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Abstract Non-transversal T-points have been recently
found in problems from many different fields: electronic
circuits, pendula and laser problems. In this work we
study a model, based on the construction of a Poincaré
map, that describes the behaviour of curves of saddle-
node and cusp bifurcations in the vicinity of such a non-
transversal T-point. This model is also able to predict,
reproduce and explain the numerical results previously
obtained in Chua’s equation.

Keywords Periodic Orbits · Cusp bifurcation ·
Saddle-node · T-point · Global bifurcations

1 Introduction

An important task for the understanding of the dynam-
ics of parameterized systems of autonomous ordinary
differential equations is the determination of the orga-
nizing centres as well as the bifurcations they exhibit
(see, for instance, [18,24,27,31] as general references).
Where a complex bifurcation scenario exists, a com-
bination of analytical and numerical tools is usually
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needed. Thus, to complement theoretical results, nu-
merical continuation can be carried out in one parame-
ter (bifurcation diagrams such as period versus param-
eter) or in two (or more) parameters (bifurcation sets,
loci where bifurcations occur in the parameter space).

When this continuation is performed, one can some-
times find closed curves. For instance, the presence of
isolas (isolated closed curves) in bifurcation diagrams
of periodic orbits has been detected in relation to Hopf
curves [11]. The appearance of an isola configuration
depends on the choice of the bifurcation parameter as
well as on the shape of the bifurcation curve.

A typical o-shaped isola of periodic orbits appears
when moving inside resonance zones close to the tip
where the corresponding Arnold’s tongues emerge (see,
for instance, Fig. 12(a) in [1]).

Another kind of isola of a certain type of periodic
orbit was detected in an electronic circuit [13]. In that
work, the mechanism of their formation is shown and
their existence is related to cusp bifurcations and to
Shil’nikov homoclinic connections.

In other works, certain types of isola are organized
by homoclinic bifurcations/tangencies. In this way, it
has been shown that primary periodic orbits lie on an
infinity of isolas in a neighbourhood of a homoclinic
tangency to a periodic orbit [19]. Also finitely and in-
finitely many isolas of periodic orbits have been found,
unfolding a non-transverse Shil’nikov-Hopf bifurcation
[10].

The existence of closed curves of global bifurcations
(homoclinic and heteroclinic connections) in Chua’s equa-
tion [28] has been reported numerically [4]. The mech-
anism of formation/destruction on such curves, when a
third parameter is moved, is also qualitatively described
and is related to a failure of transversality of a curve of
T-points in a three-dimensional parameter space. This
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curve emerged from a triple-zero linear degeneracy of
the equilibrium at the origin [3]. The set of curves of
saddle-node bifurcations of periodic orbits related to
the closed curves of global bifurcations in Chua’s equa-
tion has been also numerically studied [5].

On the other hand, T-points are codimension-two
organizing centres of global bifurcations and complex
periodic behaviour in, at least, three-dimensional sys-
tems. Among others, references [16,8,14] have been de-
voted to obtaining different models, based on Poincaré
maps, to study T-points and the global bifurcations
that such points organize in the parameter plane. These
models are valid for values of the parameters close to
the T-point. Specifically, if the two involved equilibria
are saddle-foci, two spiral curves, corresponding to ho-
moclinic connections to both equilibria, and a double
infinity of spiral curves of saddle-node bifurcations of
periodic orbits emerge from such a T-point.

In the case of reversible systems, bifurcations of pe-
riodic orbits are also analyzed using Poincaré maps [25].
Different techniques based on Lin’s method [26] are also
used in [21] to study complex behaviour in a neighbour-
hood of a T-point.

Here we investigate what happens with the curves of
saddle-node bifurcations of periodic orbits in the pres-
ence of a failure of transversality in a curve of T-points.
That is, the sequence of bifurcation planes obtained by
moving a third parameter shows an interaction between
two T-points that collapse and disappear for certain
values of the parameters. As a consequence, the curves
of bifurcations of periodic orbits organized by each T-
point are bound to interact and new behaviour is ex-
pected.

To be precise, while the shape of the different curves
of global bifurcations can be directly predicted from
the previous models [16,8,14] when the parameters are
close to each T-point, far from them the models fail.
Thus, to analyse the corresponding system, it is neces-
sary to build another model which collects all this new
behaviour. The idea is to construct a new Poincaré map
that will be valid for values of the parameters close to
that where the two T-points collapse. This point in the
parameter space, obtained from a non-transversal in-
tersection between a curve of T-points and a parame-
ter plane, will be denoted as non-transversal T-point,
in order to simplify the notation.

These kinds of bifurcations have been found in sys-
tems that appear from different fields: Chua’s equation
[4], a modified van der Pol-Duffing electronic oscilla-
tor [2], an inverted pendulum with delayed feedback
control [23], a model for solitary pulses in an excitable
reaction-diffusion medium [20] and several models re-
lated to lasers (see [30,22] and the references therein).

In [22], the failure of transversality in the T-points
curve (called codimension-two-plus-one event in [30])
is physically relevant in the model analyzed. In fact,
closed curves of homoclinic connections are indeed found
numerically in a neighbourhood of such a point. This
agrees with the theoretical results obtained in [2] and
confirmed numerically in Chua’s equation [4].

Another interesting work that provides some theo-
retical analysis related to [22] by constructing Poincaré
maps is [9].

In [30], authors raise the need to perform a detailed
study, from the bifurcations theory point of view, of
the non-transversal T-point. In this work we partially
answer the question concerning the structure of the
periodic orbits and their degeneracies in a neighbour-
hood of such a point. Thus, we extend the theoretical
study of homoclinic connections performed in [2] and,
at the same time, we theoretically confirm the numer-
ical results on saddle-node bifurcation curves obtained
in Chua’s equation [5].

This paper is organized as follows. In Sect. 2 we
describe the model derived in [2]. Sect. 3, the core of
the paper, is devoted to the analysis of the model: for
the principal periodic orbits (Sect. 3.1), for their saddle-
node bifurcations (Sect. 3.2) and for cusp bifurcations
(Sect. 3.3). This section is concluded with a numerical
study of the model (Sect. 3.4) and the explanation, in
terms of the singularity theory, of some found behaviour
(Sect. 3.5). We finish the paper with some conclusions.

2 Derivation of the model: global bifurcations

The model we use to analyze the failure of transversality
of a curve of T-points has been obtained in a previous
work [2] and it is based on Poincaré maps (see, for in-
stance, [16,8,14]. Since this model is going to be used
in the analysis of periodic orbits we now briefly outline
the principal steps of its derivation although we refer
the reader to [2] for more details about the construction
procedure and the validity of the equations.

Let us assume that, in a neighbourhood of the ori-
gin in the parameter space where a non-transversal T-
point appears, the system under study has, at least, two
saddle-focus equilibria, Q1 and Q2. Let us also assume
that the equilibrium Q1 has a one-dimensional unsta-
ble manifold and a two-dimensional stable one, whereas
Q2 has a two-dimensional unstable manifold and a one-
dimensional stable one. For the values of the parameters
where a T-point exists, the equilibria are connected in
the following way: the one-dimensional unstable mani-
fold of Q1 and the one-dimensional stable manifold of
Q2 coincide, while the two-dimensional stable manifold
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Fig. 1 Schematic diagram of the heteroclinic T-point cycle in the three-dimensional phase space

of Q1 and the unstable one of Q2 have, at least, one
transversal intersection, which we will name the closing
orbit (see Fig. 1).

First we choose appropriate coordinates (x, y, z) and
(X, Y, Z) such that the system can be written as
⎧
⎨

⎩

ẋ = −px − ωy,

ẏ = ωx − py,

ż = λz,

or

⎧
⎨

⎩

Ẋ = PX − ΩY,

Ẏ = ΩX + PY,

Ż = −ΛZ,

(1)

in a neighbourhood of the equilibrium Q1 or, respec-
tively, Q2 [16,8,14]. Parameters Λ, λ, P and p are pos-
itive while Ω and ω do not vanish.

Using these new coordinates, four cross-sections Σi

can be considered:

Σ1 = {(x, y, z); z = h} ,

Σ2 = {(X, Y, Z); Z = H} ,

Σ3 = {(X, Y, Z); Y = 0, H ≥ Z > 0} ,

Σ4 = {(x, y, z); y = 0, h ≥ z > 0} ,

where h and H are small positive numbers. We also
choose two points of the closing orbit, (X0, 0, 0) ∈ Σ3

and (x0, 0, 0) ∈ Σ4.
Taking into account that the four cross-sections Σ1,

Σ2, Σ3 and Σ4 are transversal to the flow in small
neighbourhoods of (0, 0, h), (0, 0, H), (X0, 0, 0) and (x0,

0, 0) respectively, it is possible to obtain the equations
of the partial maps between the cross-sections:

• T1 : Σ4 → Σ1 is given by T1(x, 0, z) = (x′, y′, h),
where

(
x′

y′

)

=
(

xzδh−δ cos (θ log z + φ)
xzδh−δ sin (θ log z + φ)

)

,

δ = p/λ, θ = −ω/λ, φ = (ω/λ) log h.
• T2 : Σ1 → Σ2 is given by T2(x′, y′, 0) = (X ′, Y ′, 0)

where
(

X ′

Y ′

)

=
(

d1

d2
2 − μ

)

+
(

a b

c d

) (
x′

y′

)

,

with ad − bc �= 0.

• T3 : Σ3 → Σ2 is given by T3(X, 0, Z) = (X ′, Y ′, H),
where

(
X ′

Y ′

)

=
(

XZΔH−Δ cos (Θ log Z + Φ)
XZΔH−Δ sin (Θ log Z + Φ)

)

,

Δ = P/Λ, Θ = Ω/Λ and Φ = (−Ω/Λ) log H .
• T4 : Σ3 → Σ4 is given by T4(X, 0, Z) = (x, 0, z)

where
(

x

z

)

=
(

x0

0

)

+
(

A B

C D

) (
X − X0

Z

)

,

with AD − BC �= 0 and C �= 0.

From now on parameters d1, d2 and μ (given in T2)
act as unfolding parameters of the non-transversal T-
point. Moreover, they can be assumed, as in [14], to be
independent of the other parameters δ, Δ, θ, Θ, . . .

The model described above was used in [2] to study
the global bifurcations organized by the non-transversal
T-point in a neighbourhood of the origin in the param-
eter space. The first result given in [2] states that there
exists a curve of T-points given by equations d1 = 0,
μ = d2

2. In fact, the non-transversal T-point is located
at the origin of the parameter space.

Equations for surfaces of homoclinic orbits to Q1 or-
ganized by the non-transversal T-point were also given
in [2]:
(

d1

d2

)

(2)

=

⎛

⎜
⎝

(X0 −
D

C
Z)ZΔH−Δ cos (Θ log Z + Φ)

±
√

μ + (X0 −
D

C
Z)ZΔH−Δ sin (Θ log Z + Φ)

⎞

⎟
⎠ .

It is obvious that the existence of curves of homoclinic
orbits to Q1 in the plane (d1, d2), for different values
of μ, is determined by the sign of the argument of the
square root

f(Z) = μ +
(

X0 −
D

C
Z

)

ZΔH−Δ sin (Θ log Z + Φ) .

The results obtained from the analysis of this square
root are summarized in another theorem in [2].
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Equations for surfaces of homoclinic orbits to Q2

organized by the non-transversal T-point, can be found
in a similar way:
(

d1

d2

)

=
(

−[x0 + (A/C)z]zδh−δ

±
(
μ − [x0 + (A/C)z]zδh−δ

× [a cos (θ log z + φ) + b sin (θ log z + φ)]
× [a cos (θ log z + φ) + b sin (θ log z + φ)])1/2

)

.
(3)

3 Analysis of the model: principal periodic
orbits and their bifurcations

The excellent results obtained in [2] for the homoclinic
connections to the equilibrium Q1 are a good reason to
analyze bifurcations of periodic orbits using the same
first-order model. Moreover, the results in [2] could be
expected, in a certain way, because the surface of ho-
moclinic connections around the curve of T-points, in
the three-dimensional parameter space, has a “simple”
structure. Let us describe roughly this structure: if the
curve of T-points were a straight line we could think of
the surface of homoclinic connections as a spiral cylin-
der around it; folding the curve of T-points the surface
folds in the same way (see Fig. 2). The curves obtained
from the intersections between this surface and the par-
allel sections for fixed values of μ are easily visualized
and correspond to those shown in [2].

On the contrary, the surfaces, curves or points of bi-
furcations of periodic orbits (fold, period doubling, etc.)
cannot be easily imagined, even using a similar reason-
ing to that used for homoclinic connections. Thus, a
good test for the model is the comparison between the
results that can be derived from it, about bifurcations
of periodic orbits, and numerical calculations obtained
for Chua’s equation [5].

3.1 Principal periodic orbits

A T-point heteroclinic cycle organizes a rich structure
of periodic orbits. This work deals with a particular
type of these orbits (see Fig. 3). They can be called
principal periodic orbits and correspond to the fixed
points of the map T2 ◦T1 ◦T4 ◦T−1

3 or, in other way, to
the solutions (X, 0, Z) to the system T2(T1(T4(Z))) =
T3(Z).

Thus, let us consider a point (X, 0, Z) ∈ Σ3 belong-
ing to a periodic orbit. From the equations of T4 it is
possible to obtain x and X in terms of z and Z:

x = x0 +
1
C

(Az + (BC − AD)Z),

X = X0 +
1
C

(z − DZ).

So, the point (X, 0, Z) is mapped, under T4, into a point

(x0 +
1
C

(Az + (BC − AD)Z), 0, z) ∈ Σ4.

Now, mapping this point under T1 we obtain a point
(x′, y′, h) ∈ Σ1, where
(

x′

y′

)

= [x0 +
1
C

(Az + (BC − AD)Z)]zδh−δ

×
(

cos (θ log z + φ)
sin (θ log z + φ)

)

. (4)

The image under T2 is a point (X ′, Y ′, H) ∈ Σ2 such
that
(

X ′

Y ′

)

=
(

d1

d2
2 − μ

)

+ [x0 +
1
C

(Az + (BC − AD)Z)]zδh−δ

×
(

a b

c d

) (
cos (θ log z + φ)
sin (θ log z + φ)

)

.

(5)

On the other hand, mapping (X, 0, Z) = (X0 +
1
C

(z −
DZ), 0, Z) by T3, we obtain the point (X ′, Y ′, H) ∈ Σ2

where
(

X ′

Y ′

)

= [X0 +
1
C

(z − DZ)]

×ZΔH−Δ

(
cos (Θ log Z + Φ)
sin (Θ log Z + Φ)

)

. (6)

From Eqs. (5) and (6) we have two different expres-
sions for X ′ and Y ′. The system will have a periodic or-
bit if both expressions coincide. This reasoning proves
the following theorem:

Theorem 1 Fixing a point (d1, d2, μ) in the parameter
space, a principal periodic orbit of the system has to
intersect Σ3 and Σ4, respectively, in two points (X, 0,

Z) and (x, 0, z), where

x = x0 +
1
C

(Az + (BC − AD)Z),

X = X0 +
1
C

(z − DZ),
(7)

and
(

d1

d2
2 − μ

)

= [X0 +
1
C

(z − DZ)]

×ZΔH−Δ

(
cos (Θ log Z + Φ)
sin (Θ log Z + Φ)

)

− [x0 +
1
C

(Az + (BC − AD)Z)]

×zδh−δ

(
a b

c d

) (
cos (θ log z + φ)
sin (θ log z + φ)

)

.

(8)

System (8) is a relationship between the principal
parameters (d1, d2, μ) and the variables z and Z. From
any solution (z, Z, d1, d2, μ) of Eq. (8), the other co-
ordinates (x, X , . . .) of the intersections between the
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Fig. 3 Periodic orbit related to the T-point

periodic orbit and the transversal sections to the flow
can be obtained using Eqs. (4), (5) and (7).

A first way to understand system (8) is to analyze its
solutions close to the curves of homoclinic connections
[15]; in fact, the equations for these global connections,
(2) and (3), can be recognized as terms of Eq. (8). We
select the curve of homoclinic connections to Q1 and a
similar reasoning will be valid for the curve of homo-
clinic connections to Q2.

Thus, let us assume that μ is fixed and consider
a point P̄ = (d̄1, d̄2) of the curve of homoclinic con-
nections to Q1, with d̄2 > 0 (the negative case is analo-
gous and the zero value will be considered below). From
Eq. (2) it corresponds to a certain positive value Z = Z̄.
When this value is fixed in Eq. (8), a curve of periodic
orbits, parameterized by z, is obtained at the (d1, d2)-
plane:
(

d1

d2
2

)

=
(

0
μ

)

+ [X0 +
1
C

(z − DZ̄)]

×Z̄ΔH−Δ

(
cos

(
Θ log Z̄ + Φ

)

sin
(
Θ log Z̄ + Φ

)

)

− [x0 +
1
C

(Az + (BC − AD)Z̄)]

×zδh−δ

(
a b

c d

) (
cos (θ log z + φ)
sin (θ log z + φ)

)

.

(9)

Note that, in order to get simplified equations, we have
shown the second equation for d2

2 instead of d2. In any
case, as d̄2 is positive, we only consider the positive
branch of the corresponding square root.

Several conclusions are inferred from a first study of
Eq. (9). Obviously the curve tends to P̄ = (d̄1, d̄2) as z
tends to 0 but, depending on the values of δ, its shape
may change. Approaching it by the lower-order terms,
two cases appear.

For δ < 1, we have
(

d1

d2
2

)

≈
(

d̄1

d̄2
2

)

−
[

x0 +
BC − AD

C
Z̄

]

×zδh−δ

(
a b
c d

) (
cos (θ log z + φ)
sin (θ log z + φ)

)

,

up to order o(zδ). The first term of the right-hand side
corresponds to the point P̄ and the second one is a pa-
rameterization of a linearly deformed logarithmic spiral.
Taking square roots of the second components of the
vectors at both sides of the equation we get a parabol-
ically deformed logarithmic spiral around P̄ .

For δ > 1, Eq. (9) can be written as

(
d1

d2
2

)

≈
(

d̄1

d̄2
2

)

+
1
C

zZ̄ΔH−Δ

(
cos

(
Θ log Z̄ + Φ

)

sin
(
Θ log Z̄ + Φ

)

)
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up to order o(z). Taking square roots of the second
components of the vectors at both sides of the equation
we obtain a parabolic curve that reaches P̄ for z = 0 (if
cos

(
Θ log Z̄ + Φ

)
= 0, resp. sin

(
Θ log Z̄ + Φ

)
= 0, then

the curves are vertical, resp. horizontal, straight lines).
If C > 0 the curve points, as z tends to 0, to the region
surrounded by the curve of homoclinic connections to
Q1, while if C < 0 it points to the opposite direction.

The following theorem summarizes the previous re-
sults:

Theorem 2 Let us consider a point P̄ = (d̄1, d̄2) of the
curve of homoclinic connections to Q1, with d̄2 > 0,
which corresponds to a value Z = Z̄. By fixing this
value in Eq. (8), a curve of principal periodic orbits,
parameterized by z, is obtained:

1. For δ < 1 the curve is, up to order o(zδ), a parabol-
ically deformed logarithmic spiral which tends to P̄
as z tends to 0.

2. For δ > 1 the curve is, up to order o(z), a segment
of a parabolic curve that tends to P̄ as z tends to 0.

For completing the study of the curves of periodic
orbits close to the curves of homoclinic connections, it
is necessary to make some remarks to this theorem.

The theorem describes the local shape of the curves.
It is obvious that, as z increases, the higher order terms
will change this shape, and oscillations may appear.
This is the reason why there may be curves of saddle-
node bifurcations of periodic orbits close to the T-point
even in the case where δ > 1.

If the point P̄ is chosen very close to d2 = 0, then
there are interactions between the obtained curve of
periodic orbits and its symmetrical one. Thus, closed
curves may appear near the curve of homoclinic con-
nections. Moreover, if P̄ is chosen with d2 = 0, all the
corresponding curves of periodic orbits in the vicinity
of P̄ will be closed.

If a value Z = Z̄ is fixed in Eq. (2), the discriminant
of the square root of Eq. (2) is negative for values of
μ below a critical value μZ . This means that it does
not correspond to any point of the curve of homoclinic
connections to Q1. Even in this case, if μ is close enough
to μZ , there will exist a remainder of closed curves of
periodic orbits that disappear as μZ − μ increases.

3.2 Saddle-node bifurcations of principal periodic
orbits

From now on, we are going to assume that the respec-
tive saddle indices of the equilibria verify δ < 1 and
Δ < 1. That is, both equilibria satisfy Shil’nikov’s con-
dition.

In order to derive the equations for the saddle-node
bifurcations of principal periodic orbits, let us define
(

M1(z, Z; d1, d2, μ)
M2(z, Z; d1, d2, μ)

)

= −
(

d1

d2
2 − μ

)

+ [X0 +
1
C

(z − DZ)]ZΔH−Δ

×
(

cos (Θ log Z + Φ)
sin (Θ log Z + Φ)

)

− [x0 +
1
C

(Az + (BC − AD)Z)]zδh−δ

×
(

a b

c d

) (
cos (θ log z + φ)
sin (θ log z + φ)

)

.

(10)

Thus, the system of equations for the principal periodic
orbits is
(

M1(z, Z; d1, d2, μ)
M2(z, Z; d1, d2, μ)

)

=
(

0
0

)

. (11)

A saddle-node bifurcation for this system appears
when (z, Z) cannot be uniquely determined as func-
tions of (d1, d2, μ) from Eqs. (11). This means that the
corresponding Jacobian vanishes:

J(z, Z) = det
(

M1z M1Z

M2z M2Z

)

= M1zM2Z − M1ZM2z = 0,
(12)

where the subscripts z and Z stand for the correspond-
ing partial derivatives. Note that Eq. (12) is only a nec-
essary condition in order to have a saddle-node bifur-
cation.

Once the derivatives have been developed, Eq. (12)
can be written as

0 = J(z, Z) = x0X0h
−δH−Δzδ−1ZΔ−1

× [ϑ1 cos(Θ log Z + Φ) sin(θ log z + φ)
+ ϑ2 cos(Θ log Z + Φ) cos(θ log z + φ)
+ ϑ3 sin(Θ log Z + Φ) sin(θ log z + φ)
+ ϑ4 sin(Θ log Z + Φ) cos(θ log z + φ)] + · · · ,

(13)

where the dots stand for higher-order terms and
⎛

⎜
⎜
⎝

ϑ1

ϑ2

ϑ3

ϑ4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−θΘ δΘ Δθ −δΔ

δΘ θΘ −δΔ −Δθ

−Δθ δΔ −θΘ δΘ
δΔ Δθ δΘ θΘ

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

a

b

c
d

⎞

⎟
⎟
⎠ .

Note that the coefficients ϑi, with i = 1, 2, 3, 4, are
obtained as a nonsingular linear transformation of a, b,
c and d, since

det

⎛

⎜
⎜
⎝

−θΘ δΘ Δθ −δΔ

δΘ θΘ −δΔ −Δθ

−Δθ δΔ −θΘ δΘ
δΔ Δθ δΘ θΘ

⎞

⎟
⎟
⎠ = (δ2+θ2)2(Δ2+Θ2)2 �= 0.

On the other side, the coefficients also verify

ϑ1ϑ4 − ϑ2ϑ3 = (δ2 + θ2)(Δ2 + Θ2)(bc − ad) �= 0. (14)



NODY9815_source.tex; 20/08/2010; 9:09 p. 7

7

Therefore ϑ1ϑ4 − ϑ2ϑ3 and bc− ad have the same sign.
An important remark is that Eq. (12) does not de-

pend on the parameters (d1, d2, μ). Thus, we are going
to study the existence of solutions of Eq.(12) in the
plane of variables (z, Z).

The global bifurcations at the (z, Z)-plane have very
easy locations: the T-point heteroclinic cycle is the ori-
gin and the homoclinic connections to Q1 and Q2 cor-
respond, respectively, to z = 0, Z > 0 and to Z = 0,
z > 0.

The solutions (z, Z) to Eq. (12), can be organized,
depending on the sign of θΘ(ad − bc) in two kinds of
curves which are now going to be described.

Solving Eq. (13) for z, we obtain

z = exp
(

1
θ

[π

2
+ l1π − φ (15)

+ arctg
(

ϑ1 cos(Θ log Z + Φ) + ϑ3 sin(Θ log Z + Φ)
ϑ2 cos(Θ log Z + Φ) + ϑ4 sin(Θ log Z + Φ)

)])

× (1 + · · ·),

where l1 is any integer and the dots stand for terms
that tend to zero as (z, Z) tends to (0, 0).

Every integer value of l1 determines, up to first or-
der, a curve with discontinuities at

Zl2 = exp
(

1
Θ

[

l2π − Φ − arctg
(

ϑ2

ϑ4

)])

where l2 ∈ Z. Each part of such a curve among two
consecutive discontinuities corresponds to an increas-
ing or decreasing function (depending on the sign of
θΘ(ad− bc)) whose maximum and minimum values are
given, respectively, by z = exp ([(l1 + 1)π − φ]/θ) and
z = exp ((l1π − φ)/θ) . Joining pieces of curves for con-
secutive values of l1 it is possible to obtain continuous
curves.

To be more precise, taking l1 as a function of Z in
the following way

l1(Z) = m1 + sg(ad − bc) (16)

× INT
(

1
π

[

Θ log Z + Φ + arctg
(

ϑ2

ϑ4

)])

,

where INT(·) stands for the integer part function and
m1 ∈ Z, and substituting l1 = l1(Z) in Eq. (15) we get,
for every value of m1, a continuous curve at the plane
(z, Z) whose asymptotic expansion up to first order is
given by

z = exp
(

1
θ

[π

2
+ l1(Z)π − φ (17)

+arctg
(

ϑ1 cos(Θ log Z + Φ) + ϑ3 sin(Θ log Z + Φ)
ϑ2 cos(Θ log Z + Φ) + ϑ4 sin(Θ log Z + Φ)

)])

.

Depending on the sign of θΘ(ad − bc) the curves
given by Eq. (17) have different shapes: if θΘ(ad−bc) >

0 then the curves tend to the origin (that is, to the
T-point) as parabola-like (with oscillations) functions;
if θΘ(ad − bc) < 0 the curves pass from an axis to
the other as hyperbola-like (with oscillations) functions.
The following study has been performed assuming that
θΘ(ad−bc) > 0 because this is the case observed in the
numerical analysis of Chua’s equations [5].

To complete the analysis of saddle-node bifurcations
of periodic orbits in the plane (z, Z) an important de-
tail has to be taken into account: not every solution
(z, Z) to Eq. (12) corresponds to a saddle-node bifur-
cation of periodic orbits because once a solution (z, Z)
to Eq. (12) has been obtained, it has to be substituted
into Eq. (8) for getting the corresponding values of the
principal parameters and this can be done only if the
second equation of (8) can be solved for d2. That is,
only if the function

disc(z, Z; μ) = μ

+
[

X0 +
1
C

(z − DZ)
]

ZΔH−Δ sin (Θ log Z + Φ)

−
[

x0 +
1
C

(Az + (BC − AD)Z)
]

zδh−δ

× (c cos (θ log z + φ) + d sin (θ log z + φ)) ,

(18)

is not negative.
From now on we define the admissible region for

the parameter μ to mean the subset of the (z, Z)-plane
given by

ARμ =
{
(z, Z) ∈ R+ × R+ : disc(z, Z; μ) ≥ 0

}
.

We define the inadmissible region for the parameter μ

to mean the complementary subset,

IRμ = R+ × R+ \ ARμ.

For each value of the parameter μ the equation

disc(z, Z; μ) = 0

determines limit curves of the (z, Z)-plane where d2 =
0. Usually, a curve of saddle-node bifurcations of peri-
odic orbits will cross some of these limit curves pass-
ing from ARμ to IRμ, or vice versa. The parts of the
curves of saddle-node bifurcations of periodic orbits be-
longing to ARμ give two curves at the plane of pa-
rameters (d1, d2) which are symmetric with respect to
d2 = 0. The points where the curves of saddle-node bi-
furcations of periodic orbits intersect the limit curves
disc(z, Z; μ) = 0 will correspond to the connections be-
tween the symmetric curves at d2 = 0.

Let us now analyze briefly the different regions ARμ

and IRμ that can be obtained for the different values
of μ.

If μ > 0, the origin belongs to ARμ; the func-
tion disc(z, Z; μ) is positive for values of (z, Z) close
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to the origin while it can be negative for higher values
of (z, Z). In order to separate roughly the origin and
IRμ, we can substitute the trigonometric functions of
disc(z, Z; μ) by their maximum values. The limit curve,
in the (z, Z)-plane, of this approximation is given by

μ =
[

X0 +
1
C

(z − DZ)
]

ZΔH−Δ

+
[

x0 +
1
C

(Az + (BC − AD)Z)
]

zδh−δ
√

c2 + d2.
(19)

Fixing z = 0 (the curve of homoclinic connections
to Q1 in the (z, Z)-plane) in Eq. (18), we obtain

μ = −[X0 −
D

C
Z]ZΔH−Δ sin (Θ log Z + Φ) . (20)

The right-hand side is an oscillating function whose am-
plitude is bounded by

μ = [X0 −
D

C
Z]ZΔH−Δ. (21)

As Z is increased there is a value Z∗ where Eq. (21)
holds. Thus, the function given by Eq. (20) vanishes
for a sequence of values greater than Z∗. This means
that, over the curve of homoclinic connections to Q1,
there are intervals belonging to IRμ for Z > Z∗. For
small values of μ, this phenomenon is close to the origin
and can be considered as a consequence of the non-
transversal T-point.

In a similar way, fixing Z = 0 (curve of homoclinic
connections to Q2 in the (z, Z)-plane) in Eq. (19) we
obtain

μ = [x0 +
A

C
z]zδh−δ

× (c cos (θ log z + φ) + d sin (θ log z + φ)) ,
(22)

which corresponds to an oscillating curve whose ampli-
tude is bounded by

μ = [x0 +
A

C
z]zδh−δ

√
c2 + d2. (23)

For small values of μ, there is a value z∗ where Eq. (23)
holds and can be considered as a lower bound to the
intervals of Z = 0 that belong to IRμ.

If μ = 0, the function disc(z, Z; 0) vanishes at the
origin. Thus, due to the oscillating terms of Eq. (18),
every neighbourhood of the origin intersects both re-
gions AR0 and IR0.

For μ < 0, the origin belongs to IRμ; the function
disc(z, Z; μ) is negative for values of (z, Z) close to the
origin while it is positive at some regions corresponding
to higher values of (z, Z). Interchanging IRμ and ARμ,
the situation is similar to the positive case: a limit curve
that separates the origin and ARμ can be obtained.

With the aim of showing these cases, we have fixed
the following (arbitrary) values of the non-principal pa-
rameters of the theoretical model:

a = 1, b = 2, c = 1, d = 1,

A = −1, B = 1, C = −2, D = 1,

p = 0.3, λ = 1, ω = −5π,
P = 0.7, Λ = 1, Ω = −4π,

x0 = 0.01, X0 = 0.01, h = 0.05, H = 0.05.

(24)

These values have been chosen in order to verify the
transversality condition between the two dimensional
manifolds, C �= 0, and to get an orientation-preserving
Poincaré map. No additional restrictions have been as-
sumed. Note that, with this election of the parameters,
the values of the Shil’nikov constants of the two equi-
libria Q1 and Q2 are, respectively, δ = 0.3 and Δ = 0.7.
Fixing now μ = 0.002, μ = 0 and μ = −0.002, the three
previous cases appear (see Fig. 4).

An important result is that there exists a relation-
ship between the curves of saddle-node bifurcations in
the (z, Z)-plane and the points where disc(z, Z; μ) van-
ishes. As we have seen in Fig. 4, the sets ARμ and IRμ

are organized as “islands” or “holes” that vary (grow-
ing, shrinking, merging,...) as μ changes. Concretely, as
μ decreases, the points from which the different parts of
IRμ emerge are local minima, the points where ARμ

disappears are local maxima and the points where two
“islands” or “holes” of ARμ or IRμ have a contact,
correspond to saddle points of disc(z, Z; μ). At station-
ary points of disc(z, Z; μ) the gradient (M2z, M2Z) van-
ishes. Obviously, this implies that J = 0, and proves the
following result:

Proposition 1 In the plane of coordinates (z, Z), the
stationary points of disc(z, Z; μ) lie on curves of saddle-
node bifurcations of periodic orbits.

In the numerical analysis of the theoretical model,
proposition 1 plays a very important role, because it
allows the understanding of the complete mechanism
of creation/destruction of closed curves of saddle-node
bifurcations.

3.3 Cusp bifurcations

A necessary condition for the appearance of a cusp bi-
furcation of periodic orbits at a curve of saddle-node
bifurcations of periodic orbits (see [15], [12]) is that the
tangent vector of the curve vanishes. That is, consider a
parameterized curve of saddle-node bifurcations of pe-
riodic orbits

(z, Z) = (z(s), Z(s)) (25)
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Fig. 4 Regions ARμ (white) and IRμ (shaded) in the (z, Z)-plane, obtained from the theoretical model for the values of the
parameters given by (24). The three figures correspond to μ = 0.002, μ = 0 and μ = −0.002. The limit curve given by (19) is shown
for μ = 0.002 and μ = −0.002

and the corresponding curve at the parameter (d1, d2)
plane

(
d1

d2

)

=
(

d1(z(s), Z(s))
d2(z(s), Z(s))

)

,

which is obtained from (8). The tangent vector of this
curve vanishes if
⎧
⎪⎪⎨

⎪⎪⎩

∂d1

∂z
z′(s) +

∂d1

∂Z
Z ′(s) = 0,

∂d2

∂z
z′(s) +

∂d2

∂Z
Z ′(s) = 0.

(26)

From Eqs. (8) and (10) it is obvious that the deriva-
tives of d1 and M1, with respect to z and Z, coincide. In
the case of d2, using the notation (18), these derivatives
are given by

2d2(z, Z; μ)
∂d2

∂z
(z, Z; μ) = discz(z, Z; μ),

2d2(z, Z; μ)
∂d2

∂Z
(z, Z; μ) = discZ(z, Z; μ).

As the derivatives of disc(z, Z; μ) with respect to z and
Z coincide with the corresponding derivatives of M2,
when disc(z, Z; μ) does not vanish (that is, d2 does not
vanish), system (26) is equivalent to

{
M1zz

′(s) + M1ZZ ′(s) = 0,

M2zz
′(s) + M2ZZ ′(s) = 0,

which means that both vectors (M1z, M1Z) and (M2z,

M2Z) are orthogonal to (z′(s), Z ′(s)).
Substituting Eq. (25) into the saddle-node equation

(12) and taking derivatives with respect to the param-
eter s the following condition is obtained

Jzz
′(s) + JZZ ′(s) = 0.

Thus, vectors (Jz, JZ), (M1z, M1Z) and (M2z, M2Z)
are parallel in the case they do not vanish. In our anal-
ysis, this corresponds to the following set of conditions:

J = M1zM2Z − M1ZM2z = 0, (27)

J1 = JZM1z − JzM1Z = 0, (28)

J2 = JZM2z − JzM2Z = 0. (29)

Note that condition (27), which is the necessary con-
dition for saddle-node bifurcations given in Eq. (12),
can be satisfied in two different ways. The non-trivial
way is that (M1z, M1Z) and (M2z, M2Z) are non-zero
parallel vectors. In this case, Eqs. (28) and (29) are
equivalent. The trivial way to verify Eq. (27) is that one
of the vectors, (M1z, M1Z) or (M2z, M2Z), vanishes.

The points where (M1z, M1Z) or (M2z , M2Z) are
zero vectors correspond to special situations whose math-
ematical meaning is going to be remarked later. From
now on, for the study of the generic case, we are go-
ing to assume that (M1z , M1Z) and (M2z, M2Z) do not
vanish and, therefore, Eqs. (28) and (29) are equivalent.
In that way, we study only Eq. (28).
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Once the derivatives have been obtained, Eq. (28)
can be written as
−x2

0X0h
−2δH−Δz2δ−2ZΔ−2

× [(aδ + bθ) cos(θ log z + φ)
+ (bδ − aθ) sin(θ log z + φ)]

× [ϑ13 cos(Θ log Z + Φ) sin(θ log z + φ)
+ ϑ31 sin(Θ log Z + Φ) sin(θ log z + φ)
+ ϑ24 cos(Θ log Z + Φ) cos(θ log z + φ)
+ ϑ42 sin(Θ log Z + Φ) cos(θ log z + φ)]

−x0X
2
0h−δH−2Δzδ−2Z2Δ−2

× [Δ cos(Θ log Z + Φ) − Θ sin(Θ log Z + Φ)]

× [ϑ12 cos(Θ log Z + Φ) sin(θ log z + φ)
+ ϑ21 cos(Θ log Z + Φ) cos(θ log z + φ)
+ ϑ34 sin(Θ log Z + Φ) sin(θ log z + φ)
+ ϑ43 sin(Θ log Z + Φ) cos(θ log z + φ)]

+ · · · = 0,

(30)

where the dots stand for higher-order terms and the
new coeficients are given by

⎛

⎜
⎜
⎝

ϑ13

ϑ31

ϑ24

ϑ42

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Δ − 1 Θ 0 0
−Θ Δ − 1 0 0
0 0 Δ − 1 Θ

0 0 −Θ Δ − 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ϑ1

ϑ3

ϑ2

ϑ4

⎞

⎟
⎟
⎠

and
⎛

⎜
⎜
⎝

ϑ12

ϑ21

ϑ34

ϑ43

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

δ − 1 −θ 0 0
θ δ − 1 0 0
0 0 δ − 1 −θ

0 0 θ δ − 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ϑ1

ϑ2

ϑ3

ϑ4

⎞

⎟
⎟
⎠ .

Note that both matrices are non-singular.
If we substitute the value of z given by equation (17)

into (30), after some tedious algebra, it is possible to
obtain an equivalent system, up to first order, to (27)-
(28). This system is written in the following theorem:

Theorem 3 If (M2z, M2Z) do not vanish then condi-
tions (27)-(29) are equivalent, up to first order, to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0H
−Δ(−1)l1(Z)sg(Ψ2)

∥
∥
∥
∥

(
Ψ1

Ψ2

)∥
∥
∥
∥

3

2

θZΔ

= −x0h
−δΘ(δ2 + θ2)(ad − bc)(ϑ3ϑ2 − ϑ1ϑ4)

× exp
(

δ

θ

[
π

2
+ l1(Z)π − φ + arctg

(
Ψ1

Ψ2

)])

,

z=exp
(

1
θ

[
π

2
+ l1(Z)π − φ + arctg

(
Ψ1

Ψ2

)])

,

(31)

where

Ψ1 = ϑ1 cos(Θ log Z + Φ) + ϑ3 sin(Θ log Z + Φ),

Ψ2 = ϑ2 cos(Θ log Z + Φ) + ϑ4 sin(Θ log Z + Φ),

l1(Z) = m1 + sg(ad − bc)

×INT
(

1
π

[

Θ log Z + Φ + arctg
(

ϑ2

ϑ4

)])

and m1 is any integer.

Let us remark that the first equation of system (31)
does not depend on z. Thus, it can be solved for Z and
then substituted into the second equation to obtain z.

On the other hand, if we compare the signs of the
two sides of the first equation of (31) it is very easy
to see that it can only have a solution for alternate
values of m1, because the right-hand term has a fixed
sign for every integer m1 while the sign of the left-hand
term changes. Therefore, fixing a value of m1 a curve of
saddle-node bifurcations of periodic orbits is chosen in
the plane of variables (z, Z) and if there exists a cusp
bifurcation at one point of this curve then there are no
cusp bifurcation points on the corresponding curves for
m1 + 1 and m1 − 1.

Assuming that the value of m1 verifies that the signs
of both sides of the first equality of system (31) are
the same, the existence of solutions to this equation
can be proved by separately analysing both sides. The
left-hand side corresponds to a power function of Z of
exponent Δ, whose shape is modified by a bounded
oscillatory function. The right-hand side corresponds
to an oscillatory deformation of a power function of Z

of exponent δΘsg(ad − bc)/θ. It is obvious that if both
exponents are different, the equation will have at least
one solution.

Note that the previous analysis is valid up to first
order for values of (z, Z) close to the origin. It is triv-
ial to extend it to the original equations having into
account the higher-order terms. In this way we obtain
the following existence theorem:

Theorem 4 Assume that Δθ �= sg(ad − bc)δΘ holds.
Then, in a neighbourhood of the origin of the (z, Z)-
plane, system (27)-(29) has solutions.

Let us remark that for every fixed value of μ, a
solution to system (27)-(29) corresponds to a pair of
cusp bifurcations at the plane (d1, d2) provided that it
belongs to the admissible region and that (M2z, M2Z)
does not vanish.

Now, we are going to prove a relationship between
tangencies, in the plane of coordinates (z, Z), of curves
of saddle-node bifurcations of periodic orbits and solu-
tion curves to disc(z, Z; μ) = 0 and collisions, in the
plane of parameters (d1, d2), of symmetrical cusps bi-
furcations at points where d2 = 0. This behaviour will
be observed below, in the numerical analysis of the the-
oretical model, as a mechanism of creation/destruction
of closed curves of saddle-node bifurcations.

As we know, stationary points of function disc(z, Z; μ)
appear for (M2z, M2Z) = (0, 0). In this case, (27) and
(29) hold, although (28) does not have to be satis-
fied. In other words, if an intersection point between a
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curve of saddle-node bifurcations and a solution curve
to disc(z, Z; μ) = 0 is, at the same time, a stationary
point of disc(z, Z; μ), then it does not have to be a cusp
point in the plane of parameters (d1, d2).

On the contrary, if a curve of saddle-node bifurca-
tions and a solution curve to disc(z, Z; μ) = 0 have a
non-transversal intersection which is not a stationary
point of disc(z, Z; μ), then it satisfies Eqs. (27)-(29), as
the following proposition shows:

Proposition 2 Let us assume that, in the (z, Z)-plane,
a curve of saddle-node bifurcations of periodic orbits
and a solution curve to disc(z, Z; μ) = 0 have a non-
transversal intersection at a point (z, Z) = (z0, Z0) for
a certain value of μ. Let us assume that (z0, Z0) is not
a stationary point of disc(z, Z; μ). Then, Eqs. (27)-(29)
hold.

First, (27) holds because the intersection point be-
longs to the curve of saddle-node bifurcations. Second,
at (z0, Z0), vectors (Jz, JZ) and (M2z, M2Z) are, respec-
tively, perpendicular to J = 0 and to disc(z, Z; μ) = 0.
That is, at the tangency point they are parallel vec-
tors and (29) holds. Third, as the intersection point is
not a stationary point of disc(z, Z; μ), (M2z , M2Z) does
not vanish. Thus, condition (28) automatically holds
because it is equivalent to (29). This finishes the proof
of proposition 2.

The results given by proposition 2 can be trans-
ferred directly to the plane of parameters (d1, d2). On
the one hand, a point which satisfies disc(z, Z; μ) = 0
is located at d2 = 0 and, as we know, the full plane
of parameters is symmetrical with respect to this axis.
On the other hand, if this point also satisfies (27)-(29),
it is, generically, a cusp bifurcation of periodic orbits
(note that some additional degeneration conditions may
give rise to more degenerate behaviours of codimension
three or higher such as degenerate cusps and swallow-
tail bifurcations). Moreover, in the generical case, this
cusp bifurcation will be located at d2 = 0 and, due to
the symmetry, there will be a pair of cusp bifurcations
coexisting at that point.

Let us summarize the last results in the following
theorem, whose proof is obvious from proposition 2:

Theorem 5 Let us assume that, in the plane of co-
ordinates (z, Z), a curve of saddle-node bifurcations of
periodic orbits and a solution curve to disc(z, Z; μ) = 0
have a non-transversal intersection at a point (z, Z) =
(z0, Z0) for a certain value of μ. Let us assume that
(z0, Z0) is not a stationary point of disc(z, Z; μ). Then,
generically, in the plane of parameters (d1, d2), two cusp
bifurcations of periodic orbits, symmetrical with respect
to d2 = 0, collide at a point (d10, 0), where d10 is ob-
tained substituting (z0, Z0) into equation (8).

3.4 Numerical study of the model

To finish this study of the model, we are going to numer-
ically analyze the curves of saddle-node bifurcations of
periodic orbits given by (12) and, at the same time, we
will compare the obtained results with the previously
observed phenomena in Chua’s equation [5]. The evo-
lution of these curves, as a consequence of the failure
of transversality of the T-points curve, will be shown
(from the creation/destruction of closed curves, in two
different ways, to the appearance of cusp bifurcations
of periodic orbits).

This behaviour is analyzed by showing a sequence of
figures corresponding to the plane of parameters (d1, d2)
for different values of μ. To be precise, we fix a small
positive value of μ and, while it decreases to reach neg-
ative values, several curves of bifurcations are analyzed.

Let us describe the procedure used for performing
the numerical study. First, it is necessary to fix the
values of the secondary parameters (namely, we take
the values given in (24)).

Second, a region of the plane of coordinates (z, Z)
(close to the origin) is selected. Several curves of saddle-
node bifurcations of periodic orbits, solutions to (12),
can be detected there. As we said previously, these
curves do not change as μ varies, thus, they can be ob-
tained by continuation and, then, used for every value
of μ. The only difference is that, as μ decreases, the
region IRμ grows. As a consequence of this, the curves
of saddle-node bifurcations of periodic orbits disappear
as μ decreases.

Third, the curves have to be represented in (d1, d2).
In order to do this, we have to remove the intervals of
the curves previously continued that lie within IRμ.
Then, the remaining parts of the curves are translated
to the plane of parameters (d1, d2) by using equation
(8).

The curves of saddle-node bifurcations of periodic
orbits are organized, in the plane of coordinates (z, Z),
as a sequence of parabola-like curves (with oscillations)
that tends to the origin. These curves, once they are
translated to the plane of parameters (d1, d2), may ex-
hibit cusp bifurcations. Usually, depending on the val-
ues of the parameters, the cusp bifurcations appear only
when the curves of saddle-node bifurcations of periodic
orbits pass through a concrete region of the plane (z, Z).
This region can be understood as the limit between the
zone where periodic orbits are related to the homoclinic
connections of Q1 and the zone where they correspond
to Q2.

The relative locations of the curves of saddle-node
bifurcations in the plane (z, Z), with respect to the
curves of homoclinic connections, can be easily trans-
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Fig. 5 Appearance of new subsets of IRμ, in the plane of coordinates (z, Z), as μ tends to 0 taking positive values

lated into the plane (d1, d2). For example, the closer a
curve is to the axis z = 0, the closer it is to the curve of
homoclinic connections to Q1 in the plane of parame-
ters (d1, d2). Moreover, consecutive curves of the plane
of coordinates (z, Z) are located at both sides of the
curve of homoclinic connections in the plane (d1, d2), as
in [15], dividing the set of curves in two kinds depend-
ing on the side of the curve of homoclinic connections
where they are. In such a way, a curve of the plane
(z, Z) surrounds, in the plane (d1, d2), every curve of
the same kind which is closer to the axis z = 0. The
same ideas are valid for the curves of saddle-node bi-
furcations near the curve of homoclinic connections to
Q2.

The curves of saddle-node bifurcations are, in the
plane of parameters (d1, d2), spiral-like curves whose
shapes remember of the shape of the curve of homo-
clinic connections to one of the equilibria. Let us assume
that it corresponds to Q1. As every spiral surrounds in-
finitely many other spirals of the same kind, there lays
a spire of every other curve in the region bounded by
two consecutive spires of a curve of saddle-node bifur-
cations. This explains that, between a contact of one of
the spires of a curve with the axis d2 = 0 and the con-

tact of the next spire of the same curve with the same
axis, the rest of the curves also have to touch this axis.

In Fig. 5, we can see this phenomenon as it can be
observed in the plane of coordinates (z, Z), for curves
whose shape is similar to the curve of homoclinic con-
nections to Q1. A contact between a curve of saddle-
node bifurcations with d2 = 0 corresponds, in the plane
(z, Z), to an intersection between a solution curve to
J = 0 and a solution curve to disc(z, Z; μ) = 0. As
μ decreases, new subsets of IRμ appear: this means
that new contacts between curves of saddle-node bi-
furcations and d2 = 0 occur in the plane (d1, d2). The
appearance of these subsets is arranged in the following
way: they appear vertically for values of Z that tend to
0 as μ decreases and, once every curve has been inter-
sected, new subsets appear vertically for a small value
of z. This procedure is repeated once and again, in-
finitely many times, until μ = 0 is reached. Note that
the same phenomenon can be observed for curves close
to the curve of homoclinic connections to Q2 although,
in this case, the order will be from right to left and from
top to bottom.

Due to all these previous reasonings, to perform the
numerical study, only two consecutive curves (in the
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Fig. 6 For μ = 0.00226 and the values of the parameters given by (24): (a) Detail of the curves of saddle-node bifurcations of periodic
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selected. The region IRμ (shaded) is also shown. (b) The selected curves of saddle-node bifurcations of periodic orbits at the plane of
parameters (d1, d2). (c) A schematic drawing of the two pairs of curves (with and without cusp bifurcations) that appear in (b)

plane of coordinates (z, Z)) are selected. They have
been obtained, by using continuation, in a region where
one of them exhibits cusp bifurcations. In figure 6(a),
we show, for μ = 0.00226, the curves of saddle-node bi-
furcations of periodic orbits at the region of the plane
of coordinates (z, Z) where the numerical analysis is
performed. The selected curves are thicker, the value
where the continuation process is begun is shown as a
dashed line and the set IRμ is shadowed. Figure 6(b) is
obtained by translating both curves to the plane of pa-
rameters (d1, d2). Note that the selected pair of curves
of the plane (z, Z) gives rise to four curves in the plane
of parameters (d1, d2). Two of them are closed curves
which correspond to the parts of the curves of the plane
(z, Z) contained by ARμ and delimited by two consec-
utive intersections with disc(z, Z; μ) = 0 (more or less,
for values of z between 0.00013 and 0.00019). The other
two curves are bi-spiraling curves around the two sym-
metrical T-points and they correspond, in the plane of
coordinates (z, Z), to the parts of the selected curves
that tends to the origin.

To better understand the phenomena of creation/des-
truction of bifurcation curves we cannot analyze a re-
gion of the plane of coordinates (z, Z) as big as the one
shown in figure 6(a). On the contrary, we are going to
present smaller areas around the interesting phenomena
and only the curve whose shape changes structurally. In
the same way, to avoid the appearance of a lot of differ-
ent curves, we only consider a small area of the plane
of parameters (d1, d2).

Let us begin with the evolution of a curve with-
out cusp bifurcations (which is simpler to analyze). In

Fig. 7, we show the transition from μ = 0.00224 to
μ = 0.0022386. For the first value, the selected region of
the plane of coordinates (z, Z) is fully contained within
the set ARμ. At the plane of parameters (d1, d2) there
is a symmetrical double-spiral curve. One of the loops
of the spiral (together with its symmetrical one) is pass-
ing very close to the d2 = 0 axis. For the second value,
a small “island” of IRμ intersects the curve of saddle-
node bifurcations in the plane (z, Z). The correspond-
ing effect at the plane of parameters (d1, d2) is the di-
vision of the previous curve in two parts: a closed curve
and the rest of the symmetrical double-spiral curve (this
transition corresponds to that shown in figure 5 of [5]).
This mechanism of creation of closed curves is analo-
gous to the case of curves of homoclinic connections
[2].

Note that, from Fig. 7 and as a direct consequence
of proposition 1, the points from which IRμ emerges,
lie on the curve of saddle-node bifurcations. Thus, the
appearance of a new “island” of IRμ implies the cre-
ation of a new closed curve of saddle-node bifurcations
in the plane of parameters (d1, d2).

Now, we are going to briefly describe the mechanism
of creation/destruction of closed curves of saddle-node
bifurcations in the presence of cusps. Thus, we con-
sider again the small piece of IRμ, which grows as μ

decreases. In this way, it will intersect the next curve
of saddle-node bifurcations as it is shown in Fig. 8 for
the values μ = 0.00205 (no intersection), μ = 0.002025
(tangency) and μ = 0.002 (two intersections). As a con-
sequence of this process, a new closed curve appears in
the plane of parameters (d1, d2) but, in this case, in-
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Fig. 7 For positive values of μ, (a) μ = 0.00224, (b) μ = 0.0022386: creation of a closed curve of saddle-node bifurcations for curves
without cusp bifurcations

volving a collision between two symmetrical cusp bifur-
cations (see Theorem 5). This transition corresponds
to that shown in figures 5(f) and 7(c) of [5].

Following the sequence, while the “island” of IRμ

increases in size, it will merge with other subsets of
IRμ. This union occurs, in a saddle point, approxi-
mately for μ = 0.001988058 (see Fig. 9). From it, a
new closed curve appears in the plane of parameters
(d1, d2). In this case the curve is smaller and it has two
cusp bifurcations. The mechanism of its disappearance,
a new tangency with the curve of saddle-node bifurca-
tions, is illustrated with the other values, μ = 0.001987
and μ = 0.0019815. This transition corresponds to that
shown in figure 7 of [5].

This is the complete evolution process that the curves
of saddle-node bifurcations of periodic orbits exhibit as
μ decreases, taking positive values. This mechanism is
repeated once and again over the curve for smaller val-
ues of (z, Z) as μ tends to 0. Thus, for μ = 0, each curve
of the plane of coordinates (z, Z) gives infinitely many
closed curves in the plane of parameters (d1, d2).

For negative values of μ, the curves gradually dis-
appear. This mechanism is partially shown in Fig. 10
in the case of curves with cusps, although, in the plane
of parameters (d1, d2) a closed curve without cusps is

also represented for every value of μ. Let us begin with
μ = −0.00208. Firstly, due to the collision between two
symmetrical cusps related to a tangency in the plane of
coordinates (z, Z) (approximately at μ = −0.002093), a
small closed curve is created (for μ = −0.002097 in Fig.
10) in the plane of parameters (d1, d2). Secondly, as μ

decreases, the curve becomes smaller until it vanishes,
corresponding to a saddle-point in the plane of coor-
dinates (z, Z) (approximately for μ = −0.00209872).
Thirdly, the other closed curve disappears when a new
tangency occurs in the plane of coordinates (z, Z). This
last situation is not shown in Fig. 10.

The previous transition corresponds to that shown
in figure 8 of [5].

The mechanism of destruction of curves without
cusps has not been illustrated because it is very sim-
ple: curves disappear because they become smaller until
they vanishes. This disappearance occurs for maximum
points of disc(z, Z; μ).

3.5 Another approach: singularity theory

Once the equations for saddle-node bifurcations of peri-
odic orbits have been obtained, the core of our problem
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Fig. 8 For positive values of μ, (a) μ = 0.00205, (b) μ = 0.002025, (c) μ = 0.002: creation (by a collision between two symmetrical
cusp bifurcations) of a closed curve of saddle-node bifurcations for curves with cusp bifurcations

is simply to study the shape of the solution surfaces in
the parameter space and their intersections with a se-
quence of planar sections corresponding to fixed values
of the parameter μ. So, the original problem of find-
ing and describing the dynamics organized by a non-
transversal T-point is reduced to the problem of ana-
lyzing the solutions of several algebraic equations. From
this point of view, singularity theory [6,7,17,29] can
help us to understand some of the observed phenom-
ena.

As an example of the use of singularity theory for a
deeper comprehension of the structures shown in Sect.
3.4, we are going to give normal forms for the local tran-
sitions (involving intersections and tangencies between
curves) shown in Figs. 8-10.

Let us begin with the generical manifold correspond-
ing to the swallowtail catastrophe

H(x, A, B, C) def= x4 + Ax2 + Bx + C = 0, (32)

and let us choose suitable values of (A, B, C) in terms
of a new set of parameters (α, β, γ) to reproduce the
behaviour observed in Figs. 8 and 9. The role of new
parameters α, β and γ is similar to that of the principal
parameters of the model d1, d2 and μ, respectively. That
is, several values of γ will be fixed and the set of critical

points of H = 0 (that is, points that satisfy Hx = 0)
will be represented in (α, β) parameter plane.

Firstly, we fix A = −1 in order to have cusps in the
curve of critical points. Secondly, we take B = β2 −
γ − α and C = β2 − γ + α. This choice can be easily
explained in two steps: (α, β) parameters are mapped
to (α, β2 − γ) to get a duplicity effect for positive and
negative values of β (that is, a symmetry with respect
to β = 0) and a non-transversality for γ = 0; after that,
they are rotated by 45 degrees with respect to the origin
to get (β2−γ−α, β2−γ+α), where the common factor
1/

√
2 has been removed. Therefore, the manifold given

by (32) can be written as

x4 − x2 + (β2 − γ − α)x + (β2 − γ + α) = 0. (33)

A sequence of planar slices of the set of critical
points of manifold (33) for several values of γ is shown
in Fig. 11. The curve configurations are almost exact
to that shown in Figs. 8 and 9. The first contact be-
tween cusp points (shown in Fig. 11(b)) occurs for γ =
1
72

(
3 + 8

√
6
)

while the second one (where the small
isola shown in Fig. 11(f) disappears) occurs for γ =
1
72

(
3 − 8

√
6
)
.

Following similar ideas, if we take now A = −1,
B = −β2 +γ +α and C = −β2 +γ−α (where the only
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Fig. 9 For positive values of μ, (a) μ = 0.001988058, (b) μ = 0.001987, (c) μ = 0.0019815: creation (by a non-transversal contact
without cusps) and destruction (in an isola centre) of a closed curve of saddle-node bifurcations for curves with cusp bifurcations

difference is the rotation angle) the manifold given by
(32) can be written as

x4 − x2 + (−β2 + γ + α)x + (−β2 + γ − α) = 0 (34)

and a new sequence of planar slices of the set of critical
points can be obtained for several values of γ (compare
Figs. 12 and 10). The first contact between cusp points
(shown in Fig. 12(b)) occurs for γ = 1

72

(
−3 + 8

√
6
)

while the second one (where the small isola shown in
Fig. 12(f) disappears) occurs for γ = 1

72

(
−3 − 8

√
6
)
.

As we have just seen with these two examples, it
is clear that the observed transitions (curves crossing,
isola centres, cusps merging, . . . ) are principally due to
the non-transversality of certain surfaces with respect
to one distinguished parameter and, from this point of
view, this behaviour can be expected from singularity
theory (see, for instance, [6,7,17,29]). In fact, singular-
ity theory may explain the way these bifurcations disap-
pear when they interact with the non-transversality or
even predict the appearance of swallowtail bifurcations.
However, it is also clear that generically the existence of
these cusp bifurcations is independent of the mentioned
non-transversality.

In particular, the existence of cusp bifurcations of
periodic orbits in the model is a direct consequence of

the existence of the T-point (see Theorems 3 and 4) and
it has nothing to do with the failure of transversality.
Moreover, a deeper analysis of equation (31) shows that
the cusp bifurcations must be confined to a region in
the first quadrant of the (z, Z)-plane. So, a bad choice
of the curve of saddle-node bifurcations or of the region
where it is studied will not show any cusp bifurcation
nor, obviously, the complicated transitions they exhibit
close to the non-transversality.

4 Conclusions

Closed curves in bifurcation diagrams (isolas) or in bi-
furcation sets usually indicate the presence of a higher
codimension bifurcation. Several examples have been
found in the literature corresponding to bifurcations of
periodic orbits.

The problem we consider is of interest because non-
transversal T-points have been found in problems from
many different fields: electronic circuits, pendula and
laser problems [2,4,20,22,23,30].

The presence of closed curves of global bifurcations
of periodic orbits has been numerically detected in Chua’s
equation [5].
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Fig. 10 For negative values of μ, (a) μ = −0.00208, (b) μ = −0.002093, (c) μ = −0.002097, (d) μ = −0.00209872: creation (by a
collision between two symmetrical cusp bifurcations) and destruction (in an isola centre) of a closed curve of saddle-node bifurcations
for curves with cusp bifurcations. The bigger curve is of saddle-node bifurcations without cusps. The pair of curves, in the plane
(d1, d2), that still appear in (d), disappear in two isola centres for smaller values of μ.

In the present work, we have studied a theoretical
model that is able to find and describe the mechanism
of the formation/destruction of such closed curves, re-
lating them to a failure of transversality in a curve of T-
points in a three-dimensional parameter space. In fact,
we have shown that the appearance of closed curves of
saddle-node bifurcations of periodic orbits and cusp bi-
furcations in the transition open-closed of some of them
in a parameter plane may be caused by the presence of a
nontransversality in the curve of T-points (if the equi-
libria involved are saddle-foci) in a three-dimensional
parameter space.

We remark the good agreement between the predic-
tions of the model and the curves numerically found in
Chua’s equation [5]. The model studied is able to ac-
count for the complex behaviour of the curves of saddle-
node bifurcations (with and without cusps) previously
found [5].
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Bogdanov bifurcations of periodic orbits and Arnold’s
tongues in a three-dimensional electronic model. Int. J. Bi-
furcation Chaos Appl. Sci. Eng. 11, 513–531 (2001)

2. Algaba, A., Fernández–Sánchez, F., Freire, E., Merino, M.,
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Fig. 12 Critical points of x4 −x2 +(−β2 +γ +α)x+(−β2 +γ−α) = 0 for (a) γ = 0.3, (b) γ = 1
72

(
−3 + 8

√
6
)
≈ 0.23, (c) γ = 0.17,

(d) γ = 0.05, (e) γ = 0, (f) γ = −0.3.
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