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We have developed a three dimensional numerical model (Chauchat and Médale, 2010)
based on the two-phase modeling having a Newtonian rheology for the fluid phase and Coulomb-
type friction for the particulate phase which has been developed by Ouriemi et al. (2009a)
to study bedload transport in pipe flows. The governing equations are discretized by a finite
element scheme and a penalisation method is introduced to cope with the incompressibility
constraint. A regularisation technique is used to deal with the visco-plastic behaviour of the
granular phase. We have performed three-dimensional computations for bedload transport in
rectangular cross-section duct when the bed interface remains fixed. This numerical model
which captures the complex coupling between the granular media and the fluid should enable a
better understanding of the sediment transport mechanisms in these duct flows (Ouriemi et al.,
2009b). The geometry corresponds to the one used in Pailha et al. (2011) where the authors
investigate experimentally the behaviour of the flowing granular layer. The presented model
and numerical results will be used for a detailed comparison in a near future.

| Introduction

The transport of sediment or more generally the transport of particles by a fluid flow is a prob-
lem of major importance in geophysical flows such as coastal or river morphodynamic or in
industrial flows with the hydrate or sand issues in oil production and granular transport in food
or pharmaceutical industries. This problem has been extensively studied in the literature since
the middle of the twentieth century but poorly understood actually (Einstein, 1942; Meyer-Peter
and Muller, 1948; Bagnold, 1956; Yalin, 1963).

Recently, Ouriemi et al. (2009a) have proposed a two-phase model describing the bed-load
transport in laminar flows that allows to incorporate more physics than in previous modelling
based on particle flux or erosion deposition approaches. This two-phase model is based on
a Newtonian rheology for the fluid phase and a frictional rheology for the particulate phase
Forterre and Pouliquen (2008) while the fluid-particle interaction is assumed to follow a Darcy
law. This approach allows to predict the threshold of motion for the particle phase and give
a description of the flow inside the mobile granular layer. Away from the threshold of mo-
tion, a simple analytical model for the particle flux is obtained which gives a quite satisfactory
description of experimental observations of bed-load transport in pipe flows (Ouriemi et al.,
2009a; Pailha et al., 2011).

Based on this theoretical model we have developed a 3D Finite Element numerical model
that allows to simulate bed-load transport in 2D or 3D configurations (Chauchat and Médale,
2010). It is restricted to the cases where the granular bed does not change its shape in the course
of time. The viscoplastic behaviour of the granular phase characterized by the existence of a
yield stress is implemented using a regularisation technique. This numerical model is used here
to investigate the influence of the granular rheology, Coulomb or ;(/) (Forterre and Pouliquen,
2008), on the mobile granular layer characteristics (velocity profiles, thickness of the layer and
particle flux) for a wide range of fluid flow rate.



I Two-phase model and Numerical Implementation

The present model is based on Jackson (2000) averaged equations using the closures developed
by Ouriemi et al. (2009a). These equations are summarized hereafter in dimensionless form
using the following scaling: the length are scaled by H, the channel height, and the stresses
are scaled by ApgH, and therefore the time is scaled by 1/ApgH where Ap = p, — py. The
general problem is expressed in terms of the solid volume fraction ¢, the mixture velocity ur
and the particulate velocity uP. n this paper we only present the mixed-fluid model equation
(1) which is the sum of the fluid and particulate phases momentum equations assuming no-slip
velocity between the fluid and the particles (u_p> = %) (Chauchat and Médale, 2010).
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In these equations, 4™ = \V + (Vu_m))T, R, = py/p, represents the density ratio and Ga =
d®*psApg/n? is the Galileo number where d is the particle diameter. The Galileo number is a
Reynolds number based on the settling velocity of particles. p/ and p” represent the fluid and
particulate pressure respectively. The latter is assumed to be hydrostatic and then its vertical
gradient is equal to the apparent weight of the particles. To close these equations we need to
prescribe the effective fluid viscosity 7. = n(1 + 5/2¢) (Einstein, 1906). Following (Jop et al.,

2006), the frictional stress can be written as 77 = 1,37, with n, = u(l)p?/ || wp | where
the friction coefficient is expressed as yu(I) = s + (2 — ) / (Io/1 + 1) as a function of the

inertial number I =|| 47 || ns/(a pP) (Cassar et al., 2005; Forterre and Pouliquen, 2008). The
parameter « is the linked to the permeability K which is defined following Kozeny-Carman
K = % d> = «a d* with ko ~ 180 (Happel and Brenner, 1973). The coefficient
corresponds to the static friction and ps to the dynamical friction whereas [, is an empirical
parameter that have been estimated to /[, = 1 by Cassar et al. (2005). This formulation of the
frictional viscosity is based on the () rheology but we can assume a simpler rheology by
considering a constant friction coefficient ;s corresponding to a Coulomb rheology therefore
mp = 1sp”/ 47 |-

The main issue for the numerical solution of these equations comes from the divergence of
the particulate viscosity as the particulate shear rate tends toward zero (i.e. in the static zone).
The basic idea to overcome this issue consists in regularizing the viscosity by adding a small
quantity ()\) to the denominator of the particulate viscosity 1, = pusp?/(|| 77 || +A) then the
divergence is controlled by this parameter and the viscosity is kept finite. In other words, the
static zone in the frictional rheology is replaced by a very viscous one. We have analysed the
influence of the parameter A on the model solution using a Coulomb rheology in Chauchat and
Meédale (2010), the reader is referred to this article for more details. It is possible to regularize
the (1) rheology using the same technique:
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The present numerical model results from the discretisation by the standard Finite Element
Method of the variational formulation associated with equation (1). The non-linearities in the
governing equations are solved by a Newton-Raphson algorithm by taking the first variation of
the variational formulation. In our implementation, we use piecewise quadratic polynomial ap-
proximation for the velocity and piecewise linear discontinuous approximation for the pressure.
In the computations, we have employed a 27-nodes hexahedra element (H27) for the velocities.




The incompressibility constraint is solved by a penalisation method (penalty parameter set to
109).

Il Results and discussion

We present the results of the previous two-phase numerical model applied to the flow of a
Newtonian fluid over a granular bed. The geometry used for the simulations is the same as in
Pailha et al. (2011). This is a rectangular duct of aspect ratio W/H = 0.538 and fulfilled with a
fluid-particles mixture at ¢ = 0.55 in the lower part (H,, = 7/8) and with pure fluid (¢ = 0) in
the upper part of the duct. The regularisation parameter is set to A = 107¢ s~! and we solved
by FEM the mixed-fluid formulation of the two-phase flow model for a 3x40x80 mesh with a
requested absolute residual lower than 101! per degree of freedom. Since the vertical plane at
the center of the duct (y = 0) is a symmetry plane of the problem we only solve for one half of
the domain with appropriate symmetry conditions on the plane (y = 0).
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Figure 1: Velocity profile obtained by numerical simulations for a fluid flow rate )y =
1.79 10~ m?/s with a) the Coulomb friction rheology (dp/dx = —0.163) and b) the u(I)
rheology (dp/dx = —0.2).
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Figure 2: Comparison of the numerical results for the experimental 3D configuration using
Coulomb friction and p(]) friction rheology for a) the velocity profiles for both rheology at a
flow rate (); = le — 4 and b) the particle flux QI%D /¢o versus the fluid flow rate.

Figure 1 shows the mixture velocity profile (u™) in a cross section of the duct. The red thick
solid line represents the position of the “static granular bed”. The fluid and the mixture are
sheared in both z and y directions inducing an increase in the friction compared with the two-
dimensional case. Due to this complex shear the use of a three-dimensional model is needed.
This figure also shows the influence of the granular rheology (Coulomb or x(/)) on the shape
of the mobile granular layer for a given fluid flow rate (();) . In particular, we observe that a
greater longitudinal pressure gradient is needed to reach the same flow rate for the (1) rheology



than for the Coulomb one. The thickness of the flowing granular layer is thinner with the
p(I) rheology compared to the one predicted with a Coulomb rheology. This is due to the
increased frictional viscosity in the p(7) rheology therefore the driving fluid shear stress at the
bed interface is dissipated on a thinner layer in this latter case.

We have conducted a parametric study to analyse the influence of the driving pressure drop
on the particulate flow rate thanks to an Arc Length Continuation algorithm. We have validated
this algorithm by comparison with the analytical solution of Ouriemi et al. (2009a) for the
thickness of the mobile granular layer H,, — H,. and the particle flux (), in the 2D case (See
Chauchat et al. (2010b) for details). Figure (2a) shows the velocity profiles for a given flow rate
(Qf = le—4). In the p([]) case the vertical velocity gradient is very small in a rather thick layer
above the fixed bed compared with the Coulomb case. As a consequence, for a given flow rate
the particle flux predicted using a Coulomb rheology is greater than the one predicted using the
p(I) theology. Figure 2b illustrates the influence of the granular rheology on the particle flux
Q2" /. At a non-dimensionalised flow rate of Q; = 107" a decrease of approximately 65%
of the the 2D particle flux is observed with the y () rheology. This sensitivity of the particle
flux to the rheology is one of the important question that we would like to answer in the joint
theoretical, numerical, and experimental investigation presented in Pailha et al. (2011).
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