Necessary and sufficient condition for the existence of a Fréchet mean on the circle

Abstract : Let $(\S^1,d_{\S^1})$ be the unit circle in $\R^2$ endowed with the arclength distance. We give a sufficient and necessary condition for a general probability measure $\mu$ to admit a well defined Fréchet mean on $(\S^1,d_{\S^1})$. %This criterion allows to recover already known sufficient conditions of existence. We derive a new sufficient condition of existence $P(\alpha,\varphi)$ with no restriction on the support of the measure. Then, we study the convergence of the empirical Fréchet mean to the Fréchet mean and we give an algorithm to compute it.
Type de document :
Pré-publication, Document de travail
First submission : Advances in Applied Probability (AAP) on May 17th 2011 (ref. AP/13983). 2012


https://hal.archives-ouvertes.fr/hal-00620965
Contributeur : Benjamin Charlier <>
Soumis le : mardi 6 mars 2012 - 15:53:43
Dernière modification le : lundi 7 décembre 2015 - 14:16:50
Document(s) archivé(s) le : jeudi 7 juin 2012 - 02:26:19

Fichiers

MeanSphereESAIMrev.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00620965, version 2
  • ARXIV : 1109.1986

Collections

Citation

Benjamin Charlier. Necessary and sufficient condition for the existence of a Fréchet mean on the circle. First submission : Advances in Applied Probability (AAP) on May 17th 2011 (ref. AP/13983). 2012. <hal-00620965v2>

Exporter

Partager

Métriques

Consultations de
la notice

185

Téléchargements du document

73