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ABSTRACT
Querying the semantic web is mainly done through SPARQL.
This language has been studied from different perspectives
such as optimization and extension. One of its extensions,
PSPARQL (Path SPARQL) provides queries with paths of
arbitrary length. We study the static analysis of queries
written in this language, in particular, containment of queries:
determining whether, for any graph, the answers to a query
are contained in those of another query. Our approach con-
sists in encoding RDF graphs as transition systems and
queries as µ-calculus formulas and then reducing the con-
tainment problem to testing satisfiability in the logic.

1. INTRODUCTION
Access to semantic web data expressed in Resource De-

scription Framework (RDF) can be achieved through query-
ing. Currently, querying RDF graphs is done mainly with
the SPARQL query language. It has been a source of re-
search from various perspectives mainly extending the lan-
guage with new features and optimizing queries automat-
ically. Querying RDF graphs with SPARQL amounts to
matching graph patterns that are sets of triples of sub-
jects, predicates and objects. These triples are usually con-
nected to form graphs by means of joins expressed using sev-
eral occurrences of the same variable. On the other hand,
PSPARQL (Path SPARQL) allows querying of arbitrary
length paths by using regular expression patterns. Regu-
lar path queries (RPQs) are useful for expressing complex
navigations in a graph. In particular, union and transitive
closure are crucial when one does not have a complete knowl-
edge of the structure of the knowledge base. SPARQL 1.0
lacks recursion mechanism and supports a simple form of
RPQs however its extensions such as PSPARQL [2] and its
successor SPARQL1.1 support this feature.

Query optimization aims at improving the performance
of query evaluation. Since queries in the semantic web are
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evaluated over huge RDF graphs, optimizations are crucial.
Many studies contributed to query optimization using in
particular the relational algebra from the database commu-
nity [15]. This is very often achieved by using rules for
rewriting queries into equivalent but faster ones. All these
works, however, need at some point to prove the correctness
of query optimization, i.e., the semantics of the optimized
query remains the same as the original one. In other terms,
the results of a given query are exactly the same as the op-
timized one regardless of the considered database. This can
be reduced to query containment. Thus query containment
plays a central role in database and knowledge base query
optimization [15, 8, 4]. In addition, query containment can
be of independent interest for performing other optimiza-
tions. For example, if a query q1 is contained in q2, then q1
can be evaluated on the materialized view of q2 rather than
on the whole data graph.

Such approaches have also been applied to SPARQL [19],
but not yet for PSPARQL.

We address the problem of static analysis of PSPARQL
queries, encompassing satisfiability, containment and equiv-
alence of queries. We introduce an approach which has al-
ready been successfully applied for XPath [11]. PSPARQL is
interpreted over graphs, hence we encode it in a graph logic,
specifically the alternation-free fragment of the µ-calculus
[16] with converse and nominals [22] interpreted over la-
beled transition systems. We show that this logic is pow-
erful enough to deal with query containment where queries
are made of regular expression patterns which allow naviga-
tion through the graph. One benefit of using a µ-calculus
encoding is to take advantage of fixpoints and modalities
for encoding recursion. Furthermore, this logic admits ex-
ponential time decision procedures that can be implemented
efficiently in practice [23, 11].

After presenting RDF, PSPARQL and the µ-calculus (§2),
we show how to translate RDF graphs into transition sys-
tems (§3.1) and PSPARQL queries into µ-calculus formulas
(§3.2). Therefore, query containment in PSPARQL can be
reduced to unsatisfiability test in µ-calculus (§4).

2. PRELIMINARIES
This section introduces the basics of RDF and PSPARQL.

2.1 RDF: Resource Description Framework
RDF is a language used to express structured information

on the Web as graphs. Here we present a compact formaliza-
tion of RDF [14]. Let U, B, and L be three disjoint infinite



sets denoting the set of URIs (identify a resource), blank
nodes (denote an unidentified resource) and literals (a char-
acter string or some other type of data) respectively. We
abbreviate any union of these sets as for instance, UBL =
U ∪B∪L. A triple of the form <s, p, o>∈ UB×U ×UBL is
called an RDF triple. s is the subject, p is the predicate, and
o is the object of the triple. Each triple may be thought of
as an edge between the subject and the object labelled by
the predicate, hence a set of RDF triples is often referred to
as an RDF graph.

Example 1 (RDF Graph). Here are 8 triples of an
RDF graph about writers and their works: (all identifiers
correspond to URIs, :b is a blank node):

Poe wrote thegoldbug . Baudelaire translated thegoldbug .

Poe wrote theraven . Mallarmé translated theraven .

theraven type Poem . Mallarmé wrote :b .

:b type Poem . thegoldbug type Novel .

RDF has a model theoretic semantics [14].

2.2 RDFS
RDF Schema (RDFS) [14] may be considered as a sim-

ple ontology language expressing subsumption relations be-
tween classes or properties. Technically, this is an RDF
vocabulary used for expressing axioms constraining the in-
terpretation of graphs. The RDFS vocabulary and its se-
mantics are given in [14]. We consider a core fragment of
RDFS called ρdf [17] which contains the minimal vocabu-
laries, ρdf = {sp,sc,type,dom,range}. Where sp denotes
subproperty relation, sc is subclass, and dom is for domain.
The authors in [17] proved this fragment to be minimal and
well-behaved. Moreover, its semantics is equivalent to that
of the full RDFS.

In [14], a set of rules are given which allow to deduce or
infer new triples using RDF Schema assertions. For our pur-
poses, we consider a subset of RDFS inference or deduction
rules, shown in Table 1.

Subclass Subproperty Typing

<a,sc,b> <b,sc,c>
<a,sc,c>

<a,sp,b> <b,sp,c>
<a,sp,c>

<a,dom,b> <x,a,y>
<x,type,b>

<a,sc,b> <x,type,a>
<x,type,b>

<a,sp,b> <x,a,y>
<x,b,y>

<a,range,b> <x,a,y)
<y,type,b>

Implicit Typing

<a,dom,b> <c,sp,a> <x,c,y>
<x,type,b>

<a,range,b> <c,sp,a> <x,c,y>
<y,type,b>

Table 1: RDFS inference rules

Example 2. This example shows the usage of RDFS in-
ference rules, consider the graph {<John,type,Student>,
<Student,sc,Person>}. By applying Subclass rule, rule [2],
it can be deduced that <John,type,Person>.

2.3 PSPARQL
PSPARQL (short for Path SPARQL) extends SPARQL

with regular expression patterns. SPARQL [18] is a W3C
recommended query language for RDF. PSPARQL over-
comes the limitation of the current version of SPARQL which
is the inability to express path queries. Before presenting the
syntax and semantics of PSPARQL, let us briefly introduce

the notion of regular expression patterns (cf. [2] for detailed
discussion).

2.3.1 Regular Expressions
Regular expressions are patterns used to describe lan-

guages (i.e., sets of strings) from a given alphabet. Let
Σ = {a1, ..., an} be an alphabet. A string/word is a finite
sequence of symbols from the alphabet Σ. A language L is a
set of words over Σ which is a subset of Σ∗, i.e, L(Σ) ⊆ Σ∗.
A word can be either empty ε or a sequence of alphabet
symbols a1...an . If A = a1...an and B = b1...bm are two
words over some alphabet Σ, then A.B is a word over the
same alphabet defined as: A.B = a1...anb1...bm.

Definition 1 (Regular expression pattern). Given
an alphabet Σ and a set of variables V , a regular expression
R(Σ, V ) can be constructed inductively as follows:

e := uri | x | e1 p e2 | e1.e2 | e+ | e∗

Where e ∈ R(Σ, V ) and x denotes a variable, e1 p e2 denotes
disjunction, e1.e2 denotes concatenation, e+ denotes posi-
tive closure, and e∗ denotes Kleene closure. Let U be a set
of URIs and V a set of variables, a regular expression over
R(U, V ) can be used to define a language over the alphabet
U ∪ V .

2.3.2 PSPARQL Syntax
The only difference between the syntax of SPARQL and

PSPARQL is on triple patterns. Triple patterns in PSPARQL
contain regular expressions in property positions instead of
only URIs or variables as it is the case of SPARQL. Queries
are formed based on the notion of query patterns defined in-
ductively from triple patterns: a tuple t ∈ UBV×R(U, V )×
UBLV, with V a set of variables disjoint from UBL, is called
a triple pattern. Triple patterns grouped together using
connectives (AND,UNION,OPT) form graph patterns (a.k.a
query patterns). We use an abstract syntax that can be
easily translated into µ-calculus.

Definition 2 (Query Pattern). A PSPARQL query
pattern q is inductively defined as follows :

q = t ∈ UBV ×R(U, V )×UBLV

| q1 AND q2 | q1 UNION q2 | q1 OPT q2 | q1 MINUS Q2

Where R(U, V ) is a regular expression pattern defined over
URIs U and query variables V .

Definition 3. A PSPARQL SELECT query is a query
of the form q{−→w } where −→w is a tuple of variables in V which
are called distinguished variables, and q is a query pattern.

Example 3 (PSPARQL queries). Consider the follow-
ing queries q1{?x} and q2{?x} on the graph of Example 1:

q1

SELECT ?x
WHERE {

?x (translated | wrote) . type Poem.
}

q2

SELECT ?x
WHERE {

{ ?x (translated . type) Poem }
UNION

{ ?x wrote ?l .}
}



2.3.3 PSPARQL Semantics
The semantics of PSPARQL queries is given by a partial

mapping function ρ : V 7→ UBL. The domain of ρ, dom(ρ),
is the subset of V on which ρ is defined. Two mappings ρ1
and ρ2 are said to be compatible if ∀x ∈ dom(ρ1)∩dom(ρ2),
ρ1(x) = ρ2(x). Hence, ρ1 ∪ ρ2 is also a mapping. This
allows for defining the join, union, and difference operations
between two sets of mappings M1, and M2 as shown below:
M1 1M2 = {ρ1 ∪ ρ2 | ρ1 ∈M1, ρ2 ∈M2

are compatible mappings }
M1 ∪M2 = {ρ | ρ ∈M1 or ρ ∈M2}
M1 \M2 = {ρ ∈M1 | ∀ρ1 ∈M2, ρ and ρ1

are not compatible }
Now, we are ready to define the evaluation of PSPARQL
triple patterns recursively as follows:

J<x, uri, y>KG = {ρ | <ρ(x), ρ(uri), ρ(y)>∈ G}
J<x, z, y>KG = {ρ | <ρ(x), ρ(z), ρ(y)>∈ G}

J<x, e p e′, y>KG = J<x, e, y>KG ∪ J<x, e′, y>KG
J<x, e.e′, y>KG = J<x, e, n>KG 1 J<n, e′, y>KG

J<x, e+, y>KG = {ρ | ∃ <n0, e, n1>,<n1, e, n2>, ...,

<nk−1, e, nk>∈ G such that n0 = ρ(x),

nk = ρ(y) and e...e ∈ L(e+)}
J<x, e∗, y>KG = {ρ | ρ(x) = ρ(y)} ∪ J<x, e+, y>KG

The evaluation of query patterns over an RDF graph G is
inductively defined by:

J.KG : q → 2V×UBL

Jq1 AND q2KG = Jq1KG 1 Jq2KG
Jq1 UNION q2KG = Jq1KG ∪ Jq2KG

Jq1 OPT q2KG = (Jq1KG 1 Jq2KG) ∪ (Jq1KG \ Jq2KG)

Jq1 MINUS q2KG = Jq1KG \ Jq2KG
Jq{−→w }KG = π−→w (JqKG)

Where the projection operator π−→w selects only those part of
the mappings relevant to variables in −→w .

Example 4 (Answers to SPARQL queries). The an-
swers to query q1 and q2 of Example 3 on graph G of Exam-
ple 1 are respectively {Poe,Mallarme} and {Baudelaire, Poe,
Mallarme}. Hence, Jq1KG ⊆ Jq2KG.

Beyond this particular example, the goal of query con-
tainment is to determine whether this holds for any graph.

Definition 4 (Containment). Given queries q1 and
q2 with the same arity, q1 is contained in q2, denoted q1 v q2,
iff for any graph G, Jq1KG ⊆ Jq2KG.

Definition 5 (Equivalence). Two queries q1 and q2
are equivalent, q1 ≡ q2, iff q1 v q2 and q2 v q1.

3. ENCODINGS
In this section, encodings of RDF graphs as transition

systems, and regular expressions and PSPARQL queries as
µ-calculus formulas are explained.

3.1 Encoding RDF graphs as Transition Sys-
tems

Before presenting the encoding of RDF graphs as tran-
sition systems over which the µ-calculus is interpreted, we
introduce the syntax and semantics of the µ-calculus.

3.1.1 µ-calculus
The modal µ-calculus [16] is an expressive logic which

adds recursive features to modal logic using fixpoint opera-
tors.

The syntax of the µ-calculus is composed of countable
sets of atomic propositions AP , a set of nominals Nom, a
set of variables Var, a set of programs Prog for navigating in
graphs. A µ-calculus formula, ϕ, can be defined inductively
as follows:

ϕ ::= > | ⊥ | p | X | ¬ϕ | ϕ ∨ ψ |
ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ | µXϕ | νXϕ

where p ∈ AP ∪ Nom,X ∈ V ar and a ∈ Prog is either an
atomic program or its converse ā. The greatest and least
fixpoint operators (ν and µ) respectively introduce general
and finite recursion in graphs [16].

The semantics of the µ-calculus is given over a transi-
tion system, K = (S,R,L) where S is a non-empty set of
nodes, R : Prog → 2S×S is the transition function, and
L : AP → 2S assigns a set of nodes to each atomic propo-
sition or nominal where it holds, such that L(p) is a single-
ton for each nominal p. For converse programs, R can be
extended as R(ā) = {(s′, s) | (s, s′) ∈ R(a)}. Besides, a val-
uation function V : Var→ S is used to assign a set of nodes
to each variable. For a valuation V , variable X, and a set
of nodes S′ ⊆ S, V [X/S′] is the valuation that is obtained
from V by assigning S′ to X. The semantics of a formula in
terms of a transition system (a.k.a. Kripke structure) and
a valuation function is represented by JϕKKV . The semantics
of basic µ-calculus formula is defined as follows:

JpKKV = L(p), p ∈ AP ∪Nom

JXKKV = V (X), X ∈ V ar

J¬ϕKKV = S\JϕKKV
Jϕ ∧ ψKKV = JϕKKV ∩ JψKKV
Jϕ ∨ ψKKV = JϕKKV ∪ JψKKV
J〈a〉ϕKKV = {s ∈ S|∃s′ ∈ S.(s, s′) ∈ R(a) ∧ s′ ∈ JϕKKV }

J[a]ϕKKV = {s ∈ S|∀s′ ∈ S.(s, s′) ∈ R(a)⇒ s′ ∈ JϕKKV }

JµXϕKKV =
⋂
{S′ ⊆ S|JϕKKV [X/S′] ⊆ S′}

JνXϕKKV =
⋃
{S′ ⊆ S|S′ ⊆ JϕKKV [X/S′]}

Once providing the syntax and semantics of µ-calculus, the
next subsections introduce representation of RDF graphs as
transition systems and queries as formulas.

3.1.2 Encoding of RDF graphs
An RDF graph is encoded as a transition system in which

nodes correspond to RDF entities and RDF triples. Edges
relate entities to the triples they occur in. Different edges
are used for distinguishing the functions (subject, object,
predicate). expressing predicates as nodes, instead of atomic
programs, makes it possible to deal with full RDF expres-
siveness in which a predicate may also be the subject or
object of a statement.

Definition 6 (Transition system for RDF graph).
Given an RDF graph, G ⊆ UB × U × UBL, the transi-
tion system associated G, σ(G) = (S,R,L) over AP =
UBL ∪ {s′, s′′}, is such that:



• S = S′∪S′′ with S′ and S′′ the smallest sets such that
∀u ∈ UG, ∃nu ∈ S′, ∀b ∈ BG, ∃nb ∈ S′, ∀l ∈ LG, ∃nl ∈
S′ and ∀t ∈ G,∃nt ∈ S′′,

• ∀t =<s, p, o>∈ G, 〈ns, nt〉 ∈ R(s), 〈nt, np〉 ∈ R(p),
and 〈nt, no〉 ∈ R(o),

• L : UBL→ 2S ; ∀u ∈ UG, L(u) = {nu}, ∀b ∈ BG, L(b) =
S′, L(s′) = S′, ∀l ∈ LG, L(l) = {nl} and L(s′′) = S′′,

• ∀nt, nt
′
∈ S′′, 〈nt, nt

′
〉 ∈ R(d).

The program d is introduced to render each triple accessi-
ble to the others and thus facilitate the encoding of queries.
The function σ associates what we call a restricted tran-
sition system to any RDF graph. Formally, we say that a
transition system K is a restricted transition system iff there
exists an RDF graph G such that K = σ(G).

A restricted transition system is thus a bipartite graph
composed of two sets of nodes: S′, those corresponding to
RDF entities, and S′′, those corresponding to RDF triples.
For example, Figure 1 shows the restricted transition system
associated with the graph of Example 1.
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Figure 1: Transition system encoding the RDF
graph of Example 1. Nodes in S′′ are black anony-
mous nodes; nodes in S′ are the other nodes (d-
transitions are not displayed).

When checking for query containment, we consider the
following restrictions:

• The set of programs is fixed: Prog = {s, p, o, d, s̄, p̄, ō, d̄}
(note that d = d̄).

• A model must be a restricted transition system.

This last constraint can be expressed in the µ-calculus as
follows:

Proposition 1 (RDF restriction on transition systems).
A formula ϕ is satisfied by some restricted transition system
if and only if ϕ∧ϕr is satisfiable by some transition system,
i.e. ∃KrJϕKKr 6= ∅ ⇐⇒ ∃KJϕ ∧ ϕrKK 6= ∅, where:

ϕr = νX.θ ∧ κ ∧ (¬〈d〉> ∨ 〈d〉X)

in which θ = 〈s̄〉s′ ∧ 〈p〉s′ ∧ 〈o〉s′ ∧ ¬〈s〉> ∧ ¬〈p̄〉> ∧ ¬〈ō〉>
and κ = [s̄]ξ ∧ [p]ξ ∧ [o]ξ with

ξ =

{
¬〈s̄〉> ∧ ¬〈o〉> ∧ ¬〈p〉> ∧ ¬〈d〉> ∧ ¬〈d̄〉>
∧¬〈s〉s′ ∧ ¬〈ō〉s′ ∧ ¬〈p̄〉s′.

The formula ϕr ensures that θ and κ hold in every node
reachable by a d edge, i.e. in every S′′ node. The formula θ
forces each S′′ node to have a subject, predicate and object.
The formula κ navigates from a s′′ node to every reachable
s′ node, and forces the latter not to be directly connected
to other subject, predicate or object nodes.

Proof. (⇒) Assume that ∃KrJϕKKr 6= ∅, since ϕr is sat-
isfied by only transition systems, one gets JϕrKkr 6= ∅. Hence
it follows that, ∃KrJϕKKr 6= ∅ and JϕrKkr 6= ∅ which implies
∃KrJϕKkr ∧ JϕrKKr 6= ∅. From this, using the semantics of
µ-calculus formula, one obtains ∃KrJϕ ∧ ϕrKKr 6= ∅. Since
a restricted transition system is also a transition system,
Kr ⊆ K, it follows that ∃K.Jϕ ∧ ϕrKK 6= ∅.
(⇐) Assume that ∃KJϕ ∧ ϕrKK 6= ∅. We construct a re-
stricted transition system model Kr = (Sr, Rr, Lr) and a
function f : Kr → K from K = (S,R,L). Add a node n′0 to
Sr with f(n′0) = n0 where ϕ∧ϕr is satisfied in K. Supppose
we have constructed a node nr of Sr. For j ∈ {s, p, o}, if
there is n ∈ S with (f(nr), n) ∈ R(j), then pick one such
n and add a node n′r to Sr with f(n′r) = n. Finally, for an
atomic proposition p, Lr(p) = {nr ∈ Sr | f(nr) ∈ L(p)}.
The RDF triple structure is maintained in Kr i.e.
〈(s, s′′), (s′′, p), (s′′, o)〉 is valid through out the graph. If
there were node pairs outside of this structure, then ϕr will
not be satisfied. Throught out the graph, θ and κ ensure
that for each triple node s′′ ∈ Sr, there exists exactly one
incoming subject edge, one outgoing property edge, and one
outgoing object edge. Hence, JϕrKKr 6= ∅
To verify that JϕKKr 6= ∅, it is enough to show JϕKK ⇒
JϕKKr by induction on the structure of ϕ.

3.2 Encoding PSPARQL Queries as µ-calculus
Formulas

Queries are translated to µ-calculus formulas. The princi-
ple of the translation is that each triple pattern is associated
with a sub-formula stating the existence of the triple some-
where in the graph. Hence, they are quantified by µ so as to
put them out of the context of a state. In this translation,
variables are replaced by nominals which will be satisfied
when they are matched in such triple relations. For that
purpose, we use a function λ : V UBL→ UBL such that:

λ(x) =

{
vx if x ∈ V
x if x ∈ UBL

The function A encodes queries inductively on the struc-
ture of query patterns. AND and UNION are replaced by
boolean connectives ∧ and ∨ respectively. The MINUS op-
erator is translated as ∧ and ¬. OPT queries carry implicit
negation in that they can be expressed as a logic formula in
the following form: q1 OPT q2 = (q1 ∧ q2) ∨ (q1 ∧ ¬q2). Un-
fortunately, this formula can be reduced to just q1 which is
not the intended semantics of the operator. Hence, we need
another approach in order to correctly encode this operator.
To do so, we rely on the interpretation given below:

q1 OPT q2 =

{
q1 AND q2 if ρ(q2) ∈ G
q1 if ρ(q2) /∈ G

The above interpretation of OPT operator dictates that:
q1 OPT q2 evaluates as q1 AND q2 if there exists a mapping
ρ for q2, otherwise it evaluates as q1. Based on this, the
µ-calculus encoding of the operator can be obtained. The



formula ew(q1 AND q2) evaluates to all nodes S if q2 exists
in the graph, it evaluates to ∅ otherwise. Further, the func-
tion f translates query patterns into formulas recursively.

Definition 7. The encoding of a PSPARQL query pat-
tern q is A(q) such that:

A(<x, e, z>) = µX.(〈s̄〉λ(x) ∧R(λ(e), λ(z)))

∨ 〈d〉X ∨ 〈s〉X ∨ 〈p̄〉X ∨ 〈ō〉X
A(q1 AND q2) = A(q1) ∧ A(q2)

A(q1 UNION q2) = A(q1) ∨ A(q2)

A(q1 MINUS q2) = A(q1) ∧ ¬A(q2)

A(q1 OPT q2) = ew(f(q1) ∧ 〈d〉f(q2)) ∧ A(q1 AND q2) ∨
ew(f(q1) ∧ ¬〈d〉f(q2)) ∧ A(q1)

ew(ϕ) = µX.ϕ ∨ 〈d〉X ∨ 〈s〉X ∨ 〈p̄〉X ∨ 〈ō〉X
f(<x, e, z>) = 〈s̄〉λ(x) ∧R(λ(e), λ(z))

f(q1 AND q2) = f(q1) ∧ f(q2)

f(q1 UNION q2) = f(q1) ∨ f(q2)

f(q1 OPT q2) = f(q1)

In definition 7, a regular expression encoding function R is
introduced. It takes two arguments (the predicate which is a
regular expression pattern, and the object of a triple). This
function is inductively defined as follows:

Definition 8. Regular expressions are encoded recursively
using the function R, detailed below:

R(uri, y) = 〈p〉uri ∧ 〈o〉y
R(x, y) = 〈p〉x ∧ 〈o〉y

R(e1 p e2, y) = (R(e1, y) ∨R(e2, y))

R(e1.e2, y) = R(e1, 〈s〉R(e2, y))

R(e+, y) = µX.R(e, y) ∨R(e, 〈s〉X)

R(e∗, y) = R(e+, y) ∨ 〈s̄〉y

Example 5. This example shows a recursive encoding of
query 1 of Example 3 as a µ-calculus formula.

A(q2) =A(<x, translated.type, Poem> UNION <x,wrote, l>)

= A(<x, translated.type, Poem>) ∨ A(<x,wrote, l>)

= µX.(〈s̄〉λ(x) ∧R(λ(translated . type), λ(Poem)))

∨ 〈d〉X ∨ 〈s〉X ∨ 〈p̄〉X ∨ 〈ō〉X∨
µX.(〈s̄〉λ(x) ∧R(λ(wrote), λ(l)))

∨ 〈d〉X ∨ 〈s〉X ∨ 〈p̄〉X ∨ 〈ō〉X
= µX.(〈s̄〉vx ∧ 〈p〉translated ∧ 〈o〉〈s〉(〈p〉type

∧ 〈o〉Poem)) ∨ 〈d〉X ∨ 〈s〉X ∨ 〈p̄〉X ∨ 〈ō〉X∨
µX.(〈s̄〉vx ∧ 〈p〉wrote ∧ 〈o〉vl)

∨ 〈d〉X ∨ 〈s〉X ∨ 〈p̄〉X ∨ 〈ō〉X

4. REDUCING QUERY CONTAINMENT TO
UNSATISFIABILITY

In this section, we address the problem of query contain-
ment, q1{−→w } v q2{−→w }, by reducing it to the problem of
unsatisfiability in the logic. The first theorem expressed the
correctness and completeness of the encodings.

Theorem 2. For any graph G and PSPARQL query q{~w},
∀ρ.(ρ ∈ Jq{~w}KG ⇐⇒ JA(ρ(q{~w}))Kσ(G) 6= ∅)

Proof. This is proved inductively:
(Base case) The base case is proved for triple patterns con-
taining regular expression patterns of the form: y | e1.e2 |
e+. First, when q{x, y, z} =<x, y, z>.

∀G.∀ρ.(ρ ∈ J<x, y, z>KG ⇐⇒ JA(ρ(<x, y, z>))Kσ(G) 6= ∅)
(⇒) If ρ ∈ J<x, y, z>KG, then <ρ(x), ρ(y), ρ(z)>∈ G. Hence
σ(G) = (S,R,L) contains:

• t ∈ S′′, nρ(x), nρ(y), nρ(z) ∈ S′,

• (nρ(x), t) ∈ R(s), (t, nρ(y)) ∈ R(p), (t, nρ(z)) ∈ R(o),
and

• L(ρ(x)) = nρ(x), L(ρ(y)) = nρ(y), L(ρ(z)) = nρ(z).

<ρ(x), ρ(y), ρ(z)> can be encoded as a µ-calculus formula.
This encoding when evaluated over the transition system
σ(G) is non empty because if the triple exists in G, it also
exists in the transition system. Consequently,

⇒ JµX.(〈s̄〉λ(ρ(x)) ∧ 〈p〉λ(ρ(y)) ∧ 〈o〉λ(ρ(z)))

∨ 〈d〉X ∨ 〈s〉X ∨ 〈p̄〉X ∨ 〈ō〉XKσ(G) 6= ∅
⇒ JA(<ρ(x), ρ(y), ρ(z)>)Kσ(G) 6= ∅
⇒ JA(ρ(<x, y, z>))Kσ(G) 6= ∅

(⇐) JA(ρ(<x, y, z>))Kσ(G) 6= ∅ entails that there is a state

nt ∈ S′′ and nρ(x), nρ(y), nρ(z) ∈ S′, such that 〈nρ(x), nt〉 ∈
R(s), 〈nt, nρ(y)〉 ∈ R(p), and 〈nt, nρ(z)〉 ∈ R(o) and nρ(x) ∈
L(λ(ρ(x))), nρ(y) ∈ L(λ(ρ(y))) and nρ(z) ∈ L(λ(ρ(z))). Since
the transition system σ(G) is the encoding of an RDF graph
G, this means that <λ(ρ(x)), λ(ρ(y)), λ(ρ(z))>∈ G. Subse-
quently, J<x, y, z>KG 6= ∅, thus there exists a mapping ρ
such that ρ ∈ J<x, y, z>KG. This concludes the proof for the
base case.

(Inductive case) Query patterns: q1 AND q2 | q1 UNION q2 |
q1 OPT q2 | q1 MINUS q2. We provide the transcriptions of
AND and OPT. The proof of UNION and MINUS follows
similarly. First, consider when q{~w} = q1 AND q2.
ρ ∈ Jq1 AND q2KG

⇔ ρ ∈ Jq1KG and ρ ∈ Jq2KG

⇔ JA(ρ(q1))Kσ(G) 6= ∅ and JA(ρ(q2))Kσ(G) 6= ∅
by induction hypothesis.

⇔ JA(ρ(q1)) ∧ A(ρ(q2))Kσ(G) 6= ∅ ∗

⇔ JA(ρ(q1) AND ρ(q2))Kσ(G) 6= ∅

⇔ JA(ρ(q1 AND q2))Kσ(G) 6= ∅

* this formula remains satisfiable because there exists φ a
satisfiable subformula of A(ρ(q1)) and A(ρ(q2)) in σ(G). In
fact, φ is a nominal obtained by encoding a variable which
is common to both q1 and q2.

Inductive case for OPT i.e., when q{~w} = q1 OPT q2.



ρ ∈ Jq1 OPT q2KG

⇔ ρ ∈ (Jq1KG 1 Jq2KG) or ρ ∈ (Jq1KG \ Jq2KG)

⇔ ρ ∈ (Jq1KG 1 Jq2KG) if ρ(q2) ∈ G or

ρ ∈ Jq1KG if ρ(q2) /∈ G

⇔ JA(ρ(q1 AND q2))Kσ(G) 6= ∅ if ρ(q2) ∈ G or

JA(ρ(q1))Kσ(G) 6= ∅ if ρ(q2) /∈ G by induction hypothesis.

⇔ JA(ρ(q1 AND q2))Kσ(G) 6= ∅ ∩ Jew(q1 AND q2)Kσ(G) = S ∪

JA(ρ(q1))Kσ(G) 6= ∅ ∩ Jew(q1 AND ¬q2)Kσ(G) = S ∗

⇔ JA(ρ(q1 AND q2)) ∧ ew(q1 AND q2)Kσ(G) 6= ∅ ∪

JA(ρ(q1)) ∧ ew(q1 AND ¬q2)Kσ(G) 6= ∅

⇔ JA(ρ(q1 OPT q2))Kσ(G) 6= ∅

* here we added a formula which evaluates to the entire set of
states S if both q1and q2 are found in the transition system.
Hence, the first part of the disjunction evaluates to a non
empty result whereas if q2 does not exist in the transition
system, the second part of the disjunction is non empty.
Thereby, retaining the semantics of the OPT operator.

A detailed version of this proof is published in [9]. This the-
orem is the key to reduce query containment to satisfiability.
For a proper translation of the query encodings, we use a
variable renaming function φ

−→w
q which renames all variables

in q, but the distinguished variables in −→w , to independent
variables.

Theorem 3. Given PSPARQL queries q1{~w} and q2{~w},
q1{~w} v q2{~w} iff A(q1)∧¬φ~wq1(A(q2))∧ϕr is unsatisfiable.

Proof. It can be proved as follows:
q1{~w} v q2{~w}

⇔ ∀G.Jq1{~w}KG ⊆ Jq2{~w}KG
⇔ ∀G.∀ρ. (ρ ∈ Jq1KG ⇒ ρ ∈ Jq2KG)

⇔ ∀G.∀ρ.(JA(ρ(q1))Kσ(G) 6= ∅)⇒ (JA(ρ(q2))Kσ(G) 6= ∅)
by Theorem 2

⇔ ∀G.∀ρ.(JA(ρ(q1))Kσ(G) 6= ∅)⇒ (Jφwq1(A(ρ(q2)))Kσ(G) 6= ∅)
by transparent renaming

⇔ ∀G.∀ρJ¬A(ρ(q1)) ∨ φwq1(A(ρ(q2)))Kσ(G) 6= ∅

⇔ ∀G.∀ρJA(ρ(q1)) ∧ ¬φwq1(A(ρ(q2)))Kσ(G) = ∅

⇔ ∀G.JA(q1) ∧ ¬φwq1(A(q2))Kσ(G) = ∅ ∗

⇔ ∀K.JA(q1) ∧ ¬φwq1(A(q2)) ∧ ϕrKK = ∅ by Proposition 1

⇔ A(q1) ∧ ¬φwq1(A(q2)) ∧ ϕr unsatisfiable

(*) From Theorem 2, it follows that if there exists a set of
mappings for an evaluation of a query over a graph, then the
encoding of the query over the transition system obtained
from the graph is satisfiable.

5. QUERY CONTAINMENT OVER RDFS
The current version of SPARQL cannot query RDFS how-

ever it can be done by PSPARQL using complex regular ex-
pressions. RDFS graphs can be queried either by computing
their closure or rewriting the queries as done in [2]. In Ta-
ble 1 a set of rules are given that can be used to infer new

triples from an RDF graph using RDF Schema. These rules
are used in [1] to rewrite queries so that during querying the
inferred triples can be included in the query result set.

Containment over RDF Schema can be done by first rewrit-
ing queries using schema assertions (or RDFS rules from
Table 1) and then reducing the encoding of the rewriting
to unsatisfiability test. The rewriting is done using regular
expressions as explained in the following definition.

Definition 9. Given a query q, a rewriting function τ
produces its rewriting by translating each triple pattern t ∈ q
into a query.
τ : t→ q′

τ(<s, sc, o>) = <s, sc+, o>
τ(<s, sp, o>) = <s, sp+, o>
τ(<s, p, o>) = <s, x, o> AND <x, sp∗, p>
p /∈ {sc, sp, type}

τ(<s, type, o>) = <s, type.sc∗, o> UNION (<s, p, y>
AND <p, sp∗, q> AND <q, dom.sc∗, o>)UNION

(<y, p, s> AND <p, sp∗, q> AND <q, range.sc∗, o>)
τ(<s, x, o>) = <s, x, o> where x is a variable

Definition 10 (Containment over RDFS). Given queries
q1 and q2 with the same arity and their respective rewritings
q′1 and q′2. q1 v q2 over RDFS entailment iff q′1 v q′2 iff
A(q′1) ∧ A(q′2) ∧ ϕr is unsatisfiable.

5.1 Complexity
Our translation of the query containment problem does

not involve duplication of logical formulas of variable size,
except for the OPT operator. Therefore, if we omit the
OPT operator, the translation produces a logical formula
of linear-size in terms of the size of the queries. Thus, We
linearly reduced the problem of OPT-free query containment
to unsatisfiability of a µ-calculus formula.

Proposition 4. Query containment for OPT-free queries

can be solved in a time of 2O(n2log n) where n = |A(q1)| +
|A(q2)| is the size of the formula, and A(q1) and A(q2) de-
note the encodings of queries q1 and q2.

The translation of OPT query patterns produces duplicates.
Therefore, the size of the translated logical formula is expo-
nential in terms of the size of the original queries.

Proposition 5. Query containment can be solved in a
time of 2EXPTIME for queries containing OPT query pat-
terns.

In another note, the EXPTIME complexity is only an upper
bound for containment.

5.2 Experimentation
In order to experiment with the proposed approach, the

µ-calculus satisfiability solver from [23] is used to test con-
tainment and equivalence among different queries. A set
of queries are tested for their containment and equivalence
having running times between 190ms and 515ms. In fact,
the running time is dependent on the processor speed and
the size of the queries. Note that, queries are encoded man-
ually. However, automatic encoding of queries as µ-calculus
formulas is under way by using the Jena SPARQL API 1.

1http://jena.sourceforge.net/ARQ/



6. RELATED WORK
Query optimization has been the subject of an impor-

tant research effort for many types of query languages, with
the common goal of speeding up query processing. To the
best of our knowledge, so far the problem of SPARQL with
path query optimization has not been addressed. However,
the works found in [21, 12, 19] considered the problem of
SPARQL query optimization. So, the present work can be
used to prove the correctness of query rewriting techniques.

An early formalization of RDF(S) graphs has been pre-
sented in [13], in which the complexity of query evalua-
tion and containment is also studied. The authors investi-
gate a Datalog-style, rule-based query language for RDF(S)
graphs. In particular, they establish an NP-completeness
result for query containment over simple RDF graphs. The
work found in [20] provides algorithms for the containment
and minimization of RDF(S) query patterns utilizing con-
cept and property hierarchies for the query language RQL
(RDF Query Language). The NP-completeness is estab-
lished for query containment concerning conjunctive and
union of conjunctive queries. Query containment is stud-
ied in [4] based on an encoding in propositional dynamic
logic with converse (CPDL). They establish an upper bound
2EXPTIME complexity for containment of union of conjunc-
tive queries under description logic constraints. Our work is
similar in spirit, in the sense that the µ-calculus is a logic
that subsumes CPDL and may open the way for extensions
of the query language. In particular, we consider the OPT
operator, previously overlooked, and regular graph patterns
including paths of arbitrary length.

Most notably and closely related results on query contain-
ment come from the study of regular path queries (RPQs)
[5]. The difference between [5] and our work lies in the
features supported by the languages. While RPQs in [5]
support backward navigation and conjunction, PSPARQL
supports variables in paths, union, and negation of queries
(as implicit negation is carried by the query operator OPT).

Conjunctive RPQs have been studied in [10, 7] where an
EXPSPACE algorithm for query containment is proved. On
the other hand, containment of conjunctive RPQs with in-
verse have an EXPSPACE worst case complexity [5]. Most
recently, containment of RPQs under description logic con-
straints have been studied in [6], and it has been show that
the problem is 2EXPTIME complete. Furthermore, contain-
ment has also been addressed for various forms of recursive
queries over graph databases, i.e. databases consisting of
binary relations only [3]. In this setting, which is receiving
increased attention the basic querying mechanism is (two-
way) regular path queries (2RPQs). These queries ask for
all pairs of objects connected by a path conforming to a reg-
ular language over the binary relations, and thus support a
restricted form of recursion. Containment over this kind of
queries is shown to be undecidable [3].

7. CONCLUSIONS
In this paper we addressed query containment of SPARQL

queries with paths. We took a similar approach to [11] that
established the optimal complexity for XPath query con-
tainment. The problem of PSPARQL query containment
has been reduced to satisfiability test in µ-calculus. For
that purpose, we encoded RDF graphs as transition sys-
tems and PSPARQL queries as formulas. The reduction is

proved to be sound and complete and the problem is shown
to be EXPTIME. In addition, we implemented the proposed
approach via an encoding using the µ-calculus solver of [23]
and this demonstrated the effectiveness of the encoding.

Paths are included in the new version of SPARQL2 which
is currently under standardization by W3C hence our results
are a step towards query containment for SPARQL 1.1. The
proposed encodings are not specific to PSPARQL. The same
RDF encoding can be used for SPARQL query containment.
Further, this work is also relevant for determining contain-
ment of SPARQL queries under RDFS entailment regime.
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2008. thesis.

[2] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending
SPARQL with regular expression patterns (for
querying RDF). J. Web Semantics, 7(2):57–73, 2009.
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