N

N

The Design and Implementation of Real-time
Event-based Applications with RTSJ

Damien Masson, Serge Midonnet

» To cite this version:

Damien Masson, Serge Midonnet. The Design and Implementation of Real-time Event-based Appli-
cations with RTSJ. WPDRTS 2007, Mar 2007, Long Beach, Califonia, USA, United States. pp.1-8,
10.1109/TPDPS.2007.370340 . hal-00620336

HAL Id: hal-00620336
https://hal.science/hal-00620336
Submitted on 30 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00620336
https://hal.archives-ouvertes.fr

The Design and I mplementation of Real-time Event-based Applications with
RTSJ

Damien Masson and Serge Midonnet
Université de Marne la Vallée,
Institut Gaspard-Monge, Laboratoire d'informatique, UMRRS 8049,
77454 Marne la Vallée Cedex 2, France.
{dam en. nasson, serge. m donnet}@niv-mv.fr

Abstract to use them, and there is no appropriate schedulability test
to analyse them. Furthermore, the cost enforcement is an
This paper presents a framework to design real-time optional behaviour for an RTSJ compliant virtual machine,
event-based applications using Java. The Real-Time Specand without this feature, PGP are useless.
ification for Java (RTSJ) is well designed for hard periodic ~ That is why we propose in this paper a framework to
real-time systems. Though it also proposes classes to modedlesign real-time event-based applications using RTSJ.
asynchronous events and deal with sporadic or aperiodic We present in Section 2 the aperiodic servers mecha-
tasks, it remains insufficient. The literature proposes the nisms and we detail the Polling Server and the Deferrable
use of periodic servers called task servers to handle non-Server policies. Section 3 describes our framework to allow
periodic traffics in real-time systems. Unfortunately,réhe the implementation of these servers with RTSJ. Then we
is no support for task servers in RTSJ. In order to fix this explain our implementation of the Polling Server and the
lack, we propose an RTSJ extension model. To validate ouDeferrable Server policies using this framework in Section
design, we adapt and implement two policies: the polling 4. In order to evaluate the efficiency of our implementa-
server and the deferrable server policies. To show how effi-tions, we developed a simulator that we present in Section
cient these policies are, we compare implementation result 5. We give the results of these executions and simulations
and results obtained with a discrete-event-based simulato in Section 6, and discuss of future improvements in Section
7.

1 Introduction 2 Tasksservers. presentation

In order to bring to the real-time community the advan- During years, the assumption was made that real-time
tages of the Java language, a Java Specification Requeslystems have to be only composed of periodic-tasks sets.
(JSR-01) was proposed and accepted by the Java Commurhjs assumption comes from the feasibility analysis theo-
nity Process (JCP) in 1999. This lead to the Real-Time ries. How can we compute response times of tasks which
Specification for Java (RTSJ), which version 1.0 was re- ye cannot predict the arrival of ? This is a too strong re-
leased in November 2001 and first implementation in Jan-striction since many of the real world phenomena are event-
uary 2002. Today, the specification is still evolving and pgged.
commercial implementations have come out (Aicas Jamai- onpe solution is to set up a mechanism which allows non-
caVM or more recently Sun Mackinac). periodic traffic to be served and analysed without changing

If this specification is well designed for periodic real- he feasibility conditions of a periodic task.
time systems, the support for non-periodic servicing with e easjest way to achieve this is to schedule all non-
temporal constraints is not fully satisfying. In order te as perigdic tasks at a lower priority (we assume that the tasks
sign time and resource constraints to a group of threads, theyre scheduled using a preemptive fixed priority policy). If
RTSJ proposes the use of "Processing Group Parametersj js very simple to implement, it does not offer satisfying
(PGP). Butas pointed in [1], no guidelines are given on how regponse times for non-periodic tasks, especially if the pe
riodic traffic is important. That is why periodic task server
1-4244-0910-1/07/$20.0@)2007 |EEE. are introduced by Lehoczky et al. in [8].

A periodic task server is a periodic task, for which clas- 3 Tasks serverswith Java: design
sical response time determination and admission control

methods are applicable (W|th or without mOdificationS). The RTSJ does not Support any particu|ar task server
This particular task is in charge of servicing the non- policy. It proposes two classedsyncEvent and
periodic traffic with a limited capacity. AsyncEvent Handl er to model respectively an asyn-
Several types of task server can be found in the literature.chronous event and its handler.
They differ by the way the capacity is managed. We cancite The only way to include the handler in the feasibility
the Polling Serverpolicy (P9, the Deferrable Servepol- process s to treat it as an independent task, and that isnplie
icy (D), thePriority Exchangepolicy (PE) first described to know at least its worst-case occurring frequency.
by Lehoczky et al. in [8] and developed in [11, 5, 9], the The RTSJ also provides the so called "Processing Group
Sporadic Servepolicy (SS) presented in [10] and téack parameters” (PGP), which allow programmer to assign re-
Stealingtechniques introduced in [7]. sources to a group of tasks. A PGP object is like a
Depending on the server policy, worst-case responsere| easePar amet er s which is shared between several
time for the aperiodic tasks can or cannot be computediasks. More specifically, PGP hasast field which de-
on-line when they occur. We have to separate periodic-fines a time budget for its associated task set. This bud-

tasks feasibility analysis - an offline process which can get is replenished periodically, since PGP has also a field
give guarantees on periodic-tasks (and servers) execution per j od.

and aperiodic-tasks feasibility analysis - an on-line pssc This mechanism provides a way to set up a task server
which can give guarantees at run-time on the aperiodic tasksat a logical level. Unfortunately it does not take into ac-
execution. count any server policy. Moreover, as pointed in [1], it is

far too much permissive and it does not provide appropriate
2.1 Polling Server Principles schedulability analysis techniques.

Finally, since cost enforcementis an optional feature for
The PSis activated every period with its full capacity. an RTSJ-compliant virtual Java machine, PGP can have no
If there are aperiodic tasks pending, it serves them with re-effect at all. This is the case with the Timesys Reference
spect to its capacity limits and then loses its remaining ca- Implementation of the specification (RI).

pacity until its next activation. This is why we propose an RTSJ extension we can use
Its most significant advantage is that it can be included to design and implement event based applications using
in the feasibility analysis like any periodic task. task servers.

Assuming the server is the highest-priority task in the
system, a feasibility test for the aperiodic tasks can be per
formed on-line. If the server is not the highest prioritykias
the complexity of the analysis becomes too high to be per- | !
formed on-line, and since it cannot be performed off-line gegy ¢+ F } ””” 1

‘ Scheduler ‘ ‘ AsyncEvent ‘ ‘ Schedulable :

because of the unpredictability of the arrival model of ape- [
riodics, it cannot be performed at all.

ServableAsyncEvent

ServableAsyncEventHandler ‘ ‘ TaskServer ‘

2.2 Deferrable Server Principles

TheDSis activated as soon as an aperiodic event occurs

(if it has enough capacity). It recovers its capacity every Deferrable— ‘
period. server
The DS algorithm offers better average response-times
than thePS but since it can be activated with a delay, the Figure 1. Classes to implement the server
feasibility analysis for the periodic tasks must be modified policies
as described in [11, 5].
As for the PS algorithm, complexity of the feasibility
analysis for the aperiodics requires that the server runs at Qur framework (Task Server Framework) is composed
the highest-priority level in the system to guarantee the of six new classes:
response times of aperiodics.

PollingServer

e Servabl eAsyncEvent (SAE)
An exhaustive state of the art on this topic can be found This AsyncEvent (AE) subclass represents a serv-
in [2, chapter 5]. able event. Like a normal AE, a SAE can be bound

to one or several standard handlers (i.Async- still possible to compute response times in a system with a

Event Handl er) using theaddHandl| er (Async- Def f er abl e Ser ver, but the algorithm has to be modi-
Event Handl er handl er) method. We over- fied, and this is not possible in the centralysed RTSJ current
load it with the methodddHandl er (Ser vabl e- approach. Anyway, this is not the matter of this paper.
AsyncEvent Handl er handl er) and we rede-
fine the methodi re() . 4 Tasksserverswith Java: Polling Server and

e Servabl eAsyncEvent Handl er (SAEH) Deferrable Server policies
This class does not extemdsyncEvent Handl er
(AEH), nor implemeniSchedul abl e. It embodies The main issues during the conception of a task server

the code which can be associated with an SAE. It can are to guarantee the respect of its capacity and to ensure the
be bound with one ore many SAE but associated with capacity enforcement behaviour.

a unigueTaskSer ver , and when one of the event it For the first problem, we used thé ned class. This
is bound with is released, it is added to the pending- class allows us to execute theun() method of an
events list of this server. I nterrupti bl e object for a given maximum amount
of time. If this maximum is reached before the&n()
o TaskServer _ method completes, thasynchr ousl yI nt er r upt ed-
This abstract class represents a task server. It 'mple'Except i on is raised and the nt err upt Act i on()
mentsSchedul abl e and extendSchedul er. It method is called.

i,s aschedulable ,Ot,)jeCt since itis in.fact a periodic real- To control the server capacity, we make the assumption
time thread and it is a scheduler since it has to sched-y, 4+ the server cannot be preempted. Then, we just have to
ule SAEHSs. It has a methodervabl eEvent- 054 e the time passed in the run method of the interrupt-
Rel eased() which takes an AEH. This method is iy and decrease the remaining capacity accordingly.
called by the AH i r e() method. Moreover, we are not able to resume a generic thread
(even if it is explicitly interruptible), this is why a haretl
cannot be executed on multiple instances of the server. The
system designer is in charge to split the treatment of each

e Pol | i ngTaskSer ver
A subclass ofaskSer ver which implements th®S

olicy. = ' !
policey aperiodic event on multiple handlers, each one with a cost
e Def errabl eTaskSer ver less than or equal to the server capacity (in fact less than
A subclass ofTaskSer ver which implements the because of the server’s overhead).
DSpolicy. So, our implementations of task servers policies are lim-

ited with the following constraints:
e TaskServer Paraneters

A subclass oRel easePar anet er s to construct a e thewor st case execution time (wcet) of
TaskSer ver . a non-periodic event treatment has to be less or equal
to the server capacity;
Figure 1 shows dependencies between classes in the Task
Server Framework and standard RTSJ classes. ¢ the server has to be the highest-priority task in the sys-
To summarize the mechanism, when an SAE is fired, tem.
the servabl eEvent Rel eased() methods of the
bound servers are called for each of its SAEHs. This 4.1 Polling Servicing
allows developers to write different behaviours for diffiet
task server policies: the handlers can be scheduled in a Our class Pol | i ngTaskServer encapsulate a
FIFO order, or any other desired order, depending on theReal t i meThr ead with Peri odi cPar anet ers. The

implemented policy. run() method of the server is delegated to this periodic
real-time thread. When an asynchronous servable event is
This design also allows programmers to use dlael- fired, its handler is added in a FIFO list. At each periodic

Tof easi bil i ty() methods on &askSer ver since activation, a methocchooseNext Event () is called.

it implementsSchedul abl e. This approach is compli- This method returns aBAEH or nul | if the server is not
ant with the RTSJ general design, but this is not suffi- able to serve any pending event with its remaining capacity.
cient. In order to provide a consistent design for the re- While the chosen eventis notl | , it is executed (with the
sponse times analysis, each schedulable object should havenethoddol nt er rupt i bl e() of Ti ned), the capacity
aget I nterference() method, which would be called is decreased and thehooseNext Event () method is

by theSchedul er feasibility methods. For example, itis called again.

s

l

€
1
|

|
|

|
|
/)

T} [

This method return the first handler in the list which has

b
PS |

Figure 2. Scenario 1

¥

A\

g

Figure 3. Scenario 2

Scenario 2

a cost lower than the remaining capacity. This implies that Look at Figure 3,¢; ande, are fired respectively at time
if there is two handlers in the list, if the first - correspond- 2 and 4. We can see that does not begin its execution

ing to the event released first - has a cost greater than theat time 8 because the remaining capacity of the server is 1,
remaining capacity and if the second has a cost lesser thafvhich is less than the cost bf.

the remaining capacity, the event released last is senstd fir

Examples

| | Priority | Cost/ capacity] Period |

PS High 3 6
71 | Medium 2 6
To Low 1 6
h1 2
ho 2

Table 1. Tasks’ Properties

With the realPSpolicy, ho, should begin its execution at
time 8, suspend it at time 9 and resume it at time 12.

Scenario 3

Without changing the code @f,, we declare it with a cost
of 1. Then, we firee; andey respectively at time 2 and
4. Figure 4 shows thalts begins its execution at time 8
because its cost parameter is set to 1, that is the remaining
capacity, and is interrupted at time 9 because the server has
consumed all its capacity and becaéigenas not finished.

With the real policy,h, should resume its execution at
time 12, but it is not possible with Java.

In the following examples, the task set is composed of 4.2 Deferrable Server policy

two real-time periodic tasksy; and >, and one polling
serverPS running at the highest priority. These three pe-

Unlike thePS theDScan serve an aperiodic task at any

riodic threads are synchronously started. There are twotime as it has enough capacity. So then() method can

SAEHS,h, andhs, respectively bound to two SAEs and
eo. Table 1 shows the properties of these tasks.

Scenario 1

no longer be delegated to a periodic real-time thread. In-
stead, it is delegated to an AEH bound to a specific AE we
call wakeUp. Each time an aperiodic event occurs, if the
server is not already running, this event is fired. Moreover,
we add a periodic timer which finsakeUp if the server is
not already running.

The second difference between 8and theDSis that

Look at Figure 2¢;, ande, are fired respectively at time O an event can begin its execution at the end of a server in-
and 6. Since the server has its entire capacity at these twastance (for thd®S we made the assumption that the capac-
instantsh; andhs are immediately processed by the server. ity is lesser than the period). So if the remaining capadity o

< AsynchrouslyInterruptException 6 R esu | ts

l é |
§ é ! 3 In order to validate our design, we implement Bf@and
! theDSpolicy in Java and in an event-based simulator. We
| randomly generate task systems and we compare the sim-
! ulations of these systems with their executions. The exe-
cutions was performed using the reference implementation
(RI) of the RTSJ on a 2 GHz processor INTEL Pentium 4

H We develop a packagefr.um v.random

Gener at or with a classr andonByst emCGener at or
which can take the following parameters:

E 77 | machine with 500 MB of memory and a rtlinux-free real-
1‘ | o o ! | | time kernel.

| 6.1 Real-Time Systems Generation
JIWATHHWAAW

Figure 4. Scenario 3
e taskDensity, the average number of aperiodic events
per server period,

the server is 1 when it has to serve an event with a costof 2, ® averageCost, the average cost of aperiodic events,
if the next refill of the capacity is in a time lesser than 1, the
event can be served. TkdhooseNext Event () method
now compare the current date with the next period: if the
current date plus the chosen event cost is bigger than the e serverCapacity, the server capacity,
next period of the server, the time budget associated with

the event is equal to the remaining capacity plus the total ServerPeriod, the server period,
capacity of the server.

e stdDeviation, the standard deviation of the aperiodic-
events’ costs

e nbGeneration, the desired number of generated sys-

Finally, as for thePS it has to be noted that the imple- tem,
mented policy has not the exact behaviour of the
ferrable Servedescribed in literature. e seed, the random seed, in order to generate the same

systems on multiple platforms.

5 RTSS: areal-time systems simulator We generate six sets of ten systems. The first set is de-
fined by the tuple(1,3,0,4,6,10,1983). This tuple per-

mits to generate ten systems where the average number of
aperiodic event per period iswe, the costs of the events
arethree time units (u) (the average costs atéree and

the standard deviations atero), the servers capacities are

We develop a real-time event-based system simulator.
This is a Java program which can simulate the execution
of a real-time system and display a temporal diagram of _) .
the simulated execution. For now, three scheduling poli- /24" t« and their periods areiz tu.

cies are implemented: Preemptive Fixed Priority, EDF and In order to tes_t the scalability of the system, we generate
D-OVER. two other sets with the same parameters, except for the av-

) o o erage number of aperiodics per instance: we generate one
This tool is distributed under the General Public Licence gt with an average numberfafo and one with an average
GNU (GPL), and can be found on the following web page: number ofthree.
http://igmuniv-mv.fr/~msson/ RTSS Then we re-generate the same three sets but this time
with standard deviations on the aperiodic events costs of
In order to compare with our task servers executions, we two.
add the polling and the deferrable server policies to RTSS.
The simulated policies are the ones described in literature So we simulate th®Sand theDS algorithms on these
this is not a simulation of our implementations. Moreover, sixty systems and we execute them with our modifr<l
it does not take into account the servers overhead, nor theandDSimplementation. We limit our simulations and exe-
execution overhead. cutions on ten server periods.

(L0) [(2,0) [3,0) (L.0) [(2.0) [3,0)
AART | 8.86 | 17.52| 23.76 AART | 12.24| 20.80| 25.05
AIR 0.00 | 0.00 | 0.00 AIR 0.01 | 0.01 | 0.00
ASR | 0.89 | 0.63 | 0.43 ASR | 0.75 | 0.44 | 0.30
1,2) [2.2 | 3,2) (1,2) [(2.2) | (3.2)
AART | 10.24| 20.58| 25.50 AART | 6.55 | 7.15 | 12.54
AIR 0.00 | 0.00 | 0.00 AIR 0.17 | 0.24 | 0.29
ASR | 085 | 0.50 | 0.35 ASR | 048 | 0.34 | 0.30
Table 2. Measures on Polling Server simula- Table 3. Measures on Polling Server execu-
tions tions

We measure the average response time of aperiodicsis reduced in the case of non-homogeneous task sets. In-
the interrupted-aperiodics ratio and the served-apersodi deed, our server is able to execute a task released later if
ratio for each execution and simulation. Then we com- jts cost is lesser than the capacity. For example, if theteven
pute for each set the average of the average-responsegueue contains two tasks andr,, with ¢; = 3ande, = 1,
times (AART), the average of the interrupted-aperiodics if the remaining capacity of the serverdsthenr, can be
ratios (A/R) and the average of the served-aperiodics ra- executed instantaneously, even if it has been released afte
tios (ASR). .

The AART give us a qualitative metric: the shorter the Thjs server optimisation has an another consequence: the
response times are, the more efficient the policy is. Theesponse times of events with low cost are improved. In the
AIR permit to estimate the overhead of the task server, same time, there is more unserved task during the execu-
since an event can be interrupted only if the server has theotjgn than during the simulation. In addition of the events
retically enough resources to serve the event, but not énoug which cannot be scheduled during the first ten periods of the
in practice. Moreover, they can be used to adjust the acceptseryer, there is the interrupted tasks, i.e. the ones whidh h
ability threshold on the aperiodics’ costs. Finally, the overrun their costs due to the server’s overhead. These in-
are usefull to estimate the efficiency lost between our im- terrypted tasks are mostly the ones with greater costs Thes
plementations and the theoritical algorithms of B®/PS o facts lead to a far better average response time of served

policies. events in the execution than in the simulation. The lesser
the costs are, the better the response times will be, as the
6.2 Polling Server results chances to be not interrupted.
It has to be noted that the average interrupt ratio is very
6.21 Simulations low for the homogeneous task sets. This is due to a simple

The measures on oS simulations can be found on ta- fact: the server can only serve one event per period, since

ble 2. We can observe that the response times are a littidS capacity is4 and the costs of the event are all So
greater when the event costs are not homogeneous. This i2¢h task has an additional time budget obefore being
partly due to a bad-design issues on our costs generationdnterrupted.

if a cost lower than 0.1ms is generated, we set it to 0.1ms.

So the average cost has no longer the correct value. Eve$.3 Deferrable Server

without this drawback, it can be explained by the fact that

the highest cost a task has, the highest are the chances th&t3.1 Simulations

the the server serve it in more than one instance, increasing) _
its response time because of the server idle times. Our simulations measures on tBS are presented on ta-

ble 4. We can make the same observation than foPtae

the response times are a bit greater with the non homoge-
neous task set than with the homogeneous ones. Reasons
Table 3 presents our Measures on the executions of ourare the same as in the previous case, increased because the
PSimplementation. We have first to comment the average deferrable server has a served ratio more important than the
served ratios. They are lesser than the simulation ones. Thi polling. This is due to its ability to serve each event as soon

is due to our not-resumable thread limitation: even if the as it is released: the average response times are better than
server still has capacity, it has to delay the executionsKta the polling ones and the events released during its tenth pe-
with a cost greater than its remaining capacity. This impact riod can be served if there is no other pending events.

6.2.2 Executions

(1,0) | (2,0) | (3,0) the response times of the events. That is why we had not
AART | 5.30 | 13.44| 19.83 done it.
AIR 0.00 | 0.00 | 0.00 We can avoid some interruptions in delaying the ex-
ASR | 0.94 | 0.67 | 0.46 ecution of events handlers with a cost too close of the
(1,2) | (2,2) | (3,2) remaining capacity.
AART | 6.36 | 17.40| 21.71
AIR 0.00 | 0.00 | 0.00 The over point we want to address is the on-line com-
ASR | 094 | 056 | 0.38 putation of event response times. Since the servers have to
execute at the highest priority, a response time computatio
Table 4. Measures on Deferrable Server sim- can reasonably be performed on-line at the arrival time of
ulations the event.

With the PSstandard algorithm, assuming that the tasks
are served in ascending deadline order and thaPthes
running at the highest priority, the response tifg of a
task J, - which is released at time, - can be computed
on-line (at timer,) with the following equations:

(1,0) | (2,0) | (3,0)
AART | 6.90 | 1455 20.58
AIR | 0.00 | 0.00 | 0.00
ASR | 0.84 | 0.56 | 0.39

(1L,2) | (2,2) | (3,2) t + Cape(t, dpi) — ra if Cape(t,d) < cs(t)
AART | 8.02 | 13.47| 16.91 Ra = {(Fk 4 GR)Ts + Ry — 1o else.
AIR | 0.14 | 0.26 | 0.27

()

ASR | 0.66 | 0.43 | 0.30 Fo— {Cape(t,tgﬁ) - CS(t)J @

Table 5. Measures on Deferrable Server exe- o - [t .
cutions b [T_J ®)
R = Cape(t,dy) — cs(t) — FrCs 4

where Cop. (T, di) is the sum of the costs of the tasks
6.3.2 Executions with a deadline smaller thas,, F), the number of server
instances needed to serve,.(t,d;), Gi the instance
which begins to servé€',,. (¢, di,) and Ry, the time needed
in the last instance to finish to ser@g,. (¢, di).

Finally, the measures on the executions of B imple-

mentation can be found on table 5. Due to the ability of
the server to serve the lower cost events in advance if their
capacity is reduced and due to the lower served ratio, the gt our implementation suffers of some limitations:

response times of the execution are lower than the ones ofce 5 Java thread. even real-time. is not resumable. our

the simulation for the non homogeneous task set§. We.carpSOr“y begins to serve a task if it has enough capacity to
note that the served ratios are very close to the simulationsnish to serve it.

ones, that validates ourimplementations of task servees. Taking into account these limitations, we can formulate
have to keep in mind that the simulations does not take into, response tim&, of an aperiodic event, released at

account the execution overhead. timer, as:

7 FutureWorksand I mprovements Ry = (1Ts + Cpo + Co) — 14 (5)

wherel, is the instance of the server whefg handler

The performance of our implementations can be im- will be execute in(,,, the cumulative cost of the previous
proved. First, we have to reduce the average interrupted-handlers scheduled in the same instance@nthe cost of
aperiodics ratio (AIR). An interruption can have two dif- J,.
ferent reasons: the task overruns its worst case execution To easily computd, andC,,, we propose a minor mod-
time (WCET) - we cannot do anything - or the remaining ification on our task servers implementations. Instead of pu
capacity is too close to the cost of the event. Indeed, even ifthe events handlers in a simple FIFO list, we can set up a
the server has to be the highest priority task in the system,structure with a list of lists of handlers. Each list only eon
there is also more highest priority tasks: the timers chirge tains a number of handlers which can be served in one single
to fire the asynchronous events. We could decide that thesénstance of the server. In addition, we can maintain another
timers have lower priority, but, in the case of tR& this list of Rel at i veTi mes which represents the cumulative
means that their executions will also be delayed until the costs of each handlers list. NoW, can be compute with
next server period. Moreover, we could no longer measurethe position in the list of lists of handlers whefghas been

added and,,, is the corresponding cost in the list of costs. References

Of course, this proposition will increase the time requeste

to register the release of a servable asynchronous event, bu [1] A. Burns and A. J. Wellings. Processing group parameters

permits to compute in a constant time the response time of
the event, and possibly to cancel its execution.

8 Reated Works

The RTSJ is still subject to a lot of research, on the spec-
ification itself (JSR-282) as well as on specific extensions
like the Distributed Real-time Specification (JSR-50) and
the Safety Critical Java Technology (JSR-302). We can cite
a recent publication of the JSR 282 in which the addition
of several methods in thieeal t i meThr ead class is sug-
gested [6]. Other authors propose the use of model check-
ing technics in order to highlight some issues in the RTSJ
cost monitoring and enforcement model [3] and to analyse
the behaviour for non-periodic real-time threads in the RTS
[4]. In this paper, we have described the limitations of the
RTSJ in regard to the support for aperiodic tasks.

9 Conclusions

The RTSJ does not support any aperiodic-task server
mechanism. In this paper, we have proposed a framework
to fill in this lack. In order to illustrate the use of this frem
work, we have adapted two task server policies: the Polling
Server and the Deferrable Server ones. To validate our im-
plementations, we also have implemented a simulator and
a real-time system generator. We have compared the ex-
ecutions of6 sets of10 real-time systems with their sim-
ulations. We have observed better response times in our
executions with served ratios very close to the ones from
the simulations. There is still an important interrupteskta
ratio, but we have presented its causes and proposed a solu-
tion which we still have to test. Moreover, the simulations
do not take into account the server overhead nor the costs of
the events’ release.

Finally, we have showed that we can easily implement
a feasibility test at run-time for the aperiodic events hwit

(2]

—

3]

—_

4]

(5]

(6]

(7]

(8]

(9]

[10]

a constant complexity. The implementation of this test, its [11]

integration in the RTSJ design and its confrontation with th
response-times measured during the executions will make
the object of our future works on this topic.

the real-time specification for java. ®n the Move to Mean-
ingfull Internet Systems 2003: Workshop on Java Technolo-
gies for Real-Time and Embedded Systevotume LNCS
2889, pages 360—370. Springer, 2003.

G. C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms And Applicatipwsl-
ume 23 ofReal-Time Systems SerieSpringer Verlag, sec-
ond edition, October 2004.

O. M. dos Santos and A. Wellings. Cost monitoring and en-
forcement in the real-time specification for java - a formal
evaluation. INRTSS '05: Proceedings of the 26th IEEE In-
ternational Real-Time Systems Symposipages 177-186,
Washington, DC, USA, 2005. IEEE Computer Society.

0. M. dos Santos and A. Wellings. Formal analysis of aperi
odic and sporadic real-time threads in the rtsgTHRES '06:
Proceedings of the 4th international workshop on Java tech-
nologies for real-time and embedded systepages 10-19,
Paris, France, 2006. ACM Press.

T. M. Ghazalie and T. P. Baker. Aperiodic servers in a dead
line scheduling environmentReal-Time Syst9(1):31-67,
1995.

JSR-282 Expert Group. Sl 1.4: Supporting Sporadic and
Aperiodic Releases in Real-Time Threatis.tp: //j cp.
org/en/jsr/detail ?i d=282,2006.

J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm
for scheduling soft-aperiodic tasks fixed priority preemwgpt
systems. Iproceedings of the 13th IEEE Real-Time Systems
Symposiumpages 110-123, Phoenix, Arizona, December
1992.

J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced-ape
odic responsiveness in hard real-time environmentiE HE
Real-Time Systems Symposiymages 110-123, San jose,
California, December 1987. IEEE Computer Society.

B. Sprunt, J. P. Lehoczky, and L. Sha. Exploiting unused
periodic time for aperiodic service using the extended pri-
ority exchange algorithm. IfReal-Time Systems Sympo-
sium, 1988., Proceedingsnumber 0-8186-4894-5, pages
251-258, Huntsville, AL, USA, December 1988.

B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scihed
ing for hard real-time systemsReal-Time Systems: The
International Journal of Time-Critical Computing Systems
1:27-60, 1989.

J. K. Strosnider, J. P. Lehoczky, and L. Sha. The de-
ferrable server algorithm for enhanced aperiodic respensi
ness in hard real-time environment&EE Trans. Comput.
44(1):73-91, 1995.

