P. Alexandroff, Diskrete Räume, Rec. Math. [Mat. Sbornik] N.S, pp.501-519, 1937.

F. G. Arenas, Alexandroff spaces, Acta Math. Univ. Comenianae, vol.68, issue.1, pp.17-25, 1999.

J. A. Barmak and E. G. Minian, Minimal Finite Models, Journal of Homotopy and Related Structures, vol.2, issue.1, pp.127-140, 2007.
DOI : 10.1007/978-3-642-22003-6_3

J. A. Barmak and E. G. Minian, ???regular CW???complexes and collapsibility, Algebraic & Geometric Topology, vol.8, issue.3, pp.1763-1780, 2008.
DOI : 10.2140/agt.2008.8.1763

URL : http://arxiv.org/abs/0801.0007

J. A. Barmak and E. G. Minian, Simple homotopy types and finite spaces, Advances in Mathematics, vol.218, issue.1, pp.87-104, 2008.
DOI : 10.1016/j.aim.2007.11.019

URL : http://doi.org/10.1016/j.aim.2007.11.019

G. Bertrand, New Notions for Discrete Topology, Discrete Geometry for Computer Imagery ? DGCI'99, 8th International Conference, Proceedings, pp.218-228, 1999.
DOI : 10.1007/3-540-49126-0_17

URL : https://hal.archives-ouvertes.fr/hal-00621992

Y. Cointepas, Modélisation homotopique et segmentation tridemensionnelle du cortex cérébraì a partir d'IRM pour la résolution desprobì emes directs et inverses en EEG et en MEG, 1999.

M. Couprie and G. Bertrand, New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.4, pp.637-648, 2009.
DOI : 10.1109/TPAMI.2008.117

URL : https://hal.archives-ouvertes.fr/hal-00622393

O. Duda, P. E. Hart, and J. H. Munson, Graphical data processing research study and experimental investigation, 1967.

K. A. Hardie and J. J. Vermeulen, Homotopy theory of finite and locally finite T 0 -spaces, Expo. Math, vol.11, pp.331-341, 1993.

A. Hatcher, Algebraic Topology, 2002.

P. J. Hilton and S. Wylie, Homology Theory, 1960.
DOI : 10.1017/CBO9780511569289

E. Khalimsky, Topological structures in computer science, Journal of Applied Mathematics and Simulation, vol.1, issue.1, pp.25-40, 1987.
DOI : 10.1155/S1048953388000036

E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and its Applications, vol.36, issue.1, pp.1-17, 1990.
DOI : 10.1016/0166-8641(90)90031-V

R. Klette, Topologies on the planar orthogonal grid, Object recognition supported by user interaction for service robots, pp.354-357, 2002.
DOI : 10.1109/ICPR.2002.1048312

T. Y. Kong, A digital fundamental group, Computers & Graphics, vol.13, issue.2, pp.159-166, 1989.
DOI : 10.1016/0097-8493(89)90058-7

T. Y. Kong, A digital fundamental group, Computers & Graphics, vol.13, issue.2, pp.159-166, 1989.
DOI : 10.1016/0097-8493(89)90058-7

T. Y. Kong, The Khalimsky topologies are precisely those simply connected topologies on Zn whose connected sets include all 2n-connected sets but no (3n???1)-disconnected sets, Theoretical Computer Science, vol.305, issue.1-3, pp.1-3221, 2003.
DOI : 10.1016/S0304-3975(02)00710-7

T. , Y. Kong, R. Kopperman, and P. R. Meyer, A topological approach to digital topology, Am. Math. Monthly, vol.98, issue.12, pp.901-917, 1991.

V. A. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graphics, and Image Processing, vol.46, issue.2, pp.141-161, 1989.
DOI : 10.1016/0734-189X(89)90165-5

M. Kukie?a, On homotopy types of Alexandroff spaces. Order, xx(xx), 2010.

L. J. Latecki, Multicolor well-composed pictures, Pattern Recognition Letters, vol.16, issue.4, pp.425-431, 1995.
DOI : 10.1016/0167-8655(94)00104-B

C. Lee, T. Poston, and A. Rosenfeld, Holes and genus of 2D and 3D digital images. CVGIP: Graphical Models and Image Processing, pp.20-47, 1993.

C. Lohou, ContributionàContribution`Contributionà l'analyse topologique des images : ´ etude d'algorithmes de squelettisation pour images 2D et 3D selon une approche topologie digitale ou topologie discrète, 2001.

C. R. Maunder, Algebraic Topology, 1996.

A. May, A Concise Course in Algebraic Topology, 1999.

J. P. May, Finite spaces and simplicial complexes, 2008.

J. P. May, Finite topological spaces, 2008.

M. C. Mccord, topological spaces, Duke Mathematical Journal, vol.33, issue.3, pp.465-474, 1966.
DOI : 10.1215/S0012-7094-66-03352-7

T. Osaki, Reduction of Finite Topological Spaces., Interdisciplinary Information Sciences, vol.5, issue.2, pp.149-155, 1999.
DOI : 10.4036/iis.1999.149

C. Ronse, An isomorphism for digital images, Journal of Combinatorial Theory, Series A, vol.39, issue.2, pp.132-159, 1985.
DOI : 10.1016/0097-3165(85)90034-2

A. Rosenfeld, Connectivity in Digital Pictures, Journal of the ACM, vol.17, issue.1, pp.146-160, 1970.
DOI : 10.1145/321556.321570

A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, Journal of the Association for Computer Machinery, vol.13, issue.4, pp.471-494, 1966.

E. H. Spanier, Algebraic Topology, 1966.
DOI : 10.1007/978-1-4684-9322-1

R. E. Stong, Finite topological spaces, Transactions of the American Mathematical Society, vol.123, issue.2, pp.325-340, 1966.
DOI : 10.1090/S0002-9947-1966-0195042-2

O. Ya, O. A. Viro, N. Ivanov, . Yu, V. M. Netsvetaev et al., Elementary Topology: Problem Textbook, 2008.

J. H. Whitehead, -Groups, Proc. London Math. Soc, pp.2-45243, 1939.
DOI : 10.1112/plms/s2-45.1.243

URL : https://hal.archives-ouvertes.fr/in2p3-00657474

J. H. Whitehead, Combinatorial homotopy. I. Bull. Amer, Math. Soc, vol.55, pp.213-245, 1949.

J. H. Whitehead, Combinatorial homotopy. II, Bulletin of the American Mathematical Society, vol.55, issue.5, pp.453-496, 1949.
DOI : 10.1090/S0002-9904-1949-09213-3