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Abstract

In a number of vibration applications, systems under studyshghtly non-linear. It is thus of great importance to &av
way to model and to measure these non-linearities in theéecy range of use. Cascade of Hammerstein models contignien
allows one to describe a large class of non-linearities.ndpst method based on a phase property of exponential sirepswe
is proposed to identify the structural elements of such aghfsdm only one measured response of the system. Matheahatic
foundations and practical implementation of the methoddéseussed. The method is afterwards validated on simuéatdd
real systems. Vibrating devices such as acoustical traesdare well approximated by cascade of Hammerstein mobtieds
harmonic distortion generated by those transducers camdakécped by the model over the entire audio frequency range f
any desired input amplitude. Agreement with more time comsg classical distortion measurement methods was found to
be good.
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1 Introduction

Vibratory phenomena are usually assumed to be linear. Hemvavany vibrating systems are subject to non-linear be-
haviours, such as loudspeakers [1], musical instrumertari@ vibrating plates [3]. Even wave propagation in air i$ no
completely linear [4]. The study of these non-linearitisshus of great importance in order to model these devices and
phenomena or to justify their “linearity”.

Identification of non-linear systems requires measurementestimation of model's structural elements from a finite
set of input/output data [5]. Classical linear measurenmegthods [6, 7] capture only the linear behaviour of the syste
under study. Traditional non-linear measurement meth8Hgiye total harmonic distortion (THD), harmonic distati of
ordern (HD,,) or inter-modulation products (IMP). These quantitiesrmeasured using pure tones at a given amplitude and
frequency. They do not describe non-linearities themsabug only some of their effects for arbitrary excitationsorgover,
experimental processes involved in those methods are weeydonsuming if a wide range of frequencies and amplitisles
to be considered. There is thus a real need for rapid modetlh@®cedures to measure non-linearities.

Non-linear systems can be classically represented by valgeries [9] or by “Sandwich” structures [5]. The cascafle o
Hammerstein models [10] is a subclass of those models anbecased to exactly represent systems having diagonal kélter
Kernels. This model is composed &fbranches in parallel. Each branch comprised a static poljadamon-linearity followed
by a linear filter.

A simple method which makes it possible to quickly accesssthectural elements of a cascade of Hammerstein models
is presented in this paper. This method is based on the métitiadly proposed by Farina [11]. Exponential sine sweaps
used as input signals, and allow for the temporal separafitime different orders of non-linearity [11, 12, 13, 14]rn&tural
elements of the assumed model are then extracted from omelyresponse of the system. The method is validated on a
simulated system and the influence of the different parammeteshown.

As transducers are most often the least linear part in thimabdin, knowing their non-linear behaviour is very imott
Two major types of transducers exists: electrodynamicdpadkers [15] and panel-based transducers (distributed toad-
speakers [16] or multi-actuator panels [17]). In electreatyic loudspeakers, a motor converts the electrical sigt@imotion
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and makes a cone vibrate. The piston-like movement of the generates the sound field. In panel-based loudspeakers, a
motor is also used but transmits its motion to a light and ptihel. The flexural waves travelling in the panel then gateer
the sound field.

In both loudspeaker types, the motor induces non-linearibecause of non-uniform magnetic field, Eddy currents and
variations of the electrical inductance with displaceradhb, 18]. In electrodynamic loudspeakers, significantuesion can
induce non-linear bending in the cone and a non-linear bhehawf the suspensions [1]. In panel-based loudspealangs |
amplitude displacements occur in the plate near the exmitgition. In this case the propagation of flexural waves [] the
strain/stress relation of the material which compose thteglL9] can be non-linear.

In the literature, electrodynamic loudspeakers have besatly studied from a non-linear point of view. To repredéeir
non-linear behaviour, different physical models have bméi. Their formulation was either completely analyti¢20, 21] or
based on the finite element method [22]. In Ref. [23], Klippalposed to reduce the Volterra series expansion to a “Sahtw
model and identified its parameters from measurements tistnigethod presented in [24]. In[11, 25], it is suggestedsto u
simpler modelsj.e. cascade of Hammerstein models, to model and identify @iffeaudio systems, including acoustical
transducers.

In the present paper, two different acoustical transduamnselectrodynamic one and a panel-based one) are studied
experimentally under the assumption that they can be medtieising cascade of Hammerstein models. Their models are
completely identified using the previously introduced noethTHD and HD), at different frequencies and amplitudes of the
input signal are evaluated for these transducers by clssieans and compared to predictions made using the identifie
Kernels. The agreement between the results given by the ®tiads is very good for a wide range of amplitudes.

After reviewing how to model and to measure non-linearifiesction 2), the mathematical foundations of the current
method are presented (section 3). Implementation of théadds then described (section 4) and validated on a simtulate
system (section 5). Acoustical transducers are identifsaguthe previous method (section 6) and the resulting e
used successfully to predict the harmonic distortion geeerby the two transducers (section 7).

2 Modelling and measurements of non-linearities

An overview of existing models and measurement methods oflinearities is given in this section. Only Single-
Input/Single-Output (SISO) time-invariant causal nareir systems without continuous component will be consitibere.

2.1 \olterra series

\olterra series [9] enables one to express the relationsétyween the non-linear system inpift) and outputs(¢) as a
series of multiple convolution integrals :

+o0 +oo +oo
s(t) I;/O /0 Vg (T1, ..., Ti)e(t — 71)...e(t — 7% )dr...dT 1)

The functions{vy (¢4, .., tx) tren= are called Volterra Kernels and completely characterieesyistem. Volterra models can
then be seen as a generalization of the simple convolutienatqr used for linear systems. Such models representlgxact
any non-linear “analytical” system [26], and approximatg aon-linear system with a “fading memory” [27]. Measureme
methods exists to identify the first two or three terms of &ot series [28, 29, 30, 31]. These experimental methodinaee
consuming because they require many measurements. Motbeveifficult physical interpretation of the different tes of
the Volterra series limits its use [32].

2.2 Sandwich approach

Another approach to non-linear system identification isgsume that systems have a given block-structure. Following
the “Sandwich” approach [5], a non-linear system is represkas)/ parallel branches composed of three elements in series:
a static non-linear par®,, (.) sandwiched between two linear patts(t) andi”, (). Such systems are a subclass of Volterra
systems. It can be shown that any continuous non-lineaesysan be approximated by such a model [33].

To identify such structures, the form of the static nondinpart can be assumed and the two unknown linear parts can
be estimated from measurements at different frequenciésaamplitudes [24]. This leads to only a discrete knowledge of
LL (f)andL’ (f) in the frequency domain and remains a long experimental tasRef. [34], Abelet al. proposed another
method to identify such structures. Unfortunately, thisgyal method cannot be used successfully in practice duentercal
instabilities.

2.3 Cascade of Hammerstein models

In a cascade of Hammerstein models [10], each branch is cesdpaf one non-linear static polynomial element followed
by a linear oné,, (), as shown in Fig. 1.



e(t)

Figure 1: Block diagram representation of a cascade of Hasteia models.

Mathematically, the relation between the inpt) and the outpuk(¢) of such a system is given by Eq. (2), where
denotes the convolution.

N
s(t) = hnxe(t) )

In this model, each impulse resporisg(t) is convolved with the input signal elevated to it¥ power and the output
s(t) is the sum of these convolutions. The first impulse respbnég represents the linear response of the system. The other
impulse responsei,, (t) }ne 2.y Model the non-linearities.

The family {h,,(t) }ne1...ny Will be referred to as the Kernels of the model. These Keramsassumed to be integrable.
Any cascade of Hammerstein models is fully representedstyeatnels.

It can easily be shown from Egs. (1) and (2) that cascade ofrhfanstein models correspond to Volterra models having
diagonal Kernels in the temporal domain, as in Eq. (3), whéterepresents the Dirac distribution. This non-linear model i
thus referred in the literature as a diagonal Volterra m@tg], but also as a cascade of Hammerstein models [5] or Wryso
model [10].

V(11,0 Tk)  Uk(T1, .oy Tk) = hi(T1)0(T1) ... 6(T%) )

As can be seen in Eq. (2), cascade of Hammerstein modelsaee In the parameters to be estimafes,the output of
the system is a linear combination of the Kernts (¢) },<(1... v} A naive approach is to identify the model using a classical
least square method, as proposed for general Volterrarsgste[36]. Thus the mean squared error between the actyalibut
of the systeny(t) and the output of the estimated mod@él) given in Eg. (2) can be minimized with respect to the coeffitde
of hi(t), ha(t), ..., hn(t) and the solution is given by:

argmin > [ly(t) — s(t)||” 4)
o () ha (£),e s (8) 55

However, the least square method requires the inversiodfdiNax M N matrix, whereN is the order of the system under
test andV/ is the length of the impulse respongggt) in samples. This matrix can be very ill-conditioned sinde generated
from the exponent (untilV) of the input signal. This results in important errors ingraeters estimation especially in noisy
conditions. Moreover the computation of the matrix from itmgut signal and of the inverse of the matrix is computatigna
costly and limits in practical case the memadrk of the system. Some numerical methods are however avattabinit these
points (see for example [37, 38]), and to overcome theselmreks alternative methods have also been developed.

Gallman [10] and Hawksford [25] proposed a method to estrtta elements of a cascade of Hammerstein models using
Gaussian noise at different amplitudes as inputs. The graglestimation procedures are strongly based on the kngeled
of the order of non-linearity of the polynomial expansiorhigh is unknown in practical cases. Moreover, these mettmds
identify the Kernels from the measurements are also cortipotdly costly.

Farina proposed another method using sine sweeps withenegwarying exponentially with time [11]. An upper bound
of the order of non-linearity of the model has to be assuméds Method allows only for the separation of the differermtsrs
of non-linearity and not for the complete identification loé tKernels of the system. Recently, Nodlal.[39] have identified
Kernels from the contributions of the different orders ohdmearity using a least mean square minimization prooedNo
results are provided to judge the influence of the differemameters on its performances.

The method proposed here gives direct mathematical acoesbthe Kernels{h,,(t)},e1...v} from the contributions
of the different orders of non-linearity obtained as in R&l]. The main advantage of the proposed approach over #ist le
squared based technique, besides conditioning and cotigmatiaproblems, is that it provides a direct evaluation hof N



impulse responsés, (t) of the system. The foundations and the key implementatighisfsimple method are explained in
detail. The whole procedure is validated on a simulatedesystnd on two real systems.

3 Mathematical foundations of the method

Mathematical foundations of the method used for directtifieation of the elements of a cascade of Hammerstein models
are given in this section. This is based on the proceduriallyiproposed by Farina [11].

3.1 A cascade of Hammerstein models fed with sine sweeps
To experimentally cover the frequency range on which theesysinder study is to be identified, cosines with time-vagyin
frequencies are interesting signals. Eq. (5) defines suignals
Vit e R e(t) = cos(®(t)) (5)
If e(t) is the input of the cascade of Hammerstein models, the oofitiie non-linear block of thé” branch will have
the form of Eqg. (6), as can be seen in Fig. 1.
e'(t) = cos'[®(t)] (6)

Using Chebyshev polynomials:(t) is rewritten in Eq. (7) as a linear function §os[k®(t)]}rep1,) - Details of the
computation of the matriC' are provided in the appendix.

Vie{l...N} cos'[®(t)] =) C(i,k) cos[kd(t)] 7)
k=0

3.2 Exponential sine sweeps

When the instantaneous frequency@) is increasing exponentially frorfy to f> (f1, f2 > 0) in atimeT, such a signal
is referred to as an “exponential sine sweep” [11, 13] anohéisantaneous phase is given by :

T ¢ 2
VieR ®(t) = zwﬁ—f(ef M) _r/2 (8)
In f—?
The corresponding instantaneous frequency(of s :
d'(t 1t 2
VvVt € R f(t) = ( ) = fieT In §1 (9)
2w
Thusf(0) = f1 andf(T) = fo. The frequency randg, f2] corresponds to the band of interest of the system under test.

3.3 Fundamental phase property
From Eg. (8), it can be shown that this type of signal exhithiesfollowing phase property :

Tlnk T
VkENVEER  kb(t) = Dt + o) — (b - 1)(T + 271 ) (10)
In f—? 2 In f—f
B . o i ln fg/fl . % . .
y choosing?l,,, = (2mnm — 5) o f with m € N*, the second term in Eq. (7) becomes a multipleofand one
I

obtains Eq. (11) which is another way to expressktieterm of the linearisation presented in Eq. (7).

" . o . _ Tynk
Vk € N*,  cos(k®(t)) = cos(P(t + Atr)) with Aty o/ ) (11)

For anyT,,-long logarithmic sweep, multiplying the phase by a fadtaesults in the same signal, but in advance in the
time domain byAt,. As can be seen from Eq. (11), this time advance depends artlyeosweep parametersy,, f1, f2 and
onk. In Refs. [11, 40], similar time advances were obtainedgidifferent arguments.

The fact thatl},, must take only a discrete set of values to ensure the fundaingmse property Eq. (11) has been first
shown in Ref. [39] but is mathematically demonstrated heretfe first time.

One should note that(t) has been designed for alith its instantaneous frequency increasing fr¢pto f, between
t = 0andt = T. In practice, signals are defined only finT]. Thus the phase property is not valid on the whole support
of the function. The phase property becomes false when #taritaneous frequency afs[k®(¢)] is outside the frequency
range of interest (i.€.f1, f2]).



3.4 Inverse convolution
Using the Egs. (11) and (2), one obtains :

N
s(t) =) gnwelt+At,) + K (12)
n=1
with:
N N +00
gn(t) =Y _ C(k,n)hi(t) and K = C(n,0) / B ()dt (13)
k=1 n=1 -0

In Eq. (13),g,(t) corresponds to the contribution of the different Kernelthton!” harmonic.kK is the global continuous
component resulting from the continuous components of iffiereint Kernels. As the Kernels are assumed to be integrabl
K is correctly defined.

In order to separately identify each Kernel of the cascadtemimerstein models, a signglt) which looks like an inverse
in the convolution sense eft) is needed. Unfortunately, such an inverse does not nedgssast mathematically. However,
a band-limited inversg(¢) can easily be defined such that it satisfies the relation (ith)simc(x) = sin(wx)/7mz.

y * e(t) = sinc(2fot) — sinc(2f1t) = d(t) (14)

d(t) can be seen as a band-limited Dirac Function, since its &otransform isl_s, _ ¢ 17,5 (f). Then,Y (f), the
Fourier transform of the inverse filtgi{¢) can be built in the frequency domain using Eq. (15), whtéf) is the complex
conjugate ofE(f).

E*(f)

1
Y(f)= Wﬂ[*faﬁfllﬂ[fl,fz](f) = m (15)

In practice, the filtery’(f) should be built by replacing the discontinuous functign s, _ s,1n11,..(f) by a function
which ensures a smoother transition between the two fresyudomains and thus generates less unwanted side effebs in t
time domain.

e(f) = BxT(f)is afrequency-dependent real parameter chosen as edualttee bandwidth and as having a large value

fe .

/3 outside of it, with a continuous transition between the twendins. In the following, a weight = [, |Y'(f)[?df, which

corresponds to the energy of the signal to be inverted, hasdieosen. In practice, transitions between the two doncaimbe
simple linear functions a€>° Gevrey functions. An example of such a function definirgfatransition betweef(f,) = 0

andT'(f,) = 1is:

2 fo—f
The application of this procedure leadsyt@) that can be considered as an inverse(of in the sense of convolution in
the frequency rangef, f2|.

Vf €l fa, fol T(f):1[1+tanh<fal_f+ ! ﬂ (16)

3.5 Kernel Identification in the temporal domain

After convolving the output of the cascade of Hammersteidehes(¢) given in Eq. (12) withy(¢), one obtains :

N N
yrs(t) =Y dxgit+At,) =Y Gi(t+At,) (17)
=1 =1

where g;(t) corresponds tg;(t) convolved withd(t), i.e. to g;(t) filtered by a bandpass filter in the frequency band
[f1, f2]. The constanf(, present in Eq. (12), has thus been filtereddfy). Moreover, if the system under study has no
significant behaviour outside ¢f;, f2], theng; (t) = g;(t).

In Fig. 2,y * s(t) is represented. Becauge,, « In(n) and fo > f1, the higher the order of linearity the more in
advance the correspondigg (¢) will be. Thus, if T;,, is long enough, the differer, (¢) will not overlap. They are then
easy to separate by windowing in the time domain. The seaparaf the contribution of the different orders of non-limi&a
by using exponential sweeps, which is mathematically destnated here, is already experimentally well known in théi@au
community [12, 13, 14].

Next, using Eq. (18), the famil){i{n(t)}ne[LN] of the Kernels of the cascade of Hammerstein models desgrithie
behaviour of the system in the frequency bafd f2] can be fully extracted.

hl (t) gl (t)
; = AT : (18)
hn(t) gn(t)



A

92(t)

Amplitude

ay, B A, =0

Time

Figure 2: Separation of the different orders of non-lingaafter convolution withy(¢).

. is the Chebyshev matrix defined in the appendix without it fiolumn and its first row an@)? stands for matrix

transposition. The first column and the first row of matdxhave been removed here as there is no continuous components

here.

AS I, (t) = d  h,(t), if the system under study has no significant behaviour deitsf |1, f»], thenh,, (t) = h,(t). In
most vibration application, systems are designed for andireguency band (typicallf20Hz, 20kHz] for audio applications).
The border frequencie§ and f» can thus generally be selected to identify the real Kerhgls. If it is not possible, Kernels
are identified betweey, and f, and thus are only a band-limited version of the real Kernels.

4 Practical implementation

In this section, the practical discrete-time implementatf the method presented in section 3 is described.

4.1

Overview of the method

In Fig. 3, a global overview of the procedure is given. It cerdecomposed in the following steps :

1.
2.

Design of the input sweefit) using Eq. (8). The choices ¢i, f> andT are discussed in section 4.2.

Playinge(t) and recording(t). The sampling frequency, must be chosen to avoid any aliasing effects caused by the
digital to analog converter in the frequency range of irgelrf, fo].

. Generation of the inverse filtgi(t) according to Eqg. (15). A convenient way to implement thiefiis described in

section 3.4.

. Convolution of the output signa(t) with the inverse filteg(¢) as in Eqg. (17). This can be done in the frequency domain

with a sufficient number of points to avoid temporal aliasing

. Windowing in the temporal domain to obtafig (t 4+ Aty)}repi,n (cf. Fig. 2). Rectangular windows can be chosen

to separate the different orders of non-linearity. is the highest desired order in the cascade Hammersteinlmode
Methods to choosé& and its influence are shown in sections 5.3 and 5.4.

. Temporal shift of the different orders of non-linearityrecover{gy ()} re[1,n7. A shift of a non-integer number of

samples can be performed with a phase shift in the frequentyath.

. Multiplication with A”" to access{i{k(t)}ke[llm, according to Eq. (18).A. is the Chebyshev matrix defined in the

appendix without the first column and the first row. The mamg of order 8, which is sufficient in practice, is
explicitly given is the appendix.



4.2
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Figure 3: Overview of the method used to identify a cascadd¢ashmerstein models.

Choice of the parameters i, f», 7" and N)

For satisfactory measurements, the sweep paramgtefs, 1" and N must be well chosen. These choices must be made
considering the following aspects:

The frequencies, and f, must be chosen such that the interesting behaviour of themysnder study is in the
frequency rangéfi, f2].

The influence of noise on the identification results shousd &le minimized [40]. By itself, the exponential sweep
rejects correctly uncorrelated noise in quiet environnj@ht Moreover its energy repartition in frequency is often
adapted to the ambient noise [6, 14]. The choice of this sigrthus interesting from this point of view as will be seen
in section 5.3. If an excellent signal to noise ratio (SNR)éeded, the longéF, the better the SNR after step 4 will be

at a given amplitude of the input signal.

The number of points to be convolved at step 4 is limited byabedlable computational power. Thus, Bsncreases,
the calculation time will increasé. should not be too large in order to avoid long calculatioreim

N should not be underestimated in order to guarantee goodaaycin identification. The optimaV is reached when
is it impossible to extract the corresponding”™ impulse response from the background noise. This will bevshia
sections 5.3 and 5.4.

The different peaksg (¢) which appear in the temporal domain after the convolutiath Wie inverse signal (step 4, see
Fig. 2) must not overlap each other. The global decay tima@bystemyonal is an upper bound of the decay times of
each order of non-linearity. Parametgis f> andT such thatAty — Aty_; > Tgiobal Will thus avoid overlapping of
T, In N

In fo/ f1

chosen to be long enough arfigl/ f1 not so large in order to respect the previous condition.

the different orders of non-linearity [6, 41]. Becauséy = , considering the chosen value T, T° must be

5 Validation of the method

In this section, the proposed method of identification issg®n a simulated cascade of Hammerstein models.



5.1 Design of the simulated system

A cascade of Hammerstein models of ordér= 4 has been chosen for simulation purposes. This system is full
represented by it$ Kernelsh; (t), ha(t), hs(t) andhy(t). For these Kernels, which correspond to linear subsystenpsilse
responses of low order ARMA filterg poles and zeros) with a roughly ms decay time have been chosen. Parameters of

the simulated system are given in Table 1.

n fzeros(kHZ) fzeros/fs ‘pzerosJ fpoles(kHZ) fpoles/fs |ppoles| Gains
1 0.15 781 x107% | 0.95 1.5 781 x1073 ] 095 | 107T
2 0.4 21x1073 | 097 2 1.04x 1072 | 096 | 1072
3 2 1.04 x 1072 | 0.93 0.1 52x107* | 097 | 1073
4 10 5.21 x 1072 | 0.92 0.5 2.6 x 1073 095 | 107°

Table 1: Parameters used for the simulation of the cascadamMmerstein models of ordéf = 4.

5.2 ldentification without noise

The method presented in section 3 and implemented as deddnilsection 4 has been applied here with the parameters
given in Table 2 in order to identify the different Kernelstbé system.

The magnitude and phase of the frequency responses of tfieatrand estimated Kernel&, (f), Hx(f), Hs(f) and
H,(f) are shown in Fig 4. The estimated Kernels are very close torlgnal ones over almost the entire frequency range
[f1, f2]. For the frequency regions closeftpand s, the estimated Kernels deviates slightly from the origovads, especially
the highest orders. This illustrates the limits of the béndted inverse filter defined by Eq. (15).

@
T

Sl -t il T S IIIE
Rliths

o * gl S

&
S

e
H, | ¢ original, o estimated) el S

Amplitude (dB)
E
*
h
+

s [Hy| (- original, x estimated)

. H,| ¢ original, + estimated)

o
=)

_____ H,| (- original, * estimated) 4
)

10° 10
Frequency (Hz)

(b)
T

i R R : i

X
o

g X X o et X g

Phase (rad)

e
R R 2= F T+
Ko, Topng, T
*‘“‘*«-\;:‘;—1- %
~. td
2 *"*-- ,’{* b
Il # ¥ %

10° 10
Frequency (Hz)

Figure 4: Magnitude (a) and phase (b) of the frequency resgmaf each Kernel of the simulated system. Originals angrsho
in solid or dotted lines and estimations with o,+,* or x.

For a finer analysis, the relative errors in dB, defined in B§),(are given for the four estimated Kernels in Fig. 5. As
magnitude estimation errors and phase estimation erreigaeuded in this relative error, this is a more compact veegdcess
estimation errors.

Parameten Value Normalized value
fi 20 Hz fi/fs=1.04x 1071
fo 20 kHz fa/fs=1.04x 1071
fs 192 kHz
T 15s T x fs=2.88 x 10 samples
N 4

Table 2: Parameters chosen to identify the simulated system



H"(f) — HY**f)
H™(f)

In Fig. 5, it can be seen that the relative estimation errtovier than—20 dB over a large portion of the frequency range
[f1, f2]. The consequences of the errors made in magnitude and pbastha border off;, f-] are clearly visible. To avoid
these side effects, the frequency range of the sweep candserctarger than the frequency range of interest, deperling
the desired accuracy. Near the poles and zeros of the ARMAdjlestimation errors also increase slightly.

The method proposed here gives very good results for idestiifin purposes over a given frequency range, without added
noise.

Y(f) = 201ogyq (19)
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Figure 5: Relative errors made during the estimation of tfierént Kernels. (a) H1(f), (b) : H2(f), (¢) : H3(f), (d) : Hy(f).

5.3 Sensitivity to noise

In a second step, the influence of noise on the estimated kselnas been studied on the simulated system. A white
Gaussian noise at different levels has been added to thetouftp of the system under study (see Fig. 3). Signal to noise
ratios relatively to the input (SNR and before convolution (SNR), i.e. before stept (Sec. 4 and Fig. 3) are presented in
Table 3. Kernel to noise ratios (SNIR after step? are also given in Table 3. SNR is understood here as the ratielen
the root-mean-square (RMS) level of the signal (or of thenéefor SNR,) in absence of noise and the RMS level of noise
in absence of signal (respectively in absence of Kernefn&s are recorded at the input of the system for BRI at the
output of the system for SNRR Kernels are taken after the complete identification pracefbr SNRy. SNR4 corresponding
to each identified Kernel is given individually. The diffetekernels of the system under study have been estimated trsn
parameters of Table 2 in the different noise conditions.dbld& 3, it can be seen that SNRor N = 1 is 13.6 dB higher than
SNRg. This confirms the fact that exponential sine sweeps rejgoeat part of the uncorrelated noise.

SNR; (dB) | SNRy (dB) SNR, (dB)
N=1 N=2 N=3 N=4
37 15.2 208 04  —71 —3%6
57 35.2 498 204 128 —186
7 55.2 68.8 404 328 14

Table 3: Signal to noise ratio relatively to the input (SNFbefore convolution (SNR) and after the complete identification
procedure (SNR). SNR; is indicated relatively to the" Kernel ¢ € {1,2,3,4}).

In Fig. 6, the relative estimation errors, according to H){are given for the different Kernels and for the difféneoise
levels. It can be seen that the noise level has an influenckeoguality of the estimation. For each Kernel, when the noise
level is decreasing, the relative estimation error is desirgy too.

For a SNR of 37 dB (SNRg of 15.2 dB), only the estimation of the first Kernel is acceptablee Three other Kernels,
which have gains at leag0 dB lower than the first one (see Fig. 4), cannot be estimataecity in this case. Let's consider
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Figure 6: Relative errors made during the estimation of tfierént Kernels for different noise levels. (a}f1 (f), (b) : Ha(f),

(©) : Hs(f), (d) : Ha(f).

in Tab. 3 the SNR for n > 2. They are all around or belo@ dB. That means that after identification, resulting noises
have a RMS level equal to, or higher than, that of identifiechiéls. This explains whyd,(f), Hs(f) and H4(f) cannot be
estimated correctly in this case.

When SNR is 57 dB (SNRg of 35.2 dB), the SNR, corresponding to the second and third Kernels are higherlthdB.
The second and third KernelB(f) and H3(f), are then correctly estimated. But the last Kernel, with GNR —18.6 dB
is still not identified.

When the SNRis 77 dB (SNRg of 55.2 dB), the SNR; corresponding to the fourth Kernel will de4 dB, and the fourth
Kernel H,(f) is then finally correctly estimated.

So, with the parameters given in Table 2 applied to the chegstem, it seems that any Kernel can be correctly estimated
until its SNR4 reaches~ 0 dB. Otherwise, the corresponding Kernel is completely mhixgth noise and no information can
be extracted. In practice, this defines a measurabilitgrioih (see [42]) that can be used to estimate the optimaévaiiv
for a given amplitude of the input signal.

5.4 Influence of the assumed order of non-linearity

A study of the influence of the order of non-linearity on estimation has been conducted on the simulated systeen. Th
simulated system of order has been identified using the parameters of Table 2 but witkreint assumed orders of non-
linearity N ranging from2 to 6. A white Gaussian noise with a SNRf 80 dB (SNRs of 57.2 dB) has also been added
to the outputs(¢) of the simulated system. In Fig. 7, the relative estimatioors made on the Kernels estimated with the
different orders of non-linearity are shown. The caée= 4 will be the reference as it is the exact order of non-lingaoit
the simulated system.

If this order of non-linearity is underestimated (cagés= 2 and N = 3), the method gives inaccurate results. This is
because of the link which exists between the different esttihKernelg A, (t) } ,c11... v} and the extracted impulse responses
{9n(t) }neq1...n}- Thislink is the matrixA’, as seen in Eq. (18). The first coefficients of the mattjx are given in Eq. (29)
in the appendix. By viewing these coefficients, it's obvitlst odd Kernels depend only on odd extracted impulse regson
and that the same stands for even Kernels. If an impulse meepaf ordem odd (or even) is not taken into consideration, it
will have consequences on all the Kernels of ordedd (or even) lower than. When N = 2, the non-linearities of orde¥
and4 are not taken into consideration and induce estimatiorr&o the Kernels of order and2. And whenN = 3, the
non-linearity of order is not taken into consideration and induces estimatiorrgo the Kernel of ordet only.

On the other hand, if the order of non-linearityis over-estimated (cas€ = 6), some portion of noise will be interpreted
as extracted impulse responses. As a consequence, egtimafithe Kernels are slightly less precise than in the eefs
case. However, as can be seen in Fig. 7, the loss in accuracgégtable.

Thus, to ensure an estimation which is as close as possibéality, it is better to choose the order of non-lineariyas
large as possible. The upper limit 8f is reached when it is impossible to extract the correspanitimpulse response from
the background noise. As has been shown in section 5.3,ah&saccurs when the SNReorresponding to th&V** Kernel
reaches a certain level(0 dB for the chosen system and parameters). In practice, iexpetal SNR;y can be calculated and
used to determine the upper limit 8f, as in Sec. 6.2.

10
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Figure 7: Relative errors made during the estimation of ifferént Kernels for different chosen orders of non-lingarV.
(@) : Hy(f) estimated withN = {2,3,4,6}. (b) : Ha(f) estimated withNV = {2,3,4,6}. (c) : H3(f) estimated with
N = {3,4,6}. (d) : Hy(f) estimated withV = {4,6}.

6 Modelling acoustical transducers with cascade of Hammerstein models

In this section, acoustical transducers are representeddnade of Hammerstein models and their Kernels are idshtifi
using the method presented in section 3.

6.1 Experimental setup

Experiments have been conducted on two acoustical traasslte identify their Kernels in a cascade of Hammerstein
models representation. A standard electrodynamic lowdspeand a prototype panel-type transducer have been t&gted
panel-type transducer consists of a light and stiff plateasfdwich material (40 crm 60 cm) on the back of which an exciter
has been glued. The plate is suspended by elastics at théenoiidvo of its side to approximate free boundary conditions
All measurements have been made on axis at one meter fronatioe of both transducers with a microphone. Measurements
have been done in a semi-anechoic room.

6.2 Measured cascade of Hammerstein models Kernels

The Kernels corresponding to both systems have been melassing the previously described experimental setup. As the
cascade of Hammerstein models is a non-linear model, itsdfeshould be independent of the amplitude of measurement.
To assess this, measurements of the Kernels corresporaingtht transducers have been done using parameters given in
Table 4 for10 different amplitudes. Amplitudes were ranging fr@mto 94 dB in pressure at kHz for the electro-dynamic
loudspeaker. This corresponds to normal and relativelly idgening levels. For the panel-based transducer, andgitvhere
higher, ranging fron®0 dB to 110 dB in pressure at kHz.

Parametern, Value Normalized value
1 20 Hz fi/fs=1.04 x107%
fo 20 kHz fo/fs=1.04x 1071
fs 192 kHz
T 15s | T x fs = 2.88 x 10° samples
N )

Table 4: Parameters chosen to identify the real system.

Measurability of each Kernels, using the criterion define®ec. 5.3, has been studied for the different amplitudes at
which Kernels have been identified. As it is not possible fpeginentally remove noise from measurements, an expetahen
Kernel to noise ratio (SNRp) is defined which corresponds to the ratio between the RM@& &ithe Kernel with noise and
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the RMS level of noise in absence of Kernel, after the coragli#ntification procedure. This SN can be computed for
each Kernel separately and can be interpreted as,S(¥&e Sec. 5.3).

For both transducers, SNR- corresponding to each Kernel are presented in Fig. 8 as agidunaf the measurement
amplitude. As expected, the SNRR for N = 1, i.e. for the linear transfer function is linear with the measueatramplitude.
One can notice that it is not the case for Kernels of omder 2. From Fig. 8, it can also be seen that for the lower
amplitudes, Kernels of orde&};, 4 and5 have a SNR p close to0 dB. They are thus not measurable and pollute slightly the
other Kernels. As has been seen in Sec. 5.4 a limited patligi@acceptable. Moreover, these Kernels become measurable
as the measurement amplitude increases. On the other hankl& of ordern > 6 are always hardly measurable for both
transducers in the chosen range of amplitude with the presgerimental setup. Consequently, the choic&of 5 in the
identification procedures (see Tab. 4) seems to be a redsar@mbpromise between pollution of the identified Kernels by
noise and incomplete modelling of the system.

@
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Figure 8: Experimental Kernel to noise ratio after the catgpldentification procedure (SNR) as a function of the ampli-
tude of measurement for each Kernel. (a) Electro-dynamiddpeaker. (b) Panel-based transducer.

Mean measured Kernels and their corresponding standaiatidevacross measurement amplitude are then given in Fig. 9
for the electro-dynamical loudspeaker and in Fig. 10 for pheel-based loudspeaker. Due to their different undeglyin
physical principles, the linear and non-linear respon$#iseotwo transducers are quite different. The panel-basetstucer
has a modal behaviour and as a consequence exhibits a lasgamse with more dips than the electrodynamic loudspeaker
The amplitude of the different Kernels of order> 2 decreases with frequency for the electrodynamic loudsrealhich is
consistent with the physical analysis of Ref. [21]. For thegl-based loudspeaker, the amplitude stays globallyt@ongith
frequency. The major non-linear phenomena involved inge® transducers do not have the same physical origins.

The variability of the measured Kernels with the excitatinplitude is studied afterwards. The linear part, which is
by definition independent of amplitude, exhibits no vada among the different measurements for both transdudéues.
non-linearities have thus been removed successfully frarihear part using the proposed method. The identified édern
of ordern > 2 depends slightly on the amplitude at which they have beersaned. As a consequence, the assumption that
these two transducers can be represented by a cascade ofdfist@immodels is a correct approximation in the chosenerang
of amplitude.

7 Prediction of the harmonic distortion generated by transducers

In this section, the previously identified cascade of Hansteén models will be used to predict the harmonic distortion
generated by both transducers.

7.1 Link between HD,,, THD and cascade of Hammerstein models

To characterize distortion generated by an acoustic traresdthe following approach is classically adopted. Tipaifrof
the system is assumed to be sinusoidal and non-lineargiesrgte harmonic components at frequencies higher thanghe
fundamental frequency. The amplitudes of these harmomingpared to the amplitude of the fundamental are considered
as representative of the non-linearity of the transducetal harmonic distortion (THD) and harmonic distortion oflern

12
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(HD,,) are common tools to quantify this [8]. The THD is the squaat of the ratio of the power contained in the harmonics
to the power contained in the fundamental. The,H®the same but for the™ harmonic only.

For a sinusoidal input signal(t) = X cos(27 ft) which enters a cascade of Hammerstein models identifiec atrttpli-
tude X, the output signat(¢) can be written as in Egs. (20) by using Eq. (2) and (7).

N
z(t) = Z ITh(X,nf)|cos[2mnft + Z(Tp(X,nf))] (20a)
with T, (X, f) = (XO> C(k,n)Hy(f) (20b)

k=1

THD and HD, can thus be directly identified from Eq. (20) and expressed as
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HD, (X, f) = IM‘ -
& [rax,nn)?
THD(X, f) = E_:Q[FTI(Xf)] -
N
with Tro(X, f) = [ > [[n(X, nf)]? (21c)
n=1

The knowledge of the Kernels in the frequency rafge /2] allows for the direct computation of the THD and HDsing
Egs. (21). This can be done for any value of input amplitidand for any frequency in [f1, f2].

7.2 Prediction of HD,, and THD at a given amplitude

Using the different sets of Kernels measured in the prevéeation, the H} and THD for the two transducers has been
predicted using Egs. (21). To compare with predictionglitianal measurements using pure tones have been donethsing
experimental protocol depicted in section 6.1. H&nhd THD have been measured this wayfofrequencies betweeid Hz
and12 kHz. This has been done faf different amplitudes ranging from4 to 94 dB in pressure for the electro-dynamic
loudspeaker and froM0 to 110 dB for the panel-based one.

In Figs. 11 and 12 the predictions for the total harmonicadigin (THD), and for the harmonic distortion of ordeand
3 (HD5 and HD;) made using equations (21) are shown for the electrodynlmmispeaker and the panel-based loudspeaker.
It can be seen that the agreement between measured andguietfita is satisfying over the entire frequency range fer th
electrodynamic loudspeaker (Fig. 11). For the panel-bbmetspeakers, the agreement is also good (Fig. 12). B2lowiHz
the predictions sometime underestimate-HBDs.

10°
Frequency (in Hz)

THD in %

10 10° 10
Frequency (in Hz)

Figure 11: Comparisons between measurements (circlespradittions (solid lines) &5 dB for the HD,, HD3 and THD
of the electrodynamic loudspeaker. Kernels identified6atlB have been used for predictions with = 5. (a) Harmonic
distortion of order2, HD-. (b) Harmonic distortion of orde3, HD3. (c) Total harmonic distortion, THD.

However, evaluation of harmonic distortion using seriessaot necessary converge to the desired result [42, 43}ethd
the number of termé/ to be used in the series of Eq. (21) has to be carefully chasgprédictions to converge to measure-
ments. To study that point, THD has been predicted ugji3g4 or 5 terms in Egs. (21) and compared to measurements. The
mean error in frequency between predictions and measutsrigrmifferent values oV is presented in Fig. 13 for both trans-
ducers. It has been computed for the following frequencylbad5, 180] Hz (octave band&3 Hz and125 Hz), 180, 710] Hz
(octave bandg50 Hz and500 Hz), [710, 2800] Hz (octave bands kHz and2 kHz) and[2800, 11200] Hz (octave band$ kHz
and8 kHz). For the electro-dynamic loudspeaker in the two uppegdency bands, a¥ increases the mean error become
lower. For the lower frequency bands, the mean error ineeasth N until N = 4 where it starts decreasing. For the
panel-based loudspeaker, mean error globally decreasiesvwiThus, the choice oV = 5 (see Tab. 4) in the identification
procedure and for the predictions leads to globally coremtrgesults in the chosen ranges of amplitude and frequency.
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7.3 Prediction of HD,, and THD for different amplitudes

To have an overview of the quality of the predictions depegdin the amplitude at which Kernels have been measured
(Xm) and on the amplitude at which prediction are madg)( a mean error has been introduced. This error is defined in
Eq. 22. This error has been computed for the following fregyebands:[45, 355] Hz (octave band$3 Hz to 250 Hz),

[355, 2800] Hz (octave band500 Hz to 2 kHz) and[2800, 11200] Hz (octave bandd kHz to 8 kHz). The error in dB in each
of these frequency bands is shown for the two transducerig$ E4 and 15.

A[fA,fB](Xm,Xp) = ...
THDmea{Xp, f) - THDpred(Xma Xpa f)
THDmead Xp, f)

(22)
20log;, mean

[fa,fB]
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Figs. 14 (a), (b), and (c) give the resulting error for thettedynamic loudspeaker. In Fig. 14 (a), the error in thqdency
band[45, 355] Hz is shown. It can be seen that this error is acceptablendre6 dB. The minimum of—8 dB is reached
when the THD is predicted for low values &f,. As the amplitude of predictioX, increases, the error increases too in this
frequency band. In Figs. 14 (b) and (c), errors for frequeranyds[355, 2800] and [2800, 11200] Hz are shown. Error values
in these frequency bands are significantly lower than in tleeipus one. The minimums of these errors, which-at@ dB
and—10 dB, can be seen around the diagonals. Predictions are theis@in these frequency bands.

Figs. 15 (a), (b), and (c) give the same errors for the paaséth transducer. In Figs. 15 (a) and (c), the errors in frecyue
bands[45, 355] Hz and[2800, 11200] Hz are shown. These results are acceptable though leskyisatithan the results
obtained for the electrodynamic loudspeaker. In Fig. 15€bjprs for frequency bands5, 2800] Hz are shown. Error values
in these frequency bands for the panel-type loudspeakersfahe same magnitude as for the electrodynamic loudspeake
remaining low, around-10 dB.

8 Discussion

The presented method has been applied to two real acowstisdiicers, a classic electro-dynamical loudspeaker and a
panel-based transducer. As a complete model describingptindinear behaviour of these transducers is accessibig the
previous method (see section 6), an analysis of the tworsgstan be performed from this point of view. The first diffeven
between them appears when viewing their linear responsepadihel-based transducer exhibits a well known diffuseietia
in the high frequency range, whereas the electrodynamitsipeaker does not. This diffuse behaviour is also presehgin
Kernels of higher order. For the two transducers, the aog#i of the higher order Kernels can also be compared. Kernel
of the panel-based loudspeaker generally have a lower mmelthan Kernels of the electro-dynamic loudspeaker. fk®r t
electro-dynamic loudspeaker, the amplitude of Kernelsdéo: > 2 have a tendency to decrease with the frequency, which is
coherent with Refs. [20, 21], whereas for the panel-basadspeaker there is no global variation with frequency. Phased
transducers thus seems to generate less distortion thetnoelgnamic loudspeakers, and such distortion is almosstemt
with frequency.

In section 7, prediction of the harmonic distortion of orde(HD,,) and the total harmonic distortion (THD) from the
identified Kernels have been performed. The originalityhaf present approach is that an analytical formula involvireg
identified Kernels and the amplitude at which they have bdentified allows one to predict HDand THD at different
amplitudes. This is an advancement compared to currerdtitee where H[) and THD are usually predicted only for a given
amplitude [6, 11, 20]. The results obtained for the two aystevhen comparing this approach to the traditional one tereifit
amplitudes for H) and THD are satisfying. These results validate that caschtammerstein models are a well adapted
model.

9 Conclusion

In this paper a simple and rapid model based procedure toureeasn-linearities of a vibrating system has been predente
mathematically, validated by simulation and finally apglie two acoustical transducers. Cascade of Hammersteielsod
have been chosen here to model the non-linearities. It hes fleown on simulations that the identification method iy ver
accurate. Harmonic distortion generated by these dewscafédrwards precisely predicted using this model.

This method, coming from the audio community, can be of gragatest in the more general field of vibrations. In modal
analysis, for example, a common limitation to access higgdencies is the signal to noise ratio (SNR). Continuoussical
excitations with high levels are thus of great interest toéase the SNR, but only if the resulting signals are notped by
non-linearities. Using the presented method, structuaase acoustically excited at high amplitude levels withabgurance
that the non-linear part of the excitation present in thesuements can be completely removed. This method can thus he
to solve practical problems which are commonly encounterestperimentations involving vibrations.

This method can also be interesting for transducer quaigssment. It is now known that traditional non-linear mesas
ments tools (such as HDand THD) correlate poorly with subjective experiences [44dwever, the present approach gives
a fine, input-independent representation of the linear amdlimear characteristics of real transducers. As a careszg,
simulations of the non-linear responses of identified ocudated transducers can be easily performed. This can el use
when searching for new criteria to assess the decrease litfyqueaused by non-linearities in acoustical transducers.
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Appendix: Computation of the matrix C

Chebyshev polynomial§T [cos(¢)] }ken are defined by Eq. (23).
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Vk € N,cos(k¢p) =  Ti[cos(¢)] (23)

Subsequently, it can easily be shown that they satisfy tharrence relation given in Eq. (24).

k=0 To(a) = 1 (242)
k=1 Ti(e) =z (24b)
k>1 Tiv1(z) = 22Ty (x) — Ti—1(x) (24c)

Then, by writing the polynomials as in Eq. 25 , one can obtajn(E6), using Eq. (24), and find the coefficients of the
matrix A.

Ti(x) =Y Al k)a’ (25)

=0
i=0 A0k +1) = —A(0,k - 1) (26a)
0<i<k A k+1) =243 — 1,k) — AGi, k — 1) (26b)
i>k A(i k+1) =24( — 1,k) (26¢)

The linearisation of the polynomials can now be rewrittea imatrix form, as in Eq. (27).

1 1
cos(z) | _ A cos(x) @7)
cos(Nx) cos™ (z)
By inverting Eq. (27), Eq. (7) is directly obtained and thesults in Eq. (28) which gives explicitly th@ matrix.
c=A" (28)

The matrixA”’, necessary to access{id, (t) bnep, vy, is the matrixA without the first column and the first row, as seen
in Eq. (18). To avoid the implementation of the recurrenbe,ttanspose of thd . matrix of order8, which is sufficient for
practical use, is given in Eq. (29).

10 -3 0 5 0 -7 0
02 0 -8 0 18 0 —32
00 4 0 -20 0 5 0

r_ {00 0 8 0 48 0 160

A =100 0 0o 16 0 -12 o0 (29)
00 0 0 0 32 0 256
00 0 0 0 0 64 0
oo o0 0 0 0 0 128 ]
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Figure 14: Mean error in the frequency bdrd, 355] Hz (a), [355, 2800] Hz (b) and[2800, 11200] Hz (c) for the electrody-
namic loudspeaker. Amplitude of measurements of the Kerare given on the x-axis.
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Figure 15: Mean error in the frequency bafd, 355] (a), [355,2800] (b) and[2800,11200] Hz (c) for the panel-based
transducer. Amplitude of measurements of the Kernels asngin the x-axis.
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