N

N
N

HAL

open science

Cyclic languages and strongly cyclic languages

Marie-Pierre Béal, Olivier Carton, Christophe Reutenauer

» To cite this version:

Marie-Pierre Béal, Olivier Carton, Christophe Reutenauer. Cyclic languages and strongly cyclic lan-
guages. International Symposium on Theoretical Aspects of Computer Science (STACS 96), 1996,

Grenoble, France. pp.49-59. hal-00619852

HAL Id: hal-00619852
https://hal.science/hal-00619852
Submitted on 6 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00619852
https://hal.archives-ouvertes.fr

Cyclic languages and
Strongly cyclic languages

Marie-Pierre Béal®, Olivier Carton? and Christophe Reutenauer?
L LITP - Institut Blaise Pascal, Université Denis Diderot
2 Place Jussieu 75251 Paris cedex 05. beal@litp.ibp.fr
2 Institut Gaspard Monge, Université de Marne-la-Vallée
93166 Noisy le Grand cedex. carton@univ-mlv.fr
3 Mathématiques, Université du Québec & Montréal
C.P. 8888, succ. Centre-Ville, Montréal Canada H3C 3P8.

christo@catalan.math.uqam.ca

Abstract. We prove that cyclic languages are the boolean closure of
languages called strongly cyclic languages. The result is used to give
another proof of the rationality of the zeta function of rational cyclic
languages.

1 Introduction

Cyclic languages and strongly cyclic languages are two classes of languages of
finite words over a finite alphabet. A cyclic language is conjugation-closed and for
any two words having a power in common, if one of them is in the language, then
so is the other. A strongly cyclic language is the set of words stabilizing a subset
of the set of states of a finite deterministic automaton, the subset stabilized
depending on the word stabilizing it. One says that the language stabilizes the
automaton. A strongly cyclic language is rational.

We prove that a rational cyclic language is a boolean combination of strongly
cyclic languages. More precisely, each rational cyclic language can be written as
a chain of strongly cyclic languages. This result allows us to extend the com-
putation of the zeta function (and generalized zeta function) of strongly cyclic
languages done in [Béa95] to the class of rational cyclic languages. The zeta
function of a formal language L is ((L) = exp(}_ an%), where a,, is the number
of words of length n in L. The motivations of this definition and the connections
with algebraic geometry and symbolic dynamics are discussed in [BR90]. The
zeta function of a strongly cyclic language L is equal to the zeta function of
the sofic system defined by the finite automaton stabilized by L. The rationality
and computability of the zeta function of a sofic system have been established in
[Bow78] and [ManT71]. The formula of computation given in [Bow78] are proved
in [Béa95] by the use of a construction on finite automata called external power.
The rationality of the zeta function of a rational cyclic language has been es-
tablished in [BR90]. The result we give here leads to another proof and to a
different computation.



We assume that the reader knows the basics of formal languages (see [Eil72]).
We also assume that the reader is familiar with the elementary notions of semi-
group theory. For example, notions like syntactic monoid, Green relations, regu-
lar D-classes, minimal ideal and 0-minimal ideal are supposed to be known. We
refer to [Lal79] and [Pin86] for a presentation of this subject.

The paper is organized as follows. Section 2 and 3 give the basic properties
of cyclic languages and strongly cyclic languages. The chain-decomposition of a
rational cyclic language in strongly cyclic languages is established in section 4.
The computation of the zeta function and the generalized zeta function is done
in the last section.

2 Cyeclic languages

In this section, we introduce cyclic languages and give some basic properties. In
the following, we denote by A a finite alphabet. In the sequel, M will always de-
note a finite monoid. Every element s of M has a power which is an idempotent.
We denote by s“ this idempotent.

Definition 1. A language L of A* is said to be cyclic if it satisfies

Yue A*, Vn >0 ueLl u”€eL
Yu,v € A* w € L& vu €L

A language is cyclic if it is closed under conjugation, power and root. If L is a
submonoid of A* which is cyclic, it is then pure [BP84].

Ezample 1. If A = {a,b}, the language L = A*aA* = A* — b* of words having
at least one a is cyclic.

Ezample 2. The language

L ={a’b™a™b™ ...a™b™a |n; >0and p+qg=n1} U
{bPa"b™ a2 .. .a™b? | n; > 0 and p+ g = ni}

is cyclic but not rational.

We will now only consider rational cyclic languages. Rational cyclic languages
have the following straightforward characterization in terms of finite monoids.

Proposition2. Let L C A* be a rational language. Let ¢ : A*—»M be a mor-
phism from A* onto a monoid M such that L = ¢~ '(P). The language L is
cyclic if and only if

Vse M, ¥n >0 SEP & s"eP
Vs, t € M steP& tse P

From the previous characterization, we deduce some useful facts about the
structure of the image of a rational cyclic language onto a finite monoid recog-
nizing this language. We also deduce a property of the syntactic monoid of a
cyclic language.



Corollary 3. Let ¢ : A*—»M be a morphism from A* onto a monoid M such
that L = ¢~ 1(P). Let H a regular H-class of M. One has H C P or HNP = {).

Proof. Let us suppose hy € H belongs to P. For any he € H, we have h{ =
hs = e where e is the idempotent of H. We then have h{ = hy € P and hy € P.

Corollary 4. Let ¢ : A*—»M be a morphism from A* onto a monoid M such
that L = ¢~ '(P). Let Hy and H» be two regular H-classes of a reqular D-class.
If one has H, C P, one also has Hy C P.

Proof. Let ey and es be the respective idempotents of H; and Hs. As two idem-
potents of a same D-class are conjugated (see [Pin86]), there are two elements
z1 and x5 of M such that z1z2 = e; and z2x1 = ey. If Hi C P, we have
e1 = 122 € P and then es = zox; € P and the H-class Hy satisfies Hy C P by
the previous corollary.

Corollary 5. The syntactic monoid of a cyclic language has a zero.

Proof. Let M be the syntactic monoid of a rational cyclic language and let D the
minimal ideal of M. Then D is a completely regular D-class. By the previous
corollary, we have D C P or DN P = (. Let s be an element of D. For any
x,y € M, we have xsy € D because D is the minimal ideal of M. If we have
D C P, the contexts of s are M x M. If we have D N P = (), the contexts of s
are ) x (. In both cases, all the elements of D are equivalent for the Nerode
congruence, and D has only one element. The syntactic monoid of L has then a
7€r0.

3 Strongly cyclic languages

We now define the notion of a strongly cyclic language.

Definition 6. Let A = (Q, A, E) be a deterministic finite automaton where @
is the set of states and E the set of transitions. We say that a word w stabilizes
a subset P C (Q of states if we have P.w = P. This means

Vp € P pw € P
Ve PIpe P pw=yp

We denote by Stab(A) the set of the words w such that w stabilizes a sub-
set P of states in the automaton A. It should be noticed that in this definition
the subset P of states stabilized by w may depend on w. We point out that
the empty word e stabilizes the set @) and therefore belongs to Stab(A) for any
automaton A. We say that a language L is strongly cyclic if there is an automa-
ton A such that L = Stab(A). In this case, we say that the language L stabilizes
the automaton A. The terminology is justified since strongly cyclic languages are
cyclic. It could be proved directly but we shall obtain this fact as a consequence
of the characterization of strongly cyclic languages.
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Fig. 1. Automata 4; and A

Ezample 3. The languages (b + aa)* 4+ (ab*a)* + a* and b* are respectively the
strongly cyclic languages associated with the automata A; and As of Figure 1.

The following result gives a characterization of the words w stabilizing a
subset of states in an automaton.

Proposition7. Let A = (Q, A, E) be a deterministic finite automaton. A word w
stabilizes a subset P of states in A if and only if there is some state q of A such
that for any integer n, the transition q.w™ exists.

Proof. Suppose first that the word w stabilizes the subset P of states. By defi-
nition, for any state p € P, the transition p.w"™ exists.

Conversely, suppose all the transitions g.w™ exist for some state ¢ of A. Since
the automaton is finite, there are two integers I < m such that g.w' = q.w™. Let
P be the set {g.w’ || <i < m}. It is straightforward that the word w stabilizes
the subset P.

The following theorem gives a characterization of the strongly cyclic lan-
guages.

Theorem 8. Let L be a rational language different from A*. The following con-
ditions are equivalent.

1. The language L is strongly cyclic.

2. There is a morphism o from A* onto a monoid M having a zero such that
L= ' ({s€ M| s #0}).

3. The syntactic monoid M (L) of L has a zero and the image of L in M (L) is
{se M |s¥ #0}.

Proof. Suppose first that the language stabilizes the automaton A. Let M the
transition monoid of A and ¢ the canonical morphism from A* onto M. We
show then that this monoid has a zero and that the image of L is equal to
{s € M | s¥ # 0}. Let w be a word not belonging to L. By Proposition 7, for
each ¢ € @, there is an integer n, such that the transition g.w™s does not exist.
For n greater than every n,, the transitions ¢q.w™ do not exist for any ¢q. The
transition induced by w™ is then the empty transition and the element ¢(w™)



is a zero of the monoid M. This means that ¢(w)“ = 0. On the contrary, for
any word w € L, the transition induced by w™ is not the empty transition since
there is a state ¢ € @ such that the transition g.w™ exists. This proves that
o(w)*¥ # 0. We have then proved that L is equal to p~1({s € M | s* # 0})

Suppose now there is a morphism ¢ from A* onto a monoid N having a zero
such that L = o 1({t € N | ¥ # 0}). Since the morphism is onto, the syntactic
monoid M of L is a quotient of IV: there is morphism ¢ : N—»M from N onto M.
The image ¢(0) of the zero of N is then a zero of M. Since the zero of N does not
belong to the image of L, the zero of M does not belong to the image of L. Let ¢
a element of N such that t* = 0. We have ¢ (t)¥ = ¢(t*) = 0. On the contrary,
if t“ # 0, the element t“ belongs to the image of L, and so does 1(t*). This
implies ¢(t*) # 0. Finally, we have {t € N | t* #0} = ¢ 1({s € M | s* #0}).

Suppose that the syntactic monoid M of L has a zero and that the image
of Lin M is {s € M | s¥ # 0}. We denote by ¢ the canonical morphism from
A* onto M. We build the following deterministic automaton A4 = (Q, A, E). The
set of states of A is the set @ = M — {0} of the non-zero elements of M. The
transition g.a is g.a = gp(a) if gp(a) # 0 and does not exist otherwise. It can be
easily checked that a transition q.w is g.w = qp(w) if gp(w) # 0 and does not
exist otherwise. We show now that the language L stabilizes the automaton A.
Let w a word in L. For ¢ = ¢(w), the transition g.w™ is g.w" = @(w)"T! and
exists since p(w)™! # 0. On the contrary, for a word w not in L, there is an
integer m such that ¢(w)" = 0. The transition g.w™ does not exist for any g.
By the previous Proposition, the language L stabilizes the automaton L. This
finishes the proof.

Corollary 9. The previous characterization shows that strongly cyclic languages
are cyclic.

Fig. 2. Structure of the syntactic monoid of L.

The previous theorem can be used to prove that a given language is not
strongly cyclic. Without this characterisation, such results are sometimes hard
to obtain.

Example 4. The syntactic monoid of the language L = A*aA* is the two elements
monoid M = {b = 1,a = 0}. The D-class structure of M is shown in Figure 2.



The image of L in M is the singleton {0} and the previous theorem states that
the language L is not strongly cyclic.

4 Decomposition of cyclic languages

In this section, we prove the main result.

By the definition of cyclic languages, a boolean combination of cyclic lan-
guages is still a cyclic language. In particular, a boolean combination of strongly
cyclic languages is a rational cyclic language. The following result gives some
converse.

Theorem 10. Any rational cyclic language is a boolean combination of strongly
cyclic languages.

The proof of the theorem is based on the following lemma. By a strict quotient
of M, we mean a quotient which is strictly smaller than M.

Lemmall. Let L be a rational cyclic language and ¢ : A*—»M a morphism
from A* onto a finite monoid M such that L = o~ (P). Let suppose furthermore
that the monoid M has a zero and that this zero does not belong to P.

Then, either L is recognized by a strict quotient of M or there exists a strongly
cyclic language L' such that L C L' and such that the language L' — L is recog-
nized by a strict quotient of M.

In both cases, the zero of the quotient does not belong to the image of the
language (L in the first case and L' — L in the second case).

Proof. Let P the image of L in M. Suppose Dq,...,D, are the 0-minimal D-
classes of M. For any s € D; and =,y € M, we have zsy = 0 or zsy € D;.

Suppose D; satisfies Dy NP = (). For any x,y € M, we have xsy ¢ P. All the
elements of D; are equivalent to 0 by the Nerode congruence. The language L is
then recognized by the Rees quotient M /I where I is the ideal I = Dy U {0}.

We can suppose that every D; satisfies D; N P # (). There exists then s; €
D; N P. Since s; € P, the idempotent s¥ is not zero and belongs then to D;
because this D-class is 0-minimal. The element s; belongs then to a regular #-
class H; of D;. Let s be an element of D;. If s* = 0, the element s does not
belong to P because 0 does not belong to P. On the contrary, If s* # 0, the
element s belongs to a regular H-class H! of D;. Since H; N P # (, we have
H; C P and H] C P by Corollaries 3 and 4. Finally, we have proved that

DiﬂP:{SEDi|Sw7£0}

Let P' be defined by P' = {s € M | s* # 0}. By Theorem 8, the language
L' = ¢o=Y(P') is strongly cyclic. It is straightforward that P C P'. Since we
have D; N (P' — P) = (), the language L' — L is recognized by the Rees quotient
M /I where the ideal is equal to {0} U J;—, D;. This quotient is strictly smaller
than M and this finishes the proof of the lemma.



The following lemma states that the class of strongly cyclic languages is
closed under union and intersection.

Lemma12. Let Ly and Lo be two strongly cyclic languages. Both languages
Ly ULy and Ly N Ly are then strongly cyclic.

Proof. We suppose that L; and Ls respectively stabilizes the automata A; =
(Q1,A,Ey) and Ay = (Q2, A, E3). We can suppose that Q1 N Q2 = 0. The
language Ly U Lo stabilizes then the automaton A; U Ay. The language Ly N Loy
stabilizes the automaton A; x As = (Q1 X @2, A, E3) where the transition Fj is
defined by (p1,p2).a = (q1,¢g2) if the transitions p;.a = ¢; and ps.a = g» exist.

We can now complete the proof of the theorem.

Proof. We prove that every cyclic language L can be written as a chain of
strongly cyclic languages. This means that there are strongly cyclic languages
Ly,..., L, satisfying Ly D Ly O --- D L, such that

L=IL—Lo+Ls—--+1L,

We prove the result by induction on the size of a finite monoid M having a
zero and recognizing the language L. We suppose that there is a morphism ¢ :
A*—»M from A* onto a finite monoid M such that L = ¢~!(P). We also suppose
that the monoid M has a zero. By Corollary 5, the syntactic monoid of L has
this property. If the monoid M has only one element, the language L is either ()
or A* which are both strongly cyclic. The empty language 0 stabilizes the empty
automaton. The full language stabilizes the automaton having one state and a
transition for each letter from this state to this state.

If the zero of M belongs to the image of I in M, we replace L by A* — L
which is also cyclic. Tt is then sufficient to prove the result for A* — L. Indeed, if
the complement A* — L of L can be written as a chain A*—L = L;—Ls+---+L,,
the language L can be written L = A* — Ly + Ly — - - - F L,, which is also a chain
of strongly cyclic languages.

We can now suppose that the zero of M does not belong to the image P of L
in M. By Lemma 11, either L is recognized by a strict quotient of M and the
induction hypothesis immediately applies or there is a strongly cyclic language L’
such that L' — L is recognized by a strict quotient of M. By the induction
hypothesis, the language L' — L can be written as a chain of strongly cyclic
languages, i.e., L' — L = Ly — L3+ -+ -+ L,. The language L can be then written
as the chain L = Ly — Ly + -+ + L,, where the language L, is equal to L' U Ls
which is strongly cyclic by Lemma 12.

We point out that the zero of the smaller monoid recognizing L' — L does
not belong to the image of L' — L. It is not necessary to replace this language
by its complement any more.

We give here an example.
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Fig. 3. Structure of the syntactic monoid of L.

Ezample 5. Let L be the language (b + aa)* + (ab*a)* + a* — b*. The structure
of the syntactic monoid of L is given on figure 3. The image P of L in M (L) is
equal to P = {a, aa, aba, aab}.

The subset P’ defined in the proof is equal to P' = {1, a,aa, b, aba, aab} and
the language L' is (b + aa)* + (ab*a)* + a*. The language L' — L is then equal
to b* which is strongly cyclic. The languages L' and L' — L stabilize respectively
the automata A; and A, (see Figure 1 p. 4).

We have directly proved that every rational cyclic language can be written
as a chain of strongly cyclic languages. In fact, it is just necessary to prove that
rational cyclic languages are boolean combination of strongly cyclic languages.
A general result states that if a class F of sets is closed under union and in-
tersection, every set belonging to the boolean closure of F can be written as a
chain of sets of F. For further details see [Car93] (chapter 3).

5 Zeta function of a cyclic language

We first give the definitions of generalized zeta function and zeta function of a
language of finite words over a finite alphabet A.

If A is a finite alphabet, we note Z((A)) (resp. Z[[A]]) the algebra of non
commutative (resp. commutative) formal series with coefficients in Z over the
alphabet A. The subset of non commutative polynomials is denoted by Z{A). We
note ¢ the natural algebra homomorphism from Z((A)) to Z[[A]] which makes
the letters commute. For example, ¢(2ab—3ba) = —ab. We note 6 the morphism
from Z[[A]] to Z[[z]] defined by 8(a) = z for each letter a of A.



Let L be a language of finite words over A, we note L the characteristic series
of L. This series belongs to Z{{A)) and admits the decomposition:

L=Y) w=) L,

weL n>0

where L, is the homogeneous part of degree n of L.

Definition 13. The generalized zeta function of a language L over the alphabet
A is now the following commutative series:

2(1) = exp(y) P&

n>1

Definition 14. The zeta function of a language L over the alphabet A is the
following series :
anpz"

(L) =6(Z(L) = exp()

n>1

),

where a,, is the number of words of L of length n.

It is shown for example in [Béa95] that the generalized zeta function of a
strongly cyclic language L of an automaton A is the generalized zeta function of
the sofic system defined by A, that is the set of bi-infinite words that are labels
of bi-infinite paths of A. The zeta function of a sofic system counts periodic
orbits of the symbolic dynamic system. The zeta function of a strongly cyclic
language is a rational series. The computation of the generalized zeta function
and the zeta function of a strongly cyclic language was done in [Béa95] by using
a construction on finite automata called external power.

IfA=(Q=1{1,2,...,n},E,T) is a deterministic automaton, the external
power of order k, where 1 < k < |@Q|, of the automaton A is the automaton
(QI,EI) labelled in {—1,1} X A, where QI = {(i17i27---7ik)1§i1<i2<---<ik§n}-
There exists an edge labelled €(o)a from (iy,is, ..., %) to (j1,j2, ..., jr) if for each
I with 1 <[ < k, there exists one edge in F labelled a going out from 4; and
(J1, j2, --s jk) is the image of (i1 - a,...,i - a) by a permutation o of signature
€(0). The automaton A is equal to its external power of order 1 by identification
of +a to a. The matriz associated to an automaton labelled on {—1,1} x A is the
square matrix (z;;)1<;,j<n Where x,, is the sum (in Z(A)) of the labels of edges
from p to ¢. The commutative matrix associated is the matrix (p(2i;))1<i,j<n-

We denote by @; the commutative matrix associated to the external power
of order 7 of the automaton .A. We then have (see [Béa95])

n

7(L) = [[(det(1 = Q:)) ="

i=1

where I is the identity matrix of the same size as @;.



Computation of the zeta function of a cyclic language

The result of section 4 can be used to extend the previous computation of zeta
functions of strongly cyclic languages to all cyclic languages. This gives an other
proof of the rationality of the zeta function of a cyclic language established in
[BR90]. The computation is the following:

Let L be a cyclic language. By section 4 it can be written as a chain L; —
Ly+ -+ (=1)""'L,, where Lj;; C L; for 1 < j < (r — 1) and where all L;
are strongly cyclic languages. By definition of the generalized zeta function we
have:

2(z) = exp(Y £

n>1
r (L)
= exp(Y D1 =
L L
=exp(}_ (=17 ) L;”))
- Tom(s “l
j=1 n>1

Ezample 6. We compute the generalized zeta function Z (L) and the zeta function
C(L) of the cyclic language L = (b + aa)* + (ab*a)* + a* — b* introduced in
example 5. The language L admits the chain-decomposition L = L1 — Ly where
L, = Stab(A) (see figure 1) and Lo = Stab(As) (see figure 1). We get:

Z(I) = 1|—1;_(i|a
‘ —a 1
2(1) =
_Z(Ly)  (1+a)(1—0b)
2(L) = Z(L)  1—b—aa
(=
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