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M. Rébillat∗

X. Boutillon†

March 15, 2010

Abstract

A method is proposed to identify the mechanical properties of the skin and core materials of honeycomb sandwich.
All the elastic coefficients and loss-factors that matter in the dynamics of a panel in the thick-plate approximation
are identified. To this end, experimental natural modes (i.e. eigenmodes of the damped system) are compared to the
numerical modes of a large sandwich panel (lx,y/h ≃ 80). The chosen generic model for the visco-elastic behaviour
of the materials isE(1+ jη). The numerical modes are computed by means of a Rayleigh-Ritz procedure and their
dampings are predicted according to the visco-elastic model. The frequencies and dampings of the natural modes
of the panel are estimated experimentally by means of a high-resolution modal analysis technique. An optimisation
procedure yields the desired coefficients. A sensitivity analysis assess the reliability of the method.

1 Introduction

Because of their light weight and the easy adjustment of their mechanical properties, honeycomb sandwich panels
are widely used nowadays. However, their structural mechanical properties are difficult to predict accurately on
the basis of the material properties and identification procedures are often needed. Mixed numerical (Num) /
experimental (XP) methods are used to identify the parameters of a model by comparing simulated and measured
characteristics (for example modal dampingsαNum

n vs. αXP
n and frequenciesf Num

n vs. f XP
n of the first modes of

the system). In order to obtain good identification results,the model parameters must be sensitive to the measured
characteristics.

Several authors have addressed the problem of the identification of elastic and damping properties of sandwich
panels [1, 2]. The honeycomb sandwich panels raise special difficulties. In order to consider the honeycomb core as
homogeneous in the in-plane directions, up to a given frequency f , the corresponding wavelengthλmust contain at
least 50 cells [3]. For a typical cell side-lengthsHexa and heighth this implies that the dimensions of a panel must be
such thatlx,y > λ > 50sHexa. On the other hand, the panel must appear as a thick-plate (instead of thin-plate) if the
out-of-plane elastic and damping properties are to be identified. For flexural waves this implies that high-enough
frequencies are at stake:λ/h ≤ 6 [4]. In other words, the panel must be large enough and the observed dynamics
must include high-enough (but not too high. . . ) modes. Due tothe intrinsic dissipations of the materials, the modal
characteristics of high modes may be difficult to measure with the Fourier transform (FT) which is limited to modal
overlaps of≃ 30 % in most implementations. The high-resolution modal analysis (HRMA) technique [5] is an
alternative to the FT for the estimation of modal parametersup to a modal overlap of≃ 70 %.

In the present work, the identification of most elastic and damping properties of a honeycomb sandwich structure
is considered by means of the modal analysis of a large panel (lx,y/h ≃ 80). The HRMA technique is used to
estimate modal frequencies and dampings of the first 45 modesof the panel. An optimisation procedure, based on
a numerical thick-plate model is used afterwards to identify the corresponding elastic and damping properties.
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Figure 1: Geometry of the sandwich plate.

2 Mechanical model of the honeycomb sandwich panels

2.1 Hypotheses

The sandwich panel is made of 3 layers: two identical skins and a core (Fig. 1). The thicknesses of the core and
the skins arehc andhs respectively. The thickness of the panel ish = hc + 2hs. In the following, ”panel” designs
the physical structure whereas ”plate” refers to the idealised structure made out of the equivalent homogeneous
material. The following hypotheses are made on the dynamicsof the panel and plate:

• Displacements are small so that the materials and structures behave linearly.

• Only flexural waves are considered.

• The plate is considered to follow the Reissner-Mindlin approximations (thick-plate model).

• The wavelengths include at least 50 cells; according to Burton et al.[3], this ensures that the error on the
modal frequencies of the plate (with a homogeneous equivalent core) are less than 2% when compared to
those of the panel as computed by various FE-models.

The skin and core materials are each considered as homogeneous, orthotropic in thex andy directions, and
viscoelastic.

The formalism chosen for describing the viscoelastic behaviour is that of complex moduliE = E(1+ jη) which
do not depend on the frequency (see the model of materials in section 2.2). The Young’s and shear moduli and the
Poisson coefficient of the core areEc

x, Ec
y, Ec

z , Gc
xy, Gc

xz, Gc
yz, ν

c
yx, ν

c
xz, ν

c
yz andνcxy. The same parameters for the

skins are denoted by thes index. The properties of the homogeneous material equivalent to the whole sandwich are
denoted by theH index.

The following hypotheses are made on the sandwich panel:

• The sandwich panel is symmetric with respect to its mid-plane.

• Skins are very thin compared to the core so that shear stress in the skin can be ignored:hsGs
xz ≪ hcGc

xz (and
the same in they direction).

• The core is considered to be very soft (Ec
x ≪ E s

x, Ec
y ≪ E s

y andGc
xy ≪ Gs

xy). Given the generic expression

of the moduli of the homogeneous equivalent materialEH =

(

hc

h

)3

Ec +















1−

(

hc

h

)3












E s, this ensures that all

in-plane stress in the plate are entirely due to those in the skins.

Following these hypotheses, the influence ofEc,s,H
z , νc,s,Hxz , ν

c,s,H
yz ,G

s
xz, Gs

yz, Ec
x, Ec

y, Gc
xy, ν

c
xy, ν

c
yx is neglected in

what follows. These hypotheses are generally fulfilled in common honeycomb sandwich panels. The typical orders
of magnitude for the considered parameters in this kind of sandwich panels are:

{

hs/hc ≃ 10−1

Ec
x/E

s
x ≃ Ec

y/E
s
y ≃ Gc

xy/G
s
xy ≃ 10−5 (1)
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2.2 Model of the materials

The damping of plate vibrations has different origins. In the present study, it is assumed that panels vibrate below
their coincidence acoustical frequencies. Consequently,the damping due to acoustical radiation in surrounding air
is very small compared to the structural damping. Among the different structural damping models, we have retained
the standard hysteretic model (which is frequency-independent, see for example [6]). The relationship between the
stressǫγ and the strainσγ in eachγ−material (γ = s, c, or H) involves 7 complex numbers and can be written, to
first order inη as:

σγ =









































Eγx(1+ jηγx) ν
γ
yxEγx [1 + j(ηγνyx + η

γ
x)] 0 0 0

ν
γ
xyE
γ
y [1 + j(ηγνxy

+ η
γ
y)] Eγy (1+ jηγy) 0 0 0

0 0 Gγxz(1+ jηγxz) 0 0
0 0 0 Gγyz(1+ jηγyz) 0
0 0 0 0 Gγxy(1+ jηγxy)









































ǫγ (2)

The symmetry of the strain/stress relation leads to the additional relationshipsνγxyE
γ
y = ν

γ
yxEγx andηγνxy

+ η
γ
y =

η
γ
νyx + η

γ
x which leaves 12 independent real parameters to be identifiedfor each material (24 altogether). In order to

keep a formal symmetry in the mathematical treatment, one defines1:

νγ =

√

ν
γ
xyν
γ
yx η

γ
ν = η

γ
νxy
+ η
γ
y (3)

2.3 Equivalent thick plate

Under the hypothesis and for the orders of magnitude given insection 2.1, the honeycomb sandwich panel behaves
in the low frequency range like a homogeneous thick-plate. The thickness of the plate is chosen to beh. Its
mechanical properties are given in Eq. (4) and (5) as functions of the mechanical and geometrical properties of the
skins and the core.
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The 12 independent real parameters{EH
x , η

H
x , E

H
y , η

H
y ,G

H
xy, η

H
xy,G

H
xz, η

H
xz,G

H
yz, η

H
yz, ν

H , ηH
ν } are to be identified. Their

knowledge yields the elastic and damping properties of eachlayer of the honeycomb sandwich panel provided that
the 12-equation system formed by Eqs. (4) and (5) is invertible. A sufficient condition for that is:

ηc
x

Ec
x

E s
x
≪ ηs

x ηc
y

Ec
y

E s
y

≪ ηs
y η

c
xy

Gc
xy

Gs
xy
≪ ηs

xy (6)

with already
Ec

x

E s
x
≪ 1,

Ec
y

E s
y

≪ 1, and
Gc

xy

Gs
xy
≪ 1 (see section 2.1). This condition is not satisfied only if the ηc-

coefficients are several orders of magnitude larger than theηs-ones. Since this is not the case here and rarely the
case in general2, the identification of theEH

x , etc . . . yields a measurement of the mechanical properties of theskin
and core materials.

2.4 Potential, kinetic and dissipated energies in the equivalent thick-plate

To model the dynamical behaviour of the equivalent homogeneous thick plate, the first order Reissner-Mindlin
theory [7] has been chosen. The displacements{u, v, w} in the{x, y, z}-directions respectively are:

u(x, y, z, t) = −zΦx(x, y, t) v(x, y, z, t) = −zΦy(x, y, t) w(x, y, z, t) = w0(x, y, t) (7)

The potential energy of the plate is:

1One must keep in mind thatηγν is not the imaginary part ofνγ.
2It can be the case when skins are made of metal.
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with

D1 =
EH

x h3

12(1− νxyνyx)
D2 =

νxyEH
y h3

6(1− νxyνyx)
D3 =

EH
y h3

12(1− νxyνyx)

D4 = 2κ2yzhGyz D5 = 2κ2xzhGxz D6 =
Gyzh3

6

(9)

The shear correction factorsκ2yz andκ2xz account for the fact that Eq. (7) is an approximation: theΦx,y coefficients
depend lightly onz and sections of the plate do not remain plane in the flexural deformation. The valuesκyz = κxz = 1
have been chosen according to the recommendations of [8] forsandwich panels.

Based on the material model shown in (section 2.2), the lost fraction of energy during one cycle is given in
Eq. (10) as:
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(10)
The kinetic energyT of the system is given in Eq. (11) as a function ofΦx, Φy, andw0. In this expression,ρH

is the density of the equivalent homogeneous thick plate which is given byhρH = hcρc + 2hsρs.

T =
ρHω2

2

$
(V)

[

u2 + v2 + w2
]

dτ =
ρHω2

2

"
(S)

[

h3

12
(Φ2

x + Φ
2
y) + hw2

0

]

dxdy (11)

3 Numerical model of the thick plate

In order to compare experimental results to numerical simulations, it is necessary to evaluate the damping factors
of numerical modes. The dynamics of the panel is given by the hypotheses listed in section 2.1, the Eqs. (2),
and the boundary conditions. Instead of a direct time-integration of the motion, we model here the damping of
the numerical modes of the associated conservative system,under the hyptothesis of light damping. The problem
consists in evaluating the relationships between theαNum

n damping factors and theηH loss-factors.

3.1 Modal representation of the system

The honeycomb sandwich panel is considered here as a non conservative systemPNC with N degrees of freedom
q = {qn}. The damping model presented in section 2.2 corresponds to viscous damping. Under this hypothesis, the
equation of the free motion ofPNC can be written as:

Mq̈ + Cq̇ + Kq = 0 (12)

whereM, C and K are the mass, damping, and stiffness matrices. In what follows, the modes ofPNC are called
natural modes. We also refer to the associated conservativesystemPC corresponding toC = 0, whose modes will
be called normal modesξn and the normal frequenciesfn.

If PNC is lightly damped, it can be shown [9] that the natural modes are ξn and the natural frequencies are
fn + jαn to first order.

Let Un be the potential energy associated with thenth mode ofPNC. It varies in time as exp(−2αnt) so that the
energy lost by this mode during one cycle∆Un is:

∆Un = −2
αn

fn
Un (13)

Once the mode shapes ofPC are known, Eqs. (8), (10), and (13) yield the modal dampingsαn of PNC .
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3.2 Rayleigh-Ritz procedure

A Rayleigh-Ritz procedure has been used to derive the mode shapesξNum
n and the modal frequenciesf Num

n of PC.
To this end,Φx(x, y), Φy(x, y), andw0(x, y) have been projected on an orthonormal polynomial basis of order Q
satisfying the free-free boundary conditions [10]:

Φx(x, y) =
∑

i, j

Li j pi(x)p j(y) Φy(x, y) =
∑

i, j

Mi j pi(x)p j(y) w0(x, y) =
∑

i, j

Ni j pi(x)p j(y) (14)

The Hamilton principle is applied, leading to Eq. (15). The kinetic and potential energiesT andU, defined in
section 2.4 are calculated with Eqs. (14).

∀(i, j) ∈ [0,Q − 1]2 :
∂(T − U)
∂Li j

= 0
∂(T − U)
∂Mi j

= 0
∂(T − U)
∂Ni j

= 0 (15)

The above system of 3Q2 linear equations can be re-written as [K−4π2 f 2M]ξ = 0 wheref is the eigenfrequency
andξ is the eigenvector of unknown coefficientsLi j, Mi j andNi j. The resolution of this eigenvalue problem gives a
straightforward access to the modal frequenciesf Num

n and mode shapesξNum
n of PC.

3.3 Derivation ofαNum
n

By introducing the numerical mode shapesξNum
n and frequenciesf Num

n found in section 3.2 in the energies expres-
sions of section 2.4, the relations Eqs. (16) are obtained. The coefficientstn andunk depend only on the geometry
and mass parameters of the plate and on the modal shapeξNum

n . For the subscripts ofη, {x, ν, y, yz, xz, xy} have been
replaced by{1,2,3,4,5,6}.

∀n ∈ [1,N] : Tn = 4π2 f 2
n tn Un =

6
∑

k=1

Dkunk ∆U = −π
6

∑

k=1

ηkDkunk (16)

Using relations Eqs. (16), the expression Eq. (17) of the modal dampingsαNum
n can be deduced from Eq. (13)

using the fact thatTn = Un for PC. One can notice thanαn is a linear combination of theηk.

αn =
fn∆Un

2Tn
=

6
∑

k=1

ηkDk
unk

4π fntn
(17)

4 Experimental study of a honeycomb sandwich panel

4.1 Experimental setup

A rectangular honeycomb sandwich panel (NomexR© honeycombs core and paper skins) is studied experimentally.
The known parameters of the panel are given in table 1. Sincelx,y/h ≃ 80, the panel is considered to satisfy
the Reissner-Mindlin approximations. The panel is suspended by thin wires in order to ensure free-free boundary
conditions. It is acoustically excited by an electro-dynamical loudspeaker placed in its vicinity and driven by a
wide-band electrical signal. The panel response was measured with a laser vibrometer pointing in one corner. This
ensures that all modes are present in the response. By means of a specially designed excitation signal, the impulse
response of the panel can be reconstructed [11].

lx ly hs hc sHexa ρc ρs

39.15 cm 59.10 cm 0.2 mm 4.88 mm 4 mm 37.8 kg/m3 713 kg/m3

Table 1: Geometry and mass of the honeycomb sandwich panel. The side-length of the hexagonal core-cells is
sHexa.

4.2 High resolution modal analysis

The impulse response of the non-conservative system can be expressed as a summation over its natural modes:

h(t) =
N

∑

n=1

ξn exp(j2π fnt − αnt + jφn) (18)
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In order to extract their experimental modal frequenciesf XP
n and dampingsαXP

n , a recently developed modal
analysis method [5] has been applied to velocity impulse responses of honeycomb sandwich panels as obtained in
section 4.1. In the available noise conditions, the parameters of the 45 first modes could be extracted. The modal
damping of the highest modes was≃ 50 %, which is out of reach of traditional implementations ofthe Fourier
transform, hence our use of the new method.

Using several bandpass filters associated with the ESPRIT and ESTER algorithms (see reference [5] for details),
it is shown that this method yields a precise estimation offn andαn in presence of moderate noise: the modal
frequenciesfn can be estimated with a precision of≃ 0.01 % and the modal dampings with a precision of≃ 1 %.
Moreover, this method allows for the identification of modalparameters of modes having a modal overlap up to
70 %.

5 Optimization procedure

5.1 Estimation method

This section describes how to derive{EH
x , η

H
x , E

H
y , η

H
y ,G

H
xy, η

H
xy,G

H
xz, η

H
xz,G

H
yz, η

H
yz, ν

H , ηH
ν } from the experimental val-

ues of the modal frequenciesf XP
n and dampingsαXP

n . Since the modal frequencies of the conservative and the real
systems are equal to first order (section 3.1), it is valid to find separately and successively the elastic constants and
the loss factors.

To first order, the modal frequencies depend only on the elastic constants of the homogeneous equivalent thick-
plate model{EH

x , E
H
y ,G

H
xy,G

H
xz,G

H
yz, ν

H}. Since this dependence is non-linear, a cost functionCE is defined (Eq. (19))
and an optimisation procedure based on the gradient-methodhas been implemented.

CE =

N
∑

n=1

(

f XP
n − f Num

n

f XP
n

)2

(19)

It has been shown in section 3.3 that the damping coefficients{αNum
n }n∈[1,N] can be expressed as linear combina-

tions of the{ηH
x , η

H
y , η

H
xy, η

H
xz, η

H
yz, η

H
ν } loss factors. Therefore, the latter can be obtained by a simple least mean square

method, with the constraint that loss factors remain positive.

5.2 Results

The optimisation is performed on the 45 first modal frequencies and dampings. The numerical model used a
Q = 14-order basis which proved to ensure the convergence of thehigher modes values. The identified visco-
elastic parameters of the equivalent homogeneous plate aregiven in Tab. 2. The relative errors in modal frequencies
and dampings are shown in Fig. 2. It can be seen that the agreement is very good for modal frequencies (mean
absolute error of 1.8 %). The predicted modal dampings fit well the mean measured ones, but the difference is more
important (mean absolute error of 10.2 %).

EH
x EH

y
GH

xy GH
xz GH

yz νH
xy νH

yx

Real part 1.0 GPa 1.4 GPa 0.46 GPa 12 MPa 26 MPa 0.23 0.33
Loss factor (%) 1.3 1.4 1.1 4.4 8.1 0 0.1

Table 2: Identified parameters of the homogenised model. Thecoefficients in the two last columns are mutually
related by the symmetry relationships (cf. section 2.2).

5.3 Sensitivity analysis

The sensitivities of the frequency valuesfn to the coefficients {EH
x , E

H
y ,G

H
xy,G

H
xz,G

H
yz} are defined asS fn (X) =

∂ fn
∂X

(

fn
X

)−1

. They reflect the information contained in a modal frequencyrelatively to the elastic parameterX.

Results are presented in Fig. 3. Since the modal frequenciesare very little sensitive to the Poisson coefficients,
their sensitivities to these parameters have not been represented. As expected, it can be seen in Fig. 3a that modes
of the form (0, i) or ( j,0) convey a lot of information relatively toEx and Ey respectively. Since the thick-plate
model differs from the thin-plate model for the higher frequencies, itis normal that there is almost 10 times more
information relative toGxz and toGyz in the higher modes than in the lower ones (Fig. 3b). The lowersensitivity of
Gxz to the modal frequencies than that ofGyz is simply due to the aspect ratio of the plate (lx < ly).
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Figure 2: Comparisons between measured and predicted modalfrequencies (left) and dampings (right).

6 Conclusion

This identification method yields all the mechanical parameters of the sandwich materials that matter dynamically,
under only mild hypotheses. Compared to the method proposedby ref. [1], it yields loss factors. Compared to the
method proposed by ref. [2], it is considerably easier and faster to implement: only one vibrating point is measured,
no FEM is needed; it also reaches frequency domains that are usually out of reach of the modal analyses based on
the Fourier transform. Incidentally, the method presentedhere could be used to access the frequency-dependence
of the loss factors by considering only modes in a given frequency range. Compared to the static investigations
on each sandwich component, this dynamical method is non-destructive and the experimental test needs very little
time. Avoiding heavy lab-equipment, it is a good candidate for industrial in-line process of quality control.
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