [−∞,∞] 0.1 s [−2 × 106, 0] [−1 × 106, 0] 0.1 s
FPCS [−∞, 0] [−8.064,∞] 0.3 s [−2 × 106, 0] [−2 503.709, 0] 0.3 s

Table 3. Domains over F for the quadratic function with input domains subdivided.

conf. #1 conf. #2
x0 Time x1 Time

Fluctuat
[−∞, -0] > 1 s [−1 × 106, 0] > 1 s

a subdivided

Fluctuat
[−∞,∞] > 1 s [−5 × 105, 0] > 1 s

b subdivided

Fluctuat
[−∞,∞] > 1 s [−1 × 106, 0] > 1 s

c subdivided

Fluctuat a
[−∞, -0] > 10 s [−1.834 × 105, 0] > 10 s

& b subdivided

Fluctuat a
[−∞, -0] > 10 s [−1 × 106, 0] > 10 s

& c subdivided

Fluctuat b
[−∞,∞] > 10 s [−5 × 105, 0] > 10 s

& c subdivided

acceptable analysis time, and this without guarantee of improving the precision
of the analysis. In Tab. 3, we set the subdivisions to 50 when only one domain is
divided; otherwise, we set them to 30 for each domain. We only report the results
over F in the table. Over R, in the first configuration, the subdivisions yield no
improvement and, in the second configuration, the results are identical to those
over F. The cost in time of these subdivisions can be significant compared to the
gain in precision:

– In the first configuration, subdivisions of the domain of a lead to a signifi-
cant reduction of the domain of x0 (identical to what is obtained with our
approach). No subdivision combination could reduce the domain of x1.

– In the second configuration, the best reduction of the domain of x1 is ob-
tained by subdividing the domains of both a and b. The gain remains how-
ever quite small compared to the reduction performed by our approach. No
subdivision combination could reduce the domain of x0.

Whenever it is necessary to subdivide all the input domains, the cost is pro-
hibitive. Our approach turns out to be more efficient: it often improves the
precision of the approximation, and its cost is low, whether the precision is
improved or not. Moreover, our approach could also take advantage of the sub-
division technique.



Fig. 3. 7th-order Taylor series of function sinus.

double sinus(double x)

{ return x - x*x*x/6 + x*x*x*x*x/120 + x*x*x*x*x*x*x/5040; }

Fig. 4. Rump’s polynomial.

double rump(double x, double y) {

double f;

f = 333.75*y*y*y*y*y*y;

f = f + x*x*(11*x*x*y*y - y*y*y*y*y*y - 121*y*y*y*y - 2);

f = f + 5.5*y*y*y*y*y*y*y*y;

f = f + x / (2*y);

return f;

}

4.2 Non-linearity

The abstract domain used by Fluctuat is based on affine forms which do not
allow an exact representation of non-linear operations: the image of a zonotope
by a non-linear function is not a zonotope in general. Non-linear operations are
thus over-approximated in Fluctuat by introducing an error term. The con-
straint solvers we use handle the non-linear expressions better. This is illustrated
on the program of the 7th-order Taylor series of function sinus (see Fig. 3) where
our approach improves significantly the approximation of Fluctuat (see Tab. 4,
column sinus).

The constraint solvers we use handle most of the non-linear expressions well
but they also use approximations. This is illustrated on the rump polynomial
(see Fig. 4) extracted from [23]. This very particular polynomial was designed
for showing a catastrophic cancellation phenomenon on some specific hardware
architectures whatever the floating-point number precision is. Neither FPCS nor
RealPaver succeeded in reducing the domain computed by Fluctuat for the
rump polynomial.

4.3 Loops

Fluctuat unfolds loops a bounded number of times before applying the widen-
ing operator of abstract interpretation (default is ten times). The widening op-
erator allows to find a fixed point and terminate quickly. However, this operator
may lead to very large over-approximations. This situation occurs in the analy-
sis of the return value of sqrt, a program that computes an approximate value
with an error of 1 × 10−2 of the square root of a number greater than 4. The
algorithm of sqrt is based on the so-called Babylonian method (see Fig. 5).



Table 4. Domains of the return value of sinus and rump functions.

sinus

x ∈ [−1, 1]

rump

x ∈ [7 × 104, 8 × 104]
y ∈ [3 × 104, 4 × 104]

Domain Time Domain Time

R
Fluctuat [−1.009, 1.009] 0.1 s [−1.168 × 1037, 1.992 × 1037] 0.1 s
RealPaver [−0.842, 0.843] 0.3 s [−1.144 × 1036, 1.606 × 1037] 1.2 s

F
Fluctuat [−1.009, 1.009] 0.1 s [−1.168 × 1037, 1.992 × 1037] 0.1 s
FPCS [−0.853, 0.852] 0.2 s [−1.168 × 1037, 1.992 × 1037] 0.2 s

Fig. 5. Square root function.

double sqrt(double x) {

double xn, xn1;

xn = x/2;

xn1 = 0.5*(xn + x/xn);

while (xn-xn1 > 1e-2) {

xn = xn1;

xn1 = 0.5*(xn + x/xn);

}

return xn1;

}

Fluctuat cannot perform any reduction of the return value of sqrt over F for
the configuration x ∈ [5, 10] (see Tab. 5).

In our approach, we do not try to analyze the behavior of loops: we just
unfold the loops N times, where N is a user-defined parameter5. We only try to
reduce the domains computed by Fluctuat if the entry conditions of the loops
are false for a number of unfoldings k less than N .

Table 5 shows the results we obtain with N = 10. Unfolding can quickly
become time-consuming, but the gain in precision can be significant too: over F,
in the configuration x ∈ [5, 10], we compute for sqrt the domain [2.232, 3.168]
instead of the domain [−∞,∞] obtained by Fluctuat. Note that RealPaver

does not terminate in a reasonable time if we use [−∞,∞] as initial domain. Re-

alPaver is faster than FPCS because it uses a weaker consistency for pruning
unreachable paths when unfolding the loop (i.e., hull-consistency versus 3B-
consistency).

4.4 Discussion

Abstract interpretation techniques compute approximations of variable domains
over a relaxation of the initial problem. In the case of Fluctuat, sets of affine

5 We can also use Fluctuat to estimate a bound on the number of necessary unfold-
ings [14].



Table 5. Domain of the return value of the sqrt function.

conf. #1: x ∈ [4.5, 5.5] conf. #2: x ∈ [5, 10]
Domain Time Domain Time

R
Fluctuat [2.116, 2.354] 0.1 s [2.098, 3.435] 0.1 s
RealPaver [2.121, 2.346] 0.3 s [2.232, 3.165] 0.5 s

F
Fluctuat [2.116, 2.354] 0.1 s [−∞,∞] 0.1 s
FPCS [2.120, 2.347] 1 s [2.232, 3.168] 1.6 s

forms abstract non-linear expressions and constraints. This often yields a first
approximation small enough to allow efficient filtering with partial consistencies
not relying on the same relaxation.

3B-consistency filtering works well with FPCS. 2B-consistency is not strong
enough to reduce the domains computed by Fluctuat whereas a stronger kB-
consistency is too time-consuming. We experimented also various consistencies
implemented in RealPaver. Table 6 reports the most significant results. BC5
is a combination of hull and box consistencies with interval Newton method and
HC4 is hull-consistency over the user constraints. The timeout limit (T.O.) was
set to 5 minutes. 3B-consistency was difficult to tune through its width param-
eter that is why we introduced 3B timer, a 3B-consistency interrupted after
0.5 second of filtering. It appears that 3B-consistency is too time-consuming.
A weaker consistency such as the BC5-consistency provides a better trade-off
between time cost and domain reduction.

Even though the same domain reductions can sometimes be achieved without
starting from the approximation computed by Fluctuat (i.e., starting from
[−∞,∞]), our experiments show that our approach usually benefit from the
approximation computed by Fluctuat. For example, with the sqrt function
of Fig. 5, RealPaver does not filter the domains in a reasonable time if they
are all set to [−∞,∞] initially; whereas this takes less than half a second if
the domains are set to the bounds computed by Fluctuat. Likewise, with the
quadratic function of Fig. 2, FPCS computes the domain [−5.001×1011, 0] when
starting from [−∞,∞], whereas Fluctuat produces the better approximation
of [−2 × 106, 0].

Of course, constraint techniques cannot always refine the approximations
computed by Fluctuat. Especially when the relaxation done by Fluctuat

is precise enough to compute good approximations of the domains (e.g., linear
systems). Even when the filtering can refine the domains, the computation time
may be too long; for instance, when a large number of loop unfoldings is required
or when slow convergence phenomena occur in FPCS [19].

5 Conclusion

In this paper, we introduced a new approach for refining the approximations of
the domains of the variables computed by the analyzer of C programs Fluctuat.
This approach relies on constraint solvers, FPCS and RealPaver, which are



Table 6. Comparison of RealPaver consistencies.

quadratic x1 quadratic x1 sqrt

conf. #1 conf. #2 conf. #1
Domain Time Domain Time Domain Time

3B n.a. T.O. n.a. T.O. n.a. T.O.

3B timer (0.5 s) [−11.444,∞] 3 s [−749 999.721, 0] 2.4 s [2.12, 2.346] 1.3 s

weak3B [−8.004,∞] 9.3 s [−206 746.455, 0] 5 s [2.121, 2.346] 1 s

BC5 [−8.011,∞] 1.5 s [−518 518.519, 0] 0.5 s [2.121, 2.346] 0.3 s

HC4 [−8.223,∞] 0.8 s [−518 518.519, 0] 0.5 s [2.121, 2.346] 0.3 s

correct over floating-point and real numbers. We exploit the refutation capabili-
ties of partial consistencies to reduce the domains computed by Fluctuat. We
showed that this approach is fast and efficient on programs that are representa-
tive of the difficulties of Fluctuat (conditional constructs and non-linearities).

However, our approach does not substitute for Fluctuat. Tools based on
abstract interpretation like Fluctuat are efficient for computing a global ap-
proximation of the domains; in other words, abstract interpretation computes at
each program point the merge of the domains over all paths analysis of the pro-
gram [6]. Global approximation of conditional statements and widening facilitate
scaling but at the price of over-approximations that can be very rough. Moreover,
zonotopes constitute better approximations of linear constraint systems than the
boxes used in interval-based constraint solvers. Nonetheless, zonotopes are less
adapted for non-linear constraint systems. Filtering techniques used in numeric
CSP offer a flexible and extensible framework for handling non-linear constraint
systems. Distinct exploration of each executable path is a critical issue for com-
puting sharp approximations. However, to limit the combinatorial explosion, we
have to bound the length of the paths. Therefore, the approach proposed in this
paper is complementary to the one of Fluctuat: our approach gives better
results when Fluctuat reduces the domains of the variables beforehand.

The natural extension of this work is to study how Fluctuat can be com-
bined with constraint solvers in a tighter way. Also, stronger consistencies could
be used to further improve the approximation precision, e.g., global constraints
like the Quad constraint on non-linear expressions [17] and kB-consistency ap-
plied to the domains of output variables only.
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