Direction-adaptive grey-level morphology. Application to 3D vascular brain imaging

Abstract : Segmentation and analysis of blood vessels is an important issue in medical imaging. In 3D cerebral angiographic data, the vascular signal is however hard to accurately detect and can, in particular, be disconnected. In this article, we present a procedure utilising both linear, Hessian-based and morphological methods for blood vessel edge enhancement and reconnection. More specifically, multi-scale second-order derivative analysis is performed to detect candidate vessels as well as their orientation. This information is then fed to a spatially-variant morphological filter for reconnection and reconstruction. The result is a fast and effective vessel-reconnecting method.
Type de document :
Communication dans un congrès
International Conference on Image Processing (ICIP), 2009, Cairo, Egypt. IEEE, pp.2261-2264, 2009, Image Processing (ICIP), 2009 16th IEEE International Conference on. 〈10.1109/ICIP.2009.5414356〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-00622439
Contributeur : Talbot Hugues <>
Soumis le : samedi 3 mars 2018 - 17:05:03
Dernière modification le : jeudi 5 juillet 2018 - 14:25:52
Document(s) archivé(s) le : lundi 4 juin 2018 - 15:46:04

Fichier

Tankyevych_ICIP_2009.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Olena Tankyevych, Hugues Talbot, Petr Dokládal, Nicolas Passat. Direction-adaptive grey-level morphology. Application to 3D vascular brain imaging. International Conference on Image Processing (ICIP), 2009, Cairo, Egypt. IEEE, pp.2261-2264, 2009, Image Processing (ICIP), 2009 16th IEEE International Conference on. 〈10.1109/ICIP.2009.5414356〉. 〈hal-00622439〉

Partager

Métriques

Consultations de la notice

586

Téléchargements de fichiers

19