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Abstract

A new type of approximating curve for finding a particular zero of the sum of two maximal
monotone operators in a Hilbert space is investigated. This curve consists of the zeros of
perturbed problems in which one operator is replaced with its Yosida approximation and a
viscosity term is added. As the perturbation vanishes, the curve is shown to converge to the
zero of the sum that solves a particular strictly monotone variational inequality. As an off-
spring of this result, we obtain an approximating curve for finding a particular zero of the sum
of several maximal monotone operators. Applications to convex optimization are discussed.

1 Problem statement

A central problem which arises in various areas of nonlinear analysis and its applications is the
inclusion problem

find x ∈ zer(A + B) =
{

z ∈ H | 0 ∈ Az + Bz
}

, (1.1)

where A and B are maximal monotone operators from a real Hilbert space H to its power set 2H,
e.g., [6, 13, 15, 17, 24, 26]. In many instances, (1.1) admits multiple solutions and one can select a
particular point x0 ∈ zer(A + B) by solving the variational inequality

x0 ∈ zer(A + B) and (∃ v0 ∈ V x0)(∀z ∈ zer(A + B)) 〈x0 − z | v0〉 ≤ 0, (1.2)
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where V : H → 2H is a strictly monotone operator referred to as a viscosity operator. Bringing into
play the normal cone operator (see (1.8)), we can conveniently rewrite (1.2) as

0 ∈ Nzer(A+B)x0 + V x0. (1.3)

We shall investigate the problem of solving (1.3) under the following standing assumptions (see
Section 1.1 for notation).

Assumption 1.1

(i) A and B are maximal monotone operators from H to 2H such that A+B is maximal monotone
and zer(A + B) 6= ∅.

(ii) V : H → 2H is a maximal monotone operator which satisfies the following properties.

(a) V is uniformly monotone in the sense that there exists an increasing function
c : [0,+∞[ → [0,+∞[ that vanishes only at 0 such that limt→+∞ c(t)/t = +∞ and

(∀(x, u) ∈ grV )(∀(y, v) ∈ grV ) 〈x − y | u − v〉 ≥ c(‖x − y‖). (1.4)

(b) V maps every bounded subset of H into a bounded set.

It follows from [14, Theorem 3.10] that, under Assumption 1.1, the solution x0 to (1.3) is
uniquely defined and so is the approximating curve (xε)ε∈]0,1[ defined by

(∀ε ∈ ]0, 1[) 0 ∈ Axε + Bxε + εV xε. (1.5)

Moreover, xε → x0 when ε ↓ 0 (historically, the earliest result in this direction was obtained
in [11] with A = 0 and V = Id, in which case x0 is the zero of B of minimum norm). The
asymptotic behavior of approximating curves plays a central role in proving the convergence of
parent discrete or continuous dynamical systems for solving (1.3), e.g., [1, 5, 11, 12, 21]. However,
inclusions involving, as in (1.5), several set-valued operators are not easily dealt with and neither
are the associated dynamical systems. A common relaxation of Problem (1.1) is obtained by
replacing A with its Yosida approximation (see (1.7)), which is a better-behaved, single-valued,
Lipschitz continuous operator. In the context of discrete dynamical systems, such relaxations lead
to splitting algorithms that have been studied in several places, e.g., [8, 13, 16, 17]. The objective
of the present paper is to investigate the asymptotic behavior of an approximating curve obtained
by replacing A with Yosida approximations in (1.5). More precisely, our main result (Theorem 3.1)
establishes the strong convergence to the solution x0 to (1.3) of the inexact approximating curve
(xε,φ(ε))ε∈]0,1[ defined by

(∀ε ∈ ]0, 1[) 0 ∈ φ(ε)Axε,φ(ε) + Bxε,φ(ε) + εV xε,φ(ε) + eε, (1.6)

under suitable conditions on the function φ : ]0, 1[ → ]0, 1[ and the error process (eε)ε∈]0,1[.

The outline of the remainder of the paper is as follows. In Section 2, we provide the preliminary
results that will be required to obtain our main result on the asymptotic behavior of (1.6) in
Section 3. Finally, in Section 4, we address the case of more than two operators. Applications to
convex optimization are discussed.
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1.1 Notation

Throughout, H is a real Hilbert space with scalar product 〈· | ·〉, norm ‖ · ‖, and identity operator
Id. The symbols → and ⇀ denote, respectively, strong and weak convergence.

Let M : H → 2H be a set-valued operator. Then domM =
{

x ∈ H | Mx 6= ∅
}

is the domain
of M , ranM =

{

u ∈ H | (∃x ∈ H) u ∈ Mx
}

its range, zer M =
{

x ∈ H | 0 ∈ Mx
}

its set of zeros,
and grM =

{

(x, u) ∈ H ×H | u ∈ Mx
}

its graph. The inverse of M is the operator M−1 : H → 2H

with graph
{

(u, x) ∈ H ×H | u ∈ Mx
}

, the resolvent of M is JM = (Id +M)−1, and the Yosida
approximation of M of index φ ∈ ]0,+∞[ is

φM =
1

φ
(Id−JφM ). (1.7)

Moreover, M is γ-strongly monotone for some γ ∈ ]0, +∞[ if M−γ Id is monotone. For background
on monotone operators, see [7] and [26].

The projection operator onto a nonempty closed convex subset C of H is denoted by PC , its
distance function by dC , and its normal cone operator by NC , i.e.,

NC : H → 2H : x 7→

{

{

u ∈ H | (∀y ∈ C) 〈y − x | u〉 ≤ 0
}

, if x ∈ C;

∅, otherwise.
(1.8)

A function f : H → ]−∞, +∞] is proper if dom f =
{

x ∈ H | f(x) < +∞
}

6= ∅; in this case, its
subdifferential is

∂f : H → 2H : x 7→
{

u ∈ H | (∀y ∈ H) 〈y − x | u〉 + f(x) ≤ f(y)
}

. (1.9)

Moreover, f is γ-strongly convex for some γ ∈ ]0,+∞[ if f − γ‖ · ‖2/2 is convex. The class of
proper lower semicontinuous convex functions from H to ]−∞,+∞] is denoted by Γ0(H). Now let
f ∈ Γ0(H). The conjugate of f is the function f∗ ∈ Γ0(H) defined by f∗ : u 7→ supx∈H〈x | u〉−f(x)
and the Moreau envelope of index φ ∈ ]0,+∞[ of f is the finite and continuous convex function
φf : x 7→ infy∈H f(y)+ ‖x− y‖2/(2φ). For every x ∈ H, the function y 7→ f(y)+ ‖x− y‖2/2 admits
a unique minimizer, which is denoted by proxf x. We have proxf = J∂f and [18]

(∀φ ∈ ]0,+∞[) ∇
(

φf
)

= φ(∂f) =
1

φ
(Id−proxφf ) = proxf∗/φ(·/φ). (1.10)

For background on convex analysis, see [25].

2 Preliminary results

Lemma 2.1 Let u and v be points in H, and let φ and ρ be real numbers in [0,+∞[. Then

〈φu − ρv | v − u〉 ≤
1

4

(

φ‖v‖2 + ρ‖u‖2
)

. (2.1)
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Proof. We have 0 ≤ ‖2u − v‖2 = 4‖u‖2 − 4〈u | v〉 + ‖v‖2. Hence, 〈φu | v〉 ≤ φ(‖u‖2 + ‖v‖2/4).
Likewise, 〈ρv | u〉 ≤ ρ(‖v‖2 + ‖u‖2/4). Adding these two inequalities yields (2.1).

Lemma 2.2 Let M : H → 2H be a maximal monotone operator and suppose that Assumption 1.1(ii)
is satisfied. Then the inclusion 0 ∈ Mx + V x possesses exactly one solution.

Proof. Assumption 1.1(ii)(b) implies that V is locally bounded. Consequently, it results from [26,
Theorem 32.G] that V −1 is surjective. Thus,

dom M ⊂ dom V = ranV −1 = H (2.2)

and, since [26, Theorem 32.I] implies that M +V is maximal monotone, the conclusion follows from
[14, Lemma 3.8(ii)].

Definition 2.3 [14, Definition 3.1] Let (Mε)ε∈]0,1[ be a family of maximal monotone operators from

H to 2H and let (xε)ε∈]0,1[ be a family in H. Then (xε)ε∈]0,1[ is A-focused with respect to (Mε)ε∈]0,1[

if, for every x ∈ H and every sequence (εn)n∈N in ]0, 1[ such that εn ↓ 0,
[

xεn
⇀ x and 1Mεn

xεn
→ 0

]

⇒ (∀ε ∈ ]0, 1[) x ∈ zer Mε. (2.3)

The following result is an extension of [14, Theorem 3.10] which allows for inexact inclusions.

Theorem 2.4 Let (Mε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H such that
C =

⋂

ε∈]0,1[ zer Mε 6= ∅, and suppose that Assumption 1.1(ii) is satisfied. Then there exists a
unique point x0 ∈ C such that 0 ∈ NCx0 + V x0. Moreover, the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ Mεxε + εV xε + eε, where eε ∈ H, (2.4)

define a unique family (xε)ε∈]0,1[. Now suppose that ‖eε‖/ε → 0 as ε ↓ 0 and that (xε)ε∈]0,1[ is
A-focused with respect to (Mε)ε∈]0,1[. Then xε → x0 as ε ↓ 0.

Proof. By maximal monotonicity of the operators (M−1
ε )ε∈]0,1[, the sets (zer Mε)ε∈]0,1[ are closed

and convex [7, Proposition 3.5.6.1]. Thus C is nonempty, closed, and convex, and NC is therefore
maximal monotone [26, Example 32.15]. Consequently, it follows from Lemma 2.2 that x0 is
uniquely defined. Since the operators

(

ε−1(Mε + eε)
)

ε∈]0,1[
are maximal monotone, it also follows

from Lemma 2.2 that the family (xε)ε∈]0,1[ is uniquely defined. The same argument also shows that
the auxiliary family of inclusions

(∀ε ∈ ]0, 1[) 0 ∈ Mεyε + εV yε (2.5)

defines a unique approximating curve (yε)ε∈]0,1[. Moreover, [14, Theorem 3.10] asserts that

(yε)ε∈]0,1[ is A-focused with respect to (Mε)ε∈]0,1[ ⇒ yε → x0 as ε ↓ 0. (2.6)

It follows from (2.4) and (2.5) that, for every ε ∈ ]0, 1[, there exist points vε ∈ V xε and wε ∈ V yε

such that
−εvε − eε ∈ Mεxε and − εwε ∈ Mεyε. (2.7)
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Using the monotonicity of the operators (Mε)ε∈]0,1[ and the uniform monotonicity of V , we obtain

(∀ε ∈ ]0, 1[) 0 ≤ 〈xε − yε | wε − ε−1eε − vε〉 (2.8)

and
(∀ε ∈ ]0, 1[) c(‖xε − yε‖) ≤ 〈xε − yε | vε − wε〉, (2.9)

respectively. Adding (2.8) to (2.9), and then using Cauchy-Schwarz, we obtain

(∀ε ∈ ]0, 1[) c(‖xε − yε‖) ≤ −
1

ε
〈xε − yε | eε〉 ≤ ‖xε − yε‖

‖eε‖

ε
. (2.10)

Now suppose that ‖eε‖/ε → 0 as ε ↓ 0. Then it follows from (2.10) that there exists β ∈ ]0,+∞[
such that

(∀ε ∈ ]0, 1[) xε 6= yε ⇒
c(‖xε − yε‖)

‖xε − yε‖
≤ β. (2.11)

Hence, since limt→+∞ c(t)/t = +∞, we infer from (2.11) that (‖xε − yε‖)ε∈]0,1[ is bounded and, in
turn, from (2.10) that

‖xε − yε‖ → 0 as ε ↓ 0. (2.12)

In addition, since the operators ( 1Mε)ε∈]0,1[ are Lipschitz continuous [7, Theorem 3.5.9(ii)], we

obtain ‖ 1Mεxε − 1Mεyε‖ → 0 as ε ↓ 0. Altogether, if (xε)ε∈]0,1[ is A-focused with respect to
(Mε)ε∈]0,1[, (yε)ε∈]0,1[ is likewise. In view of (2.6) and (2.12), we conclude that xε → x0 as ε ↓ 0.

The following theorem, which is of interest in its own right, will also be required. It is a natural
extension of the well-known Brézis-Crandall-Pazy condition [9].

Theorem 2.5 Let M1 and M2 be maximal monotone operators from H to 2H. Suppose that As-
sumption 1.1(ii) is satisfied and consider the inclusions

(∀ρ ∈ ]0, 1[) 0 ∈ ρM1zρ + M2zρ + V zρ. (2.13)

Then the following hold.

(i) The family (zρ)ρ∈]0,1[ is uniquely defined.

(ii) The following conditions are equivalent:

(a) There exists a unique point z0 ∈ H such that 0 ∈ M1z0 + M2z0 + V z0.

(b) The family ( ρM1zρ)ρ∈]0,1[ is bounded.

(iii) If one of the conditions in (ii) is satisfied, then zρ → z0 as ρ ↓ 0.

Proof. (i): It follows from [7, Theorem 3.5.9] that the operators ( ρM1)ρ∈]0,1[ are maximal monotone
with domain H. In turn, [26, Theorem 32.I] asserts that the operators ( ρM1+M2)ρ∈]0,1[ are maximal
monotone. Thus, we obtain the desired conclusion through Lemma 2.2.
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(ii): We first suppose that there exists a point z0 ∈ H such that

0 ∈ M1z0 + M2z0 + V z0. (2.14)

Note that, since M1 + M2 + V is strictly monotone, this point is necessarily unique. Now fix
ρ ∈ ]0, 1[. We deduce from (2.14), (2.13), and (i) that there exist u0 ∈ M1z0, v0 ∈ V z0, and
vρ ∈ V zρ such that

−u0 − v0 ∈ M2z0 and − ρM1zρ − vρ ∈ M2zρ. (2.15)

Hence, the monotonicity of M2 yields

〈zρ − z0 | u0 −
ρM1zρ〉 ≥ 〈zρ − z0 | vρ − v0〉, (2.16)

and, in view of the monotonicity of V , we obtain

〈zρ − z0 | u0 −
ρM1zρ〉 ≥ 0. (2.17)

On the other hand, the inclusions u0 ∈ M1z0 and ρM1zρ ∈ M1(JρM1
zρ), together with the mono-

tonicity of M1, lead to the inequality

〈z0 − JρM1
zρ | u0 −

ρM1zρ〉 ≥ 0. (2.18)

Adding (2.17) to (2.18) results in

0 ≤ 〈zρ − JρM1
zρ | u0 −

ρM1zρ〉 = ρ
(

〈 ρM1zρ | u0〉 − ‖ ρM1zρ‖
2
)

. (2.19)

Consequently, Cauchy-Schwarz yields

‖ ρM1zρ‖ ≤ ‖u0‖. (2.20)

Conversely, suppose that (ii)(b) is satisfied, i.e., there exists β ∈ ]0, +∞[ such that

sup
ρ∈]0,1[

‖ ρM1zρ‖ ≤ β. (2.21)

It suffices to show the existence of a point z0 ∈ H such that 0 ∈ M1z0+M2z0+V z0 as its uniqueness
will follow from the strict monotonicity of M1 + M2 + V . Let us first prove that ‖zε − zρ‖ → 0 as
ε ↓ 0 and ρ ↓ 0. To this end, take ε and ρ in ]0, 1[. By (2.13) and (i), there exist vε ∈ V zε and
vρ ∈ V zρ such that

− εM1zε − vε ∈ M2zε and − ρM1zρ − vρ ∈ M2zρ. (2.22)

On the one hand, the monotonicity of M2 and the uniform monotonicity of V yield

c(‖zε − zρ‖) ≤ 〈zε − zρ | ρM1zρ −
εM1zε〉. (2.23)

On the other hand, it follows from the monotonicity of M1 and the inclusions εM1zε ∈ M1(JεM1
zε)

and ρM1zρ ∈ M1(JρM1
zρ) that

0 ≤ 〈JρM1
zρ − JεM1

zε |
ρM1zρ −

εM1zε〉. (2.24)
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Adding (2.23) to (2.24), and then using Lemma 2.1 and (2.21), we obtain

c(‖zε − zρ‖) ≤ 〈ε( εM1zε) − ρ( ρM1zρ) |
ρM1zρ −

εM1zε〉

≤
1

4
(ε + ρ)β2. (2.25)

Thus,
‖zε − zρ‖ → 0 as ε ↓ 0 and ρ ↓ 0. (2.26)

Now let (ρn)n∈N be an arbitrary sequence in ]0, 1[ such that ρn ↓ 0 as n → +∞. We deduce
from (2.26) that (zρn

)n∈N is a Cauchy sequence. Hence, there exists a point z0 ∈ H such that
zρn

→ z0 as n → +∞. Let us show that 0 ∈ M1z0 + M2z0 + V z0. First, since the sequence
( ρnM1zρn

)n∈N is bounded, there exist a point u ∈ H and a subsequence (ρkn
)n∈N of (ρn)n∈N such

that ρknM1zρkn
⇀ u. Since zρkn

→ z0, using the fact that ( ρknM1)n∈N graph-converges to M1 (see
[2, p. 360]) and applying [2, Proposition 3.59], we obtain

u ∈ M1z0. (2.27)

Furthermore, since (zρn
)n∈N is bounded, so is (vρn

)n∈N in the light of Assumption 1.1(ii)(b). There-
fore, passing to a further subsequence if necessary, we assume that vρkn

⇀ v for some v ∈ H. Since
V is maximal monotone, grV is sequentially closed in Hstrong ×Hweak [7, Proposition 3.5.6.2] and
therefore, recalling that zρkn

→ z0, we get

v ∈ V z0. (2.28)

Likewise, since −vρkn
− ρknM1zρkn

⇀ −v − u, it follows from (2.22) and the sequential closedness
of grM2 in Hstrong ×Hweak that

−v − u ∈ M2z0. (2.29)

Altogether, (2.27), (2.28), and (2.29) imply that 0 ∈ M1z0 + M2z0 + V z0.

(iii): Suppose that there exists z0 ∈ H such that 0 ∈ M1z0 + M2z0 + V z0 and let ρ ∈ ]0, 1[.
Then there exist u0 ∈ M1z0, v0 ∈ V z0, and vρ ∈ V zρ such that (2.15) holds. In turn, (2.16) is
satisfied and the uniform monotonicity of V leads to

c(‖zρ − z0‖) ≤ 〈zρ − z0 | u0 −
ρM1zρ〉. (2.30)

Adding this inequality to (2.18), and then using Cauchy-Schwarz and (2.20), we obtain

c(‖zρ − z0‖) ≤ 〈zρ − JρM1
zρ | u0 −

ρM1zρ〉 ≤ ρ
(

‖ ρM1zρ‖ ‖u0‖ − ‖ ρM1zρ‖
2
)

≤ ρ‖u0‖
2. (2.31)

We conclude that zρ → z0 as ρ ↓ 0.

Remark 2.6 In particular, if V = Id−h, where h ∈ H, then Assumption 1.1(ii) is satisfied and
Theorem 2.5 reduces to the Hilbert space version of results found in [9, Section 2].
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3 The visco-penalization approximating curve

Theorem 3.1 Suppose that Assumption 1.1 is satisfied. Then there exists a unique point x0 ∈
zer(A + B) such that

0 ∈ Nzer(A+B)x0 + V x0. (3.1)

Moreover, given φ : ]0, 1[ → ]0, 1[, the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ φ(ε)Axε,φ(ε) + Bxε,φ(ε) + εV xε,φ(ε) + eε, where eε ∈ H, (3.2)

define a unique family (xε,φ(ε))ε∈]0,1[. Now suppose that c is continuous, that (φ(ε) + ‖eε‖)/ε → 0
as ε ↓ 0, and that one of the following holds:

(i) x0 ∈ int domA.

(ii) x0 ∈ int domB.

(iii) A and B satisfy the “angle property”

(∃σ1 ∈ R)(∃σ2 ∈ [0,+∞[)(∃σ3 ∈ [0,+∞[)(∀ρ ∈ ]0, 1[)(∀(x, u) ∈ grB)

〈 ρAx | u〉 ≥ −‖σ1(
ρAx) + σ2u‖ − σ3, (3.3)

and one of the following holds:

(a) domB is bounded.

(b) V is Lipschitz continuous and strongly monotone.

Then xε,φ(ε) → x0 as ε ↓ 0.

Proof. The set zer(A+B) is nonempty and, since (A+B)−1 is maximal monotone, it is also closed
and convex [7, Proposition 3.5.6.1]. Hence, Nzer(A+B) is maximal monotone [26, Example 32.15].
The existence and uniqueness of x0 in (3.1) therefore follow from Lemma 2.2. On the other hand,
arguing as in the proof of Theorem 2.5(i), we obtain the maximal monotonicity of the operators
(

ε−1( φ(ε)A+B+eε)
)

ε∈]0,1[
and, in turn, the existence and uniqueness of (xε,φ(ε))ε∈]0,1[ via Lemma 2.2.

Using once again Lemma 2.2, we observe that the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ (A + B)yε + εV yε + eε (3.4)

also define a unique approximating curve (yε)ε∈]0,1[. Now suppose that ‖eε‖/ε → 0 as ε ↓ 0. Then,
upon setting Mε ≡ A + B in Theorem 2.4, we get

yε → x0 as ε ↓ 0, (3.5)
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since the A-focusing property of (yε)ε∈]0,1[ follows at once from the sequential closedness of gr(A+B)

in Hweak × Hstrong, which is guaranteed by the maximal monotonicity of A + B [7, Proposi-
tion 3.5.6.2]. Next, we shall show that there exist η ∈ ]0, 1] and τ ∈ ]0,+∞[ such that

(∀ε ∈ ]0, η[) c(‖xε,φ(ε) − yε‖) ≤ τ
φ(ε)

ε
. (3.6)

For this purpose, take ε and ρ in ]0, 1[. As seen above, there exists a unique point xε,ρ ∈ domB
such that

0 ∈ ρAxε,ρ + Bxε,ρ + εV xε,ρ + eε. (3.7)

It follows from (3.7) and (3.2) that there exist points vε,ρ ∈ V xε,ρ and wε ∈ V xε,φ(ε) such that

−
(

ρAxε,ρ + εvε,ρ + eε

)

∈ Bxε,ρ (3.8)

and
−

(

φ(ε)Axε,φ(ε) + εwε + eε

)

∈ Bxε,φ(ε). (3.9)

Consequently, the monotonicity of B yields

0 ≤ 〈xε,φ(ε) − xε,ρ | ρAxε,ρ −
φ(ε)Axε,φ(ε)〉 − ε〈xε,φ(ε) − xε,ρ | wε − vε,ρ〉, (3.10)

and we deduce from (1.4) that

εc(‖xε,φ(ε) − xε,ρ‖) ≤ 〈xε,φ(ε) − xε,ρ | ρAxε,ρ −
φ(ε)Axε,φ(ε)〉. (3.11)

On the other hand, the inclusions

ρAxε,ρ ∈ A(JρAxε,ρ) and φ(ε)Axε,φ(ε) ∈ A(Jφ(ε)Axε,φ(ε)), (3.12)

and the monotonicity of A lead to the inequality

0 ≤ 〈JρAxε,ρ − Jφ(ε)Axε,φ(ε) |
ρAxε,ρ −

φ(ε)Axε,φ(ε)〉. (3.13)

Adding (3.11) to (3.13), and then using Lemma 2.1, we obtain

εc(‖xε,φ(ε) − xε,ρ‖) ≤ 〈φ(ε)( φ(ε)Axε,φ(ε)) − ρ( ρAxε,ρ) |
ρAxε,ρ −

φ(ε)Axε,φ(ε)〉

≤
1

4

(

φ(ε)‖ ρAxε,ρ‖
2 + ρ‖ φ(ε)Axε,φ(ε)‖

2
)

. (3.14)

Note that, since V satisfies Assumption 1.1(ii), so does Vε = εV +eε. Hence, applying Theorem 2.5
with M1 = A, M2 = B, and Vε instead of V , we deduce from the existence of yε in (3.4) that the
family

(

ρAxε,ρ

)

ρ∈]0,1[
is bounded and that

xε,ρ → yε as ρ ↓ 0. (3.15)

More precisely, it follows from (3.4) that there exists a point uε ∈ Ayε such that

−uε ∈ Byε + εV yε + eε (3.16)
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and, proceeding as in (2.15)–(2.20), we obtain

(∀ρ ∈ ]0, 1[)
∥

∥

ρAxε,ρ

∥

∥ ≤ ‖uε‖. (3.17)

We shall now show that if one of conditions (i)–(iii) holds, then

(∃ η ∈ ]0, 1])(∃ τ ∈ ]0,+∞[) sup
ε∈]0,η[

sup
ρ∈]0,1[

∥

∥

ρAxε,ρ

∥

∥

2
≤ 4τ. (3.18)

(i) Suppose that x0 ∈ int domA. Then, by [26, Proposition 32.33], A is locally bounded at x0

and, therefore, there exists a bounded neighborhood X1 of x0 such that A(X1) is bounded. On
the other hand, it follows from (3.5) that there exists η ∈ ]0, 1] such that (∀ε ∈ ]0, η[ ) yε ∈ X1.
Hence, (∀ε ∈ ]0, η[) uε ∈ Ayε ⊂ A(X1). We thus obtain the boundedness of (uε)ε∈]0,η[ and
therefore (3.18) via (3.17).

(ii) Suppose that x0 ∈ int domB. As in (i), there exists a bounded neighborhood X2 of x0 such
that B(X2) is bounded. However, by (3.5), there exists η ∈ ]0, 1] such that (∀ε ∈ ]0, η[ ) yε ∈
X2. On the other hand, (eε)ε∈]0,η[ lies in some bounded set U and, by Assumption 1.1(ii)(b),
V (X2) is bounded. Altogether, we derive from (3.16) that −(uε)ε∈]0,η[ lies in the bounded set
B(X2) +

⋃

ε∈]0,η[ εV (X2) + U . In view of (3.17), we obtain (3.18).

(iii) Suppose that (3.3) holds. We deduce from (3.3) and (3.8) that

〈 ρAxε,ρ | ρAxε,ρ + εvε,ρ + eε〉 ≤ ‖(σ1 − σ2)(
ρAxε,ρ) − σ2(εvε,ρ + eε)‖ + σ3. (3.19)

Therefore, using Cauchy-Schwarz and setting ω = supε∈]0,1[ ‖eε‖, we obtain

‖ ρAxε,ρ‖
2 ≤ ‖ ρAxε,ρ‖

(

‖εvε,ρ + eε‖ + |σ1 − σ2|
)

+ σ2‖εvε,ρ + eε‖ + σ3

≤ ‖ ρAxε,ρ‖
(

ε‖vε,ρ‖ + κ1

)

+ σ2ε‖vε,ρ‖ + κ2, (3.20)

where κ1 = ω + |σ1 − σ2| and κ2 = σ2ω + σ3. We now consider two cases.

(a) Suppose that domB is bounded. Then (3.7) implies that supε∈]0,1[ supρ∈]0,1[ ‖xε,ρ‖ < +∞
and Assumption 1.1(ii)(b) yields supε∈]0,1[ supρ∈]0,1[ ‖vε,ρ‖ < +∞. Consequently, it
follows from (3.20) that there exist constants κ3 and κ4 in [0,+∞[, which are independent
from ε and ρ, such that ‖ ρAxε,ρ‖

2 ≤ κ3‖
ρAxε,ρ‖ + κ4. Thus, (3.18) holds with η = 1.

(b) Suppose that V is β-Lipschitz continuous (hence single-valued) and γ-strongly monotone,
for some β and γ in ]0,+∞[. Fix z ∈ dom A ∩ dom B, v ∈ Bz, and set w = V 0 and
rρ = ρAz. Then

‖vε,ρ‖ ≤ ‖vε,ρ − w‖ + ‖w‖ ≤ β‖xε,ρ‖ + ‖w‖. (3.21)

Moreover, rρ +v ∈ ( ρA+B)z and we derive from (3.7) that −(εvε,ρ +eε) ∈ ( ρA+B)xε,ρ.
Hence, by monotonicity of ρA + B,

〈rρ + v + εvε,ρ + eε | xε,ρ − z〉 ≤ 0. (3.22)
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Now let r0 be the element of minimal norm in Az. Then ‖rρ‖ ≤ ‖r0‖ [7, Theorem 3.5.9].
Hence, upon setting κ5 = ‖r0‖ + ‖v‖ + ω and κ6 = κ5‖z‖, we deduce from (3.22) and
the Cauchy-Schwarz inequality that

ε〈xε,ρ | vε,ρ〉 ≤ κ5‖xε,ρ‖ + ε‖z‖ ‖vε,ρ‖ + κ6. (3.23)

On the other hand, the γ-strong monotonicity of V yields

γ‖xε,ρ‖
2 ≤ 〈xε,ρ | vε,ρ − w〉 ≤ 〈xε,ρ | vε,ρ〉 + ‖w‖ ‖xε,ρ‖. (3.24)

By first combining (3.23) and (3.24), and then using (3.21), we obtain

γ(ε‖xε,ρ‖)
2 ≤ ε2〈xε,ρ | vε,ρ〉 + ‖w‖(ε‖xε,ρ‖)

≤ κ5(ε‖xε,ρ‖) + ‖z‖(ε‖vε,ρ‖) + ‖w‖(ε‖xε,ρ‖) + κ6

≤ κ5(ε‖xε,ρ‖) + β‖z‖(ε‖xε,ρ‖) + ‖z‖ ‖w‖ + ‖w‖(ε‖xε,ρ‖) + κ6. (3.25)

In other words, there exist constants κ7 and κ8 in [0,+∞[, which are independent from
ε and ρ, such that

(ε‖xε,ρ‖)
2 ≤ κ7(ε‖xε,ρ‖) + κ8. (3.26)

Accordingly, supε∈]0,1[ supρ∈]0,1[ ε‖xε,ρ‖ < +∞ and, in view of (3.21), we have

sup
ε∈]0,1[

sup
ρ∈]0,1[

ε‖vε,ρ‖ < +∞. (3.27)

Therefore, it follows from (3.20) that there exist constants κ9 and κ10 in [0,+∞[, which
are independent from ε and ρ, such that ‖ ρAxε,ρ‖

2 ≤ κ9‖
ρAxε,ρ‖+κ10. This shows that

(3.18) holds with η = 1.

To complete the proof, let us observe that (3.14) and (3.18) yield

(∀ε ∈ ]0, η[)(∀ρ ∈ ]0, 1[) c(‖xε,φ(ε) − xε,ρ‖) ≤
τ

ε
(φ(ε) + ρ). (3.28)

In view of (3.15), if c is continuous, passing to the limit when ρ ↓ 0 in (3.28) yields (3.6). Thus,
if φ(ε)/ε → 0 as ε ↓ 0, we obtain xε,φ(ε) − yε → 0 as ε ↓ 0 and, in view of (3.5), we conclude that
xε,φ(ε) → x0 as ε ↓ 0.

Remark 3.2 (infeasible case) Suppose that Assumption 1.1 is satisfied, except that we now
assume that zer(A + B) = ∅. In addition, suppose that φ(ε) + ‖eε‖ → 0 as ε ↓ 0 in (3.2). Then

‖xε,φ(ε)‖ → +∞ as ε ↓ 0. (3.29)

Proof. Suppose that (3.29) is not true. Then there exists a decreasing sequence (εn)n∈N in ]0, 1[ that
converges to 0 and such that (xεn,φ(εn))n∈N is bounded. In view of (3.2), there exists a sequence
(vεn

)n∈N in H such that

(∀n ∈ N) vεn
∈ V xεn,φ(εn) and − (εnvεn

+ eεn
) ∈ ( φ(εn)A + B)xεn,φ(εn). (3.30)
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Since Assumption 1.1(ii)(b) implies that (vεn
)n∈N is bounded, we have

εnvεn
+ eεn

→ 0. (3.31)

On the other hand, we can extract a subsequence (xεkn
,φ(εkn

))n∈N such that

xεkn
,φ(εkn

) ⇀ x, (3.32)

for some x ∈ H. Moreover, it follows from Assumption 1.1(i) and [3, Proposition 5.3] that the
sequence ( φ(εkn

)A + B)n∈N graph-converges to A + B. Consequently, (3.30), (3.31), (3.32), and [2,
Proposition 3.59] force x ∈ zer(A + B), which contradicts our assumption.

Remark 3.3 Condition (i) in Theorem 3.1 is satisfied in particular when domA is open. For
instance, if A = ∂f , where f ∈ Γ0(H), then int dom f ⊂ dom ∂f ⊂ dom f [25, Theorem 2.4.9] and
therefore domA is open if dom f is open. Regarding Condition (iii) in Theorem 3.1, the “angle
property” (3.3) was first used in [10, Section 2.3] with σ1 = σ2 = 0.

By setting V = Id and eε ≡ 0 in Theorem 3.1, we obtain our first corollary.

Corollary 3.4 Suppose that Assumption 1.1(i) is satisfied, let φ : ]0, 1[ → ]0, 1[ be such that
φ(ε)/ε → 0 as ε ↓ 0, and set x0 = Pzer(A+B)(0). Then the inclusions

(∀ε ∈ ]0, 1[) 0 ∈ φ(ε)Axε,φ(ε) + Bxε,φ(ε) + εxε,φ(ε) (3.33)

define a unique family (xε,φ(ε))ε∈]0,1[, and xε,φ(ε) → x0 as ε ↓ 0 if one of the following holds:

(i) x0 ∈ (int domA) ∪ (int domB).

(ii) A and B satisfy (3.3).

Remark 3.5

(i) In [19, Theorem 3], the convergence of (xε,φ(ε))ε∈]0,1[ in Corollary 3.4 is announced without
any additional hypothesis such as (i) or (ii). However, it is not clear to us how (3.18) can be
satisfied without such an hypothesis.

(ii) Suppose that A = 0 in Corollary 3.4. Then we obtain the strong convergence of the approxi-
mating curve (xε)ε∈]0,1[ defined by

(∀ε ∈ ]0, 1[) 0 ∈ Bxε + εxε (3.34)

to the zero x0 of B of minimum norm as ε ↓ 0. This classical result is due to Bruck [11].
When B = ∂f with f ∈ Γ0(H), we recover the standard Tikhonov regularization setting [23].

Our second corollary deals with a visco-penalization method for finding a specific minimizer of
the sum of two convex functions. We require the following notion of an inexact minimizer.
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Definition 3.6 Let f : H → ]−∞,+∞] be a proper function and let e ∈ H. Then Argmin≈e f =
{

x ∈ H | −e ∈ ∂f(x)
}

.

Corollary 3.7 Let f and g be functions in Γ0(H) such that the set Z of minimizers of f + g is
nonempty and such that the cone generated by dom f − dom g is a closed vector subspace. Let
h ∈ Γ0(H) be a finite function that maps every bounded subset of H into a bounded set, and which
is uniformly convex in the sense that there exists an increasing function c : [0,+∞[ → [0, +∞[ that
vanishes only at 0 such that limt→+∞ c(t)/t = +∞ and

(∀x ∈ H)(∀y ∈ H)(∀α ∈ ]0, 1[) h
(

αx + (1 − α)y
)

+ α(1 − α)c(‖x − y‖)

≤ αh(x) + (1 − α)h(y). (3.35)

Then h admits a unique minimizer x0 over Z. Moreover, given φ : ]0, 1[ → ]0, 1[, the inexact
minimization problems

(∀ε ∈ ]0, 1[) xε,φ(ε) ∈ Argmin≈eε

(

φ(ε)f + g + εh
)

, where eε ∈ H, (3.36)

define a unique family (xε,φ(ε))ε∈]0,1[. Now suppose that c is continuous, that (φ(ε) + ‖eε‖)/ε → 0
as ε ↓ 0, and that one of the following holds:

(i) x0 ∈ int dom f .

(ii) x0 ∈ int dom g.

(iii) f and g satisfy

(∃σ1 ∈ R)(∃σ2 ∈ [0,+∞[)(∃σ3 ∈ [0,+∞[)(∀ρ ∈ ]0, 1[)(∀(x, u) ∈ gr ∂g)

g(proxρf x) ≤ g(x) + ρ‖σ1 proxf∗/ρ(x/ρ) + σ2u‖ + ρσ3, (3.37)

and one of the following holds:

(a) dom g is bounded.

(b) h is strongly convex and differentiable with a Lipschitz continuous gradient.

Then xε,φ(ε) → x0 as ε ↓ 0.

Proof. Set A = ∂f , B = ∂g, and V = ∂h. Our hypotheses on f and g, [25, Theorem 3.1.11], and
the sum rule for subdifferentials [4] (see also [25, Theorem 2.8.7]) imply that Z = zer(A + B), and
that A and B satisfy Assumption 1.1(i). Moreover, we infer from [25, Theorem 3.5.10] and [25,
Theorem 2.4.13] that V satisfies Assumption 1.1(ii). Next, it follows from [25, Theorem 2.9.1] that
a point x0 ∈ H minimizes h over Z if and only if 0 ∈ NZx0 + ∂h(x0), i.e., if and only if (3.1) holds.
Furthermore, it follows from Definition 3.6, [25, Theorem 2.8.7], and (1.10) that (3.36) reduces to
(3.2). To apply Theorem 3.1, it remains to check that items (i)–(iii) imply their counterpart in
Theorem 3.1. Since int dom f = int dom ∂f and int dom g = int dom ∂g [25, Theorem 2.4.9], this is
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clearly the case for (i) and (ii). Next, let us show that (3.37) ⇒ (3.3). To this end, fix (x, u) ∈ gr ∂g.
Then it follows from (1.10), (1.9), and (3.37) that

(∀ρ ∈ ]0, 1[) 〈 ρ(∂f)x | u〉 = 〈x − proxρf x | u〉/ρ

≥
(

g(x) − g(proxρf x)
)

/ρ

≥ −‖σ1 proxf∗/ρ(x/ρ) + σ2u‖ − σ3

= −‖σ1(
ρ(∂f)x) + σ2u‖ − σ3, (3.38)

and we obtain (3.3). Finally, if dom g is bounded, so is dom ∂g ⊂ dom g, while the conditions in
(iii)(b) imply that V = ∇h is Lipschitz continuous and strongly monotone.

Remark 3.8 Consider the special case of Corollary 3.7 in which the following additional assump-
tions are made: f is the indicator function of a nonempty closed convex subset C of H, g is Lipschitz
continuous on H, h = ‖ · ‖2/2, eε ≡ 0, and φ : ε 7→ εθ, where θ ∈ ]1,+∞[. Then (3.36) becomes

(∀ε ∈ ]0, 1[) xε = argmin
y∈H

(

1

2εθ
d2

C(y) + g(y) +
ε

2
‖y‖2

)

, (3.39)

and Corollary 3.7 asserts that the unique curve (xε)ε∈]0,1[ thus defined converges strongly to the
minimizer of g over C of minimal norm as ε ↓ 0. This result was established in [5, Example p. 531].

4 The case of m operators

In this section we derive from the results of Section 3 a visco-penalization approximating curve for
the problem

find x ∈ zer

( m
∑

i=1

Ai

)

(4.1)

under the following set of assumptions.

Assumption 4.1

(i) (Ai)1≤i≤m is a finite family of maximal monotone operators from H to 2H such that
zer

(
∑m

i=1 Ai

)

6= ∅ and int
⋂m

i=1 dom Ai 6= ∅.

(ii) V : H → 2H is a maximal monotone operator which is γ-strongly monotone for some γ ∈
]0,+∞[, and which maps every bounded subset of H into a bounded set.

Theorem 4.2 Suppose that Assumption 4.1 is satisfied. Then there exists a unique point x0 ∈
zer(

∑m
i=1 Ai) such that

0 ∈ Nzer(
P

m

i=1
Ai)x0 + V x0. (4.2)
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Moreover, given φ : ]0, 1[ → ]0, 1[, the inclusions

(∀ε ∈ ]0, 1[) 0 ∈
m

∑

i=1

φ(ε)Aixε,φ(ε) + εV xε,φ(ε) + eε, where eε ∈ H, (4.3)

define a unique family (xε,φ(ε))ε∈]0,1[. Now suppose that (φ(ε) + ‖eε‖)/ε → 0 as ε ↓ 0 and that
x0 ∈ int

⋂m
i=1 dom Ai. Then xε,φ(ε) → x0 as ε ↓ 0.

Proof. We reformulate our m-operator problem as a 2-operator problem in a product space (similar
setups are considered in [20] and [22]). Let H be the Hilbert space obtained by endowing the
Cartesian product Hm with the scalar product 〈〈· | ·〉〉 : (x,y) 7→

∑m
i=1〈xi | yi〉, where x =

(xi)1≤i≤m and y = (yi)1≤i≤m denote generic elements in H. We shall denote by |||·||| the associated
norm on H. Now set

A : H → 2H : x 7→
m

×
i=1

Aixi, (4.4)

D =
{

(x, . . . , x) ∈ H | x ∈ H
}

, and

V : H → 2H : x 7→
1

m

(

m

×
i=1

V xi

)

. (4.5)

It is easily checked that A is maximal monotone with Yosida approximations

(∀φ ∈ ]0,+∞[) φA : x 7→
(

φAixi)1≤i≤m. (4.6)

Moreover, since D is a closed vector subspace of H, (1.8) yields

(∀x ∈ H) NDx =

{

D⊥ =
{

u ∈ H |
∑m

i=1 ui = 0
}

, if x ∈ D;

∅, otherwise.
(4.7)

Now let us set Z = zer
(

A + ND

)

and Z = zer(
∑m

i=1 Ai). Then it follows at once from (4.4) and
(4.7) that

Z = D ∩ Zm. (4.8)

Consequently, Assumption 4.1(i) implies that Z 6= ∅ and that domND ∩ int domA = D ∩
int domA 6= ∅. In turn, it follows from [26, Theorem 32.I] that A + ND is maximal monotone.
Thus, Assumption 1.1(i) is satisfied by A and ND. On the other hand, it follows from Assump-
tion 4.1(ii) that V satisfies Assumption 1.1(ii) with c : t 7→ γt2/m in (1.4). Now suppose that
‖eε‖/ε → 0 as ε ↓ 0 and set (∀ε ∈ ]0, 1[) eε = m−1(eε, . . . , eε). Then |||eε|||/ε = m−1/2‖eε‖/ε → 0
as ε ↓ 0 and we can apply Theorem 3.1 in H to the operators A, ND, and V to obtain:

(a) the existence and uniqueness of a point x0 ∈ Z such that 0 ∈ NZx0 + V x0;

(b) the existence and uniqueness of the curve (xε,φ(ε))ε∈]0,1[ defined by

(∀ε ∈ ]0, 1[) 0 ∈ φ(ε)Axε,φ(ε) + NDxε,φ(ε) + εV xε,φ(ε) + eε; (4.9)
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(c) the strong convergence of (xε,φ(ε))ε∈]0,1[ to x0 as ε ↓ 0 if φ(ε)/ε → 0 as ε ↓ 0 and x0 ∈
int domA.

Now let x = (x, . . . , x) be an arbitrary point in Z. Then (1.8) and (4.8) yield

NZx =
{

u ∈ H | (∀z ∈ D ∩ Zm) 〈〈z − x | u〉〉 ≤ 0
}

=
{

u ∈ H

∣

∣

∣
(∀z ∈ Z)

m
∑

i=1

〈z − x | ui〉 ≤ 0
}

=
{

u ∈ H

∣

∣

∣

m
∑

i=1

ui ∈ NZx
}

. (4.10)

Note that, by maximal monotonicity of V , the set V x is convex [7, Proposition 3.5.6.1]. It therefore
results from (4.10) and (4.5) that

0 ∈ NZx + V x ⇔ (∃v ∈ V x) − v ∈ NZx

⇔ (∃v ∈ V x) −
m

∑

i=1

vi ∈ NZx and
m

∑

i=1

vi ∈ V x

⇔ 0 ∈ NZx + V x. (4.11)

In view of (a), we therefore have x0 = (x0, . . . , x0), where x0 is the unique solution to (4.2). Next,
we observe that (4.9) and (4.7) imply that (xε,φ(ε))ε∈]0,1[ lies in D. Hence,

(∀ε ∈ ]0, 1[)(∃xε,φ(ε) ∈ H) xε,φ(ε) = (xε,φ(ε), . . . , xε,φ(ε)). (4.12)

Let us show that the inclusions (4.9) in H are equivalent to the inclusions (4.3) in H. We derive
from (4.9), (4.6), and (4.7) that, for every ε ∈ ]0, 1[, there exists (vε,i)1≤i≤m ∈ (V xε,φ(ε))

m such that
(

φ(ε)Aixε,φ(ε) + εm−1vε,i + m−1eε

)

1≤i≤m
∈ D⊥, i.e.,

∑m
i=1

φ(ε)Aixε,φ(ε) + εm−1
∑m

i=1 vε,i + eε = 0

or, equivalently, −
∑m

i=1
φ(ε)Aixε,φ(ε) − eε = εm−1

∑m
i=1 vε,i ∈ εV xε,φ(ε) since V xε,φ(ε) is convex.

This shows that (xε,φ(ε))ε∈]0,1[ satisfies (4.3). Conversely, arguing along the same lines, we deduce
that, if (xε,φ(ε))ε∈]0,1[ satisfies (4.3), then (xε,φ(ε))ε∈]0,1[ =

(

(xε,φ(ε), . . . , xε,φ(ε))
)

ε∈]0,1[
satisfies (4.9).

Therefore, we derive from (b) the existence and uniqueness of the curve (xε,φ(ε))ε∈]0,1[ in (4.3).
Finally, if φ(ε)/ε → 0 as ε ↓ 0 and x0 ∈ int

⋂m
i=1 dom Ai, then x0 ∈ int domA and (c) yields

‖xε,φ(ε) − x0‖
2 = m−1|||xε,φ(ε) − x0|||

2 → 0 as ε ↓ 0.

Corollary 4.3 Let (fi)1≤i≤m be functions in Γ0(H) such that the sets (dom fi)1≤i≤m are open
and satisfy

⋂m
i=1 dom fi 6= ∅, and such that the set Z of minimizers of

∑m
i=1 fi is nonempty. Let

h ∈ Γ0(H) be a finite function that maps every bounded subset of H into a bounded set, and which is
γ-strongly convex for some γ ∈ ]0, +∞[. Then h admits a unique minimizer x0 over Z. Moreover,
given φ : ]0, 1[ → ]0, 1[, the inexact minimization problems

(∀ε ∈ ]0, 1[) xε,φ(ε) ∈ Argmin≈eε

( m
∑

i=1

φ(ε)fi + εh

)

, where eε ∈ H, (4.13)

define a unique family (xε,φ(ε))ε∈]0,1[. Now suppose that (φ(ε) + ‖eε‖)/ε → 0 as ε ↓ 0. Then
xε,φ(ε) → x0 as ε ↓ 0.

16



Proof. Arguing as in the proof of Corollary 3.7, we learn that this is a special case of Theorem 4.2
with (∀i ∈ {1, . . . ,m}) Ai = ∂fi and V = ∂h. Note that the hypotheses on (fi)1≤i≤m imply that
x0 ∈

⋂m
i=1 dom fi =

⋂m
i=1 int dom fi = int

⋂m
i=1 dom Ai.
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[18] J.-J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, vol. 93,
pp. 273–299, 1965.

[19] A. Moudafi, On the regularization of the sum of two maximal monotone operators, Nonlinear
Anal., vol. 42, pp. 1203–1208, 2000.

[20] G. Pierra, Decomposition through formalization in a product space, Math. Programming, vol.
28, pp. 96–115, 1984.

[21] S. Reich, Constructing zeros of accretive operators II, Appl. Anal., vol. 9, pp. 159–163, 1979.

[22] J. E. Spingarn, Partial inverse of a monotone operator, Appl. Math. Optim., vol. 10, pp.
247–265, 1983.

[23] A. N. Tikhonov and V. Y. Arsenin: Solution of Ill-Posed Problems, Halsted Press, New York,
1977.

[24] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and
variational inequalities, SIAM J. Control Optim., vol. 29, pp. 119–138, 1991.
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