S. Amari, Natural Gradient Works Efficiently in Learning, Neural Computation, vol.37, issue.2, pp.251-276, 1998.
DOI : 10.1103/PhysRevLett.76.2188

C. Bishop, Pattern Recognition and Machine Learning, 2006.

X. Boyen and D. Koller, Tractable inference for complex stochastic processes, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI), pp.33-42, 1998.

T. Bui, M. Poel, A. Nijholt, and J. Zwiers, A tractable DDN-POMDP approach to affective dialogue modeling for general probabilistic frame-based dialogue systems, Workshop on Knowledge and Reasoning in Practical Dialog Systems , International Joint Conference on Artificial Intelligence (IJCAI), pp.34-37, 2007.

T. Heskes, Stable fixed points of loopy belief propagation are minima of the Bethe free energy, Advances in Neural Information Processing Systems 15, pp.359-366, 2003.

E. Horvitz and T. Paek, A Computational Architecture for Conversation, Proceedings of the Seventh International Conference on User Modeling, pp.201-210, 1999.
DOI : 10.1007/978-3-7091-2490-1_20

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, Planning and acting in partially observable stochastic domains, Artificial Intelligence, vol.101, issue.1-2, pp.99-134, 1998.
DOI : 10.1016/S0004-3702(98)00023-X

F. Kschischang, B. Frey, and H. Loeliger, Factor graphs and the sum-product algorithm, IEEE Transactions on Information Theory, vol.47, issue.2, pp.498-519, 2001.
DOI : 10.1109/18.910572

O. Lemon, K. Georgila, J. Henderson, and M. Stuttle, An ISU dialogue system exhibiting reinforcement learning of dialogue policies, Proceedings of the Eleventh Conference of the European Chapter of the Association for Computational Linguistics: Posters & Demonstrations on, EACL '06, 2006.
DOI : 10.3115/1608974.1608986

E. Levin, R. Pieraccini, and W. Eckert, A stochastic model of human-machine interaction for learning dialog strategies, IEEE Transactions on Speech and Audio Processing, vol.8, issue.1, pp.11-23, 2000.
DOI : 10.1109/89.817450

H. Meng, C. Wai, and R. Pieraccini, The use of belief networks for mixed-initiative dialog modeling, IEEE Transactions on Speech and Audio Processing, vol.11, issue.6, pp.757-773, 2003.
DOI : 10.1109/TSA.2003.814380

T. Minka, A family of algorithms for approximate bayesian inference, 2001.

K. Murphy, Dynamic bayesian networks: Representation, inference and learning, 2002.

J. Peters, S. Vijayakumar, and S. Schaal, Natural actor-critic, European Conference on Machine Learning (ECML, pp.280-291, 2005.

R. Pieraccini and J. M. Huerta, Where Do We Go from Here?, Recent Trends in Discourse and Dialogue of Text, Speech and Language Technology, 2008.
DOI : 10.1007/978-1-4020-6821-8_1

O. Pietquin, A Framework for Unsupervised Learning of Dialogue Strategies. SIMILAR Collection, 2004.

S. Pulman, Conversational games, belief revision and bayesian networks, Proceedings of the 7th Computational Linguistics in the Netherlands meeting, 1996.

N. Roy, J. Pineau, and S. Thrun, Spoken dialogue management using probabilistic reasoning, Proceedings of the 38th Annual Meeting on Association for Computational Linguistics , ACL '00, 2000.
DOI : 10.3115/1075218.1075231

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.8204

J. Schatzmann, Statistical user modeling for dialogue systems, 2008.

J. Schatzmann, B. Thomson, K. Weilhammer, H. Ye, and S. Young, Agenda-based user simulation for bootstrapping a POMDP dialogue system, Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers on XX, NAACL '07, 2007.
DOI : 10.3115/1614108.1614146

K. Scheffler, Automatic design of spoken dialogue systems, 2002.

G. Shani, P. Poupart, R. Brafman, and S. Shimony, Efficient add operations for point-based algorithms, The International Conference on Automated Planning and Scheduling (ICAPS), 2008.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning, 1998.
DOI : 10.1007/978-1-4615-3618-5

R. Sutton, D. Mcallester, S. Singh, and Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, Advances in Neural Information Processing Systems 12, pp.1057-1063, 2000.

B. Thomson, J. Schatzmann, K. Weilhammer, H. Ye, and S. Young, Training a real-world POMDP-based dialog system, Proceedings of the HLT/NAACL workshop on " Bridging the Gap: Academic and Industrial Research in Dialog Technologies, 2007.

B. Thomson, K. Yu, M. Gasic, S. Keizer, F. Mairesse et al., Evaluating semantic-level confidence scores with multiple hypotheses, Proceedings of Interspeech, 2008.

M. A. Walker, An application of reinforcement learning to dialogue strategy selection in a spoken dialogue system for email, Journal of Artificial Intelligence Research, vol.12, pp.387-416, 2000.

J. Williams and S. Young, Scaling POMDPs for dialog management with composite summary point-based value iteration (cspbvi), Proceedings of the AAAI Workshop on Statistical and Empirical Approaches for Spoken Dialogue Systems, 2006.

J. D. Williams, Applying POMDPs to dialog systems in the troubleshooting domain, Proceedings of the Workshop on Bridging the Gap Academic and Industrial Research in Dialog Technologies, NAACL-HLT '07, 2007.
DOI : 10.3115/1556328.1556329

J. D. Williams, Using particle filters to track dialogue state, 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU), 2007.
DOI : 10.1109/ASRU.2007.4430163

J. D. Williams, P. Poupart, and S. Young, Factored partially observable Markov decision processes for dialogue management, Proceedings of the IJCAI Workshop on Knowledge and Reasoning in Practical Dialog Systems, 2005.

J. D. Williams and S. Young, Scaling up POMDPs for Dialog Management: The ``Summary POMDP'' Method, IEEE Workshop on Automatic Speech Recognition and Understanding, 2005., 2005.
DOI : 10.1109/ASRU.2005.1566498

J. D. Williams and S. Young, Partially observable Markov decision processes for spoken dialog systems, Computer Speech & Language, vol.21, issue.2, pp.231-422, 2006.
DOI : 10.1016/j.csl.2006.06.008

J. D. Williams and S. Young, Scaling POMDPs for Spoken Dialog Management, IEEE Transactions on Audio, Speech and Language Processing, vol.15, issue.7, pp.2116-2129, 2007.
DOI : 10.1109/TASL.2007.902050

J. S. Yedidia, W. T. Freeman, and Y. Weiss, Generalized belief propagation, Advances in Neural Information Processing Systems 13, pp.689-695, 2001.

S. Young, J. Schatzmann, K. Weilhammer, and H. Ye, The Hidden Information State Approach to Dialog Management, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, 2007.
DOI : 10.1109/ICASSP.2007.367185