N

N

An algorithmic view of gene teams
Marie-Pierre Béal, Anne Bergeron, Sylvie Corteel, Mathieu Raffinot

» To cite this version:

Marie-Pierre Béal, Anne Bergeron, Sylvie Corteel, Mathieu Raffinot. An algorithmic view of gene
teams. Theoretical Computer Science, 2004, 320 (2-4), pp.395-418. hal-00619206

HAL Id: hal-00619206
https://hal.science/hal-00619206

Submitted on 5 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00619206
https://hal.archives-ouvertes.fr

An Algorithmic View of Gene Teams

Marie-Pierre Béal* Anne Bergeron T Sylvie Corteel* Mathieu Raffinot}

Abstract

Comparative genomics is a growing field in computational biology, and one of its
typical problem is the identification of sets of orthologous genes that have virtually the
same function in several genomes. Many different bioinformatics approaches have been
proposed to define these groups, often based on the detection of sets of genes that are
“not too far” in all genomes. In this paper, we propose a unifying concept, called gene
teams, which can be adapted to various notions of distance. We present two algorithms
for identifying gene teams formed by n genes placed on m linear chromosomes. The first
one runs in O(mn log? n) and uses a divide and conquer approach based on the formal
properties of gene teams. We next propose an optimization of the original algorithm,
and, in order to better understand the complexity bound of the algorithms, we recast the
problem in the Hopcroft’s partition refinement framework. This allows us to analyze the
complexity of the algorithms with elegant amortized techniques. Both algorithms require
linear space. We also discuss extensions to circular chromosomes that achieve the same
complexity.

Résumé

La comparaison des génomes est un domaine croissant en biologie computationnelle
et 'un de ses problemes typiques est l'identification d’ensembles de genes orthologues
qui ont virtuellement la méme fonction dans plusieurs génomes. Plusieurs approches bio-
informatiques distinctes ont été proposées pour définir ces groupes. Elles sont souvent
basées sur la détection d’ensembles de genes qui ne sont pas “trop éloignés” dans tous
les génomes considérés. Dans cet article, nous proposons un concept unificateur, appelé
équipe de gémes, qui peut étre adapté a différentes notions de distances. Nous présentons
deux algorithmes pour identifier les équipes de genes formées par n genes situés sur m
chromosomes linéaires. Le premier a une complexité en temps de O(mn log2 n) et utilise
une approche “diviser pour régner” basée sur des propriétées formelles des équipes de
genes. Nous proposons ensuite une optimisation de cet algorithme, et, afin de mieux
comprendre la borne sur sa complexité, nous replacons le probleme dans le cadre d’un
schéma de raffinement de partitions de Hopcroft. Ceci nous permet d’analyser la com-
plexité par des techniques plus élégantes de complexité amortie. Les deux algorithmes
ont une complexité en espace linéaire. Nous considérons également des extensions au cas
des chromosomes circulaires qui ont la méme complexité.

*Institut Gaspard-Monge, Université de Marne-la-Vallée, Cité Descartes, Champs-sur-Marne, 77454 Marne-
la-Vallée Cedex 2, France. Marie-Pierre.Beal@univ-mlv.fr.

tLaCIM, Université du Québec 3 Montréal, Canada. anne@lacim.uqam.ca

fCNRS - Laboratoire PRiSM, Université de Versailles, 45 Avenue des Etats-Unis, 78035 Versailles cedex,
France. E-mail: syl@prism.uvsq.fr

SCNRS - Laboratoire Génome et Informatique, Tour Evry 2, 523, Place des Terrasses de I’Agora, 91034
Evry, France. raffinot@genopole.cnrs.fr

1 Introduction

In the last few years, research in genomics science evolved rapidly. More and more complete
genomes are now available due to the development of semi-automatic sequencer machines.
Many of these sequences — particularly prokaryotic ones — are well annotated: the position of
their genes are known, and sometimes parts of their regulation or metabolic pathways.

A new computational challenge is to extract gene or protein knowledge from high level
comparison of genomes. For example, the knowledge of sets of orthologous or paralogous genes
on different genomes helps to infer putative functions from one genome to the other. Many
researchers have explored this avenue, trying to identify groups or clusters of orthologous genes
that have virtually the same function in several genomes [1, 6, 5, 7, 9, 11, 13, 14, 15, 18].
These researches are often based on a simple, but biologically verified fact, that proteins that
interact are often coded by genes closely placed in the genomes of different species. With
the knowledge of the positions of genes, it becomes possible to automate the identification of
groups of closely placed genes in several genomes. For a more complete biologically oriented
discussion on these groups of genes, we refer the reader to [12].

From an algorithmic and combinatorial point of view, the formalizations of the concept
of closely placed genes are still fragmentary, and sometimes confusing. The distance between
genes is variously defined as differences between physical locations on a chromosome, distance
from a specified target, or as a discrete count of intervening actual or predicted genes. The
algorithms often lack the necessary grounds to prove their correctness, or assess their com-
plexity. This paper contributes to a research movement of clarification of these notions. We
aim to formalize, in the simplest and most comprehensive ways, the concepts underlying the
notion of distance-based clusters of genes. We can then make use of these concepts, and their
formal properties, to design sound and efficient algorithms.

A first step in that direction has been done in [9, 19] with the concept of common intervals.
A common interval is a set of orthologous genes that appear consecutively, possibly in different
orders, on a chromosome of two or more species. This concept covers simplest cases of sets
of closely placed genes, but does not take in account the nature of the gaps between genes.
Common intervals can be defined on chromosomes with paralogous genes, that is, each gene
could have multiple locations on the chromosomes. However, the algorithms in [9, 19] are
designed only for the case where each gene occurs once on each chromosome.

In this paper, we extend this notion by relaxing the “consecutive” constraint. We assume
that each gene occurs once on each chromosome. We allow genes to be separated by gaps that
do not exceed a fixed threshold. We develop a simple formal setting for these concepts, and
give two polynomial algorithms that detect maximal sets of closely placed genes, called gene
teams, in m chromosomes. Note that we focus in this paper on the algorithmic part of the
gene team concept. A complete study validating this model from a biological point of view is
available in [12], an the results concerning the divide-and-conquer algorithm were announced
in [3].

The first algorithm refines the partitions induced by gene chains of two or more chromo-
somes. It uses a divide-and-conquer approach based on the existence of small classes of the
partitions. The apparent simplicity hides a complex underlying problem that first appeared
in the non trivial complexity of this first algorithm.

Next, in order to better understand the complexity bounds, and analysis, of this algorithm,
we recast the problem in the Hopcroft’s partition refinement framework [10], which covers a
wide range of applications [8, 16]. We develop a new algorithm based of the first Hopcroft

minimization algorithm, and show that the first algorithm described is a cleverly disguised
Hopcroft-like algorithm. The close links between the two algorithms allows us to derive an
elegant complexity analysis, based on amortized techniques, which is much more intuitive
than the equational approach. Moreover, the fact that Hopcroft-like algorithms have been
extensively studied confirms the intrinsic difficulties of the gene teams identification problem.

This paper is organized as follows. In Section 2, we formalize the concept of gene teams
that unifies most of the current approaches, and discuss their basic properties. In Section 3
we present two algorithms that identify the gene teams of two chromosomes. The links
between Hopcroft’s partitioning framework and gene teams identification are explored in
Section 4. Finally, in Section 5, we extend our algorithms to m chromosomes, and to circular
chromosomes. An extended abstract of this paper appeared in [3].

2 Gene Teams and their Properties

Much of the following definitions refer to sets of genes and chromosomes. These are biological
concepts whose definitions are outside the scope of this paper. However, we will assume some
elementary formal properties relating genes and chromosomes: a chromosome is an ordering
device for genes that belong to it, and a gene can belong to several chromosomes. If a gene
belongs to a chromosome, we assume that its position is known, and unique.

2.1 Definitions and Examples

Let 3 be a set of n genes that belong to a chromosome C, and let Po be a function:
» % R

that associates to each gene g in ¥ a real numberPx(g), called its position.

Functions of this type are quite general, and cover a wide variety of applications. The
position can be, as in [14, 15, 11], the physical location of an actual sequence of nucleotides on
a chromosome. In more qualitative studies, such as [1, 13], the positions are positive integers
reflecting the relative ordering of genes in a given set. In other studies [5], positions are both
negative and positive numbers computed in relation to a target sequence.

The function Py induces a permutation on any subset S of 33, ordering the genes of S from
the gene of lowest position to the gene of highest position. We will denote the permutation
corresponding to the whole set ¥ by m¢. If g and ¢’ are two genes in 3, their distance Ac(g,9')
in chromosome C' is given by |Pc(g") — Po(g)|-

For example, if ¥ = {a,b,c,d, e}, consider the following chromosome X, in which genes
not in ¥ are identified by the star symbol:

X = c¢c x x e d a x b

Define Px(g) as the number of of genes appearing to the left of g. Then Ax (¢, d) = |Px(d) —
Px(c)| =4, nx = (ced ab), and the permutation induced on the subset {a,c,e} is (c e a).

Definition 1 Let S be a subset of 3, and (g1 ...gxr) be the permutation induced on S on
a given chromosome C. For & > 0, the set S is called a d-chain of chromosome C if
Ac(gj,gj+1) <0, for 1 <j <k.

For example, if 6 = 3, then {a,c,e} is a J-chain of X, since each pair of consecutive
elements in the permutation (c e a) is distant by less than 4.

We will also refer to mazimal d-chains with respect to the partial order induced on the
subsets by the inclusion relation. For example, with § = 2, the maximal d-chains of X are
{c} and {a,b,d,e}. Note that singletons are always d-chains, regardless of the value of 4.

Definition 2 A subset S of 3 is a d-set of chromosomes C and D if S is a d-chain both in C
and D. A é-team of the chromosomes C' and D is a mazximal §-set with respect to inclusion.
A d-team with only one element is called a lonely gene.

Consider, for example, the two chromosomes:

X = ¢c * « e d a * b
Y = a b x ¥ x ¢ *x d e

For 6 = 3 then {d,e} and {c,d, e} are d-sets, but not {c,d} since the latter is not a J-chain
in X. The o-teams of X and Y, for values of § from 1 to 4 are given in the following table.

o-teams Lonely Genes
{d, e} {a}, {b}, {c}
{a,b}, {d, e} {c}

{a,b},{c,d, e}
{a7 b? C7 d’ 8}

= W N =S,

Note that two gene teams can overlap. For instance, if X = acbd,Y =ab % xcd and
d =2, then {a,b} and {c,d} are two overlapping gene teams.

Our goal is to develop algorithms for the efficient identification of gene teams. The main
pitfalls are illustrated in the next two examples.

The intersection of d-chains is not always a J-set. A naive approach to construct
0-sets is to identify maximal §-chains in each sequence, and intersect them. Although this
works on some examples, the approach does not hold in the general case. For example, in the

chromosomes:
X =

a c
Y = a ¢ x x b,

with 6 = 1, the maximal d-chain of X is {a,b,c}, and the maximal §-chains of Y are {a,c}
and {b}. But {a,c} is not a d-team.

Gene teams cannot be grown from smaller §-sets. A typical approach for constructing
maximal objects is to start with initial objects that have the desired property, and cluster
them with a suitable operation. For gene teams, the singletons are perfect initial objects,
but there is no obvious operation that, applied to two small §-sets, produces a bigger J-set.
Consider the following chromosomes:

X =
y =

o
S o>
QU o
S

For § = 1, the only d-sets are the sets {a}, {b}, {c} and {d}, and the set {a,b,c,d}. In
general, it is possible to construct pairs of chromosomes with an arbitrary number of genes,
such that the only d-sets are the singletons and the whole set. For example, consider the
following chromosomes, in which the genes are represented by numbers in order to illustrate

the construction:
X = 3 .. 2k

1 2
Y =2 46 .. 2k 1 3 5 ... 2k—1.

For 6 = 1, any d-set larger than a singleton must contain both odd and even genes because
they alternate in chromosome X, but any d-chain in Y that contains odd and even genes must
contain genes 1 and 2k, implying that the only team with more than one gene is the whole set.

Instead of growing teams from smaller d-sets, we will extract them from larger sets that
contain only teams. This leads to the following definition:

Definition 3 A d-league of chromosomes C and D is a union of 0-teams of the chromosomes

C and D.

As the two last examples show, the combinatorial properties of J-sets are not elementary,
and we need to establish them in order to develop and prove our algorithms.

2.2 Properties of /-sets and teams.

The first crucial property of d-teams is that they form a partition of the set of genes . It is
a consequence of the following lemma:

Lemma 1 If S and T are two §-chains of chromosome C, and SNT # 0, then SUT is also
a 0-chain.

Proof: Consider the permutation induced on the set SU T, and let g and ¢’ be two consec-
utive elements in the permutation. If g and ¢’ both belong to S (or to T'), then they are
consecutive in the permutation induced by S (or by T'), and A(g,¢’) < 4. If g is in S but not
in T, and ¢’ is in T but not in S, then either g is between two consecutive elements of T, or
g’ is between two consecutive elements of S. Otherwise, the two sets S and T would have an
empty intersection. If g is between two consecutive elements of T', for example, then one of
them is ¢', implying A(g,g') < 4. []

We now have easily:

Proposition 1 For a given set of genes 3, the d-teams of chromosomes C' and D form a
partition of the set 3.

Proof: Since any singleton of ¥ is a d-set, any gene of 3 belongs to a d-team. If the in-
tersection of two different 0-teams Ty and T5 is not empty, then the intersection of the two
underlying d-chains is not empty neither in C nor in D, therefore their union is also a d-chain
in both sequences, implying that 77 U T is a d-set, and contradicting the maximality of T
and T. |

Proposition 1 has the following corollary:

Corollary 1 If a set S is both a league, and a d-set, of chromosomes C and D, then S is a
d-team.

Proof: Since the maximal -sets form a partition of 3, any J-set is contained in a unique
0-team. [

The algorithms described in the next section work on leagues, splitting them while ensuring
that a league is split in smaller leagues. The process stops when each league is a J-set.
Corollary 1 provides a simple proof that such an algorithm correctly identifies the teams.
The next proposition gives the “initial” leagues for the first algorithm.

Proposition 2 Any mazimal d-chain of C' or of D is a league.

Proof: First observe that the set of maximal J-chains in a chromosome also forms a partition
of 3. Therefore, any d-chain is included in a unique maximal d-chain. If T' is a team of C' and
D, then T is a d-chain in both chromosomes, thus T is included in a single maximal chain in
both chromosomes. [

3 Algorithms to Find Gene Teams

It is quite straightforward to develop O(n?) algorithms that find gene teams in two chro-
mosomes. In the following subsection, we present some of the pitfalls of naive approaches
to partition refinement that can lead to an O(n?) worst case scenario. However, since the
ultimate goal is to be able to upgrade the definitions and algorithms to more than two chro-
mosomes, such a threshold is too high. In Section 3.2, we develop an O(nlog?n) algorithm,
whose complexity is analysed in section 3.3. We then propose in Section 3.4 an optimization
of the first algorithm, reducing its time complexity to O(nlognlogd’), where ¢’ is, for all
pratical purpose, a small constant.

3.1 Partition Refinement

Assume that we are given two permutations on 3, 7o and 7p, each already partitioned into
maximal d-chains of chromosomes C' and D:

o = (1. Cly)(Chyt1---Chy) - (Chyt1---Cn)
™D = (dl"'dll)(dll-l-l"'dlg)"'(dlt-l-l"'dn)'

Let (cj...c;) be one of the classes of the partition of 7, by Proposition 2 (¢;...c;) is a
league. Our goal is to split this class in v subclasses Sy, ..., S, such that: a) each subclass is
a league; b) each subclass is a d-chain in C; and c) each subclass is contained in one of the
classes of mp.

Consider, for example, the following two chromosomes — in which we identified the genes
as numbers, and k£ > 1:

X = (3

749 ... 2%+1 2%—2 2k+3 2%) (2k+2)
Y = (1 5

15 2
2 3 4 2% +1 2k+2 2k+3).

If one compares the first league of chromosome X to the first league of chromosome Y, one
can observe that genes 2k+2 and 2k + 3 must be isolated in both partitions. But the resulting
problem

X = (3

1 749 ... 2k+1 2k-2) (2k+3) (2k) (2k+2)
Y o= (1 2 5

2
4 2k+1) (2k+2) (2k+3),

has the same form tas the original one, showing that a bad choice of leagues to compare can
yield to O(n) iterations of the process. This partition refinement approach has the drawback
that big leagues must be read over and over again, in order to extract the small leagues that
are buried in them. In the next section, we take the point of view of the small classes, and

show that their extraction can be done efficiently.

3.2 A Divide-and-Conquer Algorithm

The following algorithm to identify teams is a divide-and-conquer algorithm that works by
extracting small leagues from larger ones. Its basic principle is described in the following
paragraph.

Assume that S is a league of chromosomes C' and D, and that the genes of S are respec-
tively ordered in C' and D as:

(c1...¢p), and (dy ...dy).

By Proposition 1, if S is a d-set, then S is a §-team. If S is not a J-set, there are at least
two consecutive elements, say ¢; and ¢;41 that are distant by more than é. Therefore, both
(c1...¢) and (¢iy1 ... c,) are leagues, splitting the initial problem in two sub-problems. The
following two lemmas explain how to split a problem efficiently.

Lemma 2 If S is a league, but not a team, of chromosomes C and D, then there exists a
sub-league of S with at most |S|/2 genes.

Proof: Let |S| = n, if all sub-leagues of S have more than n/2 genes, it follows that each
team included in S has more than |n/2]| genes, and the intersection of two such teams cannot
be empty. [|

The above lemma implies that if S is a league, but not a team, and if the sequences
(c1...cp)and (dy ...d,) are the corresponding permutations in chromosomes C' and D, then
there exist a value p < n/2 such that at least one of the following sequences is a league:

(c1...¢p),
(Cn—p—l—l .. Cn),
(di...dp),
(dp—pt1...dp)

For example, if
X = a b c xde f g
Y = ¢c a e d b g f

and 0 = 1, then (a b c) is easily identified as a league, since the distance between ¢ and
d is greater than 1 in chromosome X. The next problem is to extract the corresponding
permutation in chromosome Y. This is taken care of the following lemma that describes the
behavior of the function “Extract((ci...cp), D)”:

Lemma 3 Assume that m¢ and wp, and their inverse, are known. If (c1...c,) is a set of
genes ordered in increasing position in chromosome C, then the corresponding permutation
(dy ...d,) on chromosome D can be obtained in time O(plogp).

Proof: Given (ci...c,), we first construct the array A = (75'(c1),...,75' (). Sorting
A requires O(plogp) operations, yielding the array A’. The sequence (dj ...d,) is given by
(mp(AY})...mp(A})).]

The last operation needed to split a league is to construct the ordered complement of an
ordered league. For example, for the league my = (c a e d b g f), the complement of the
league (c a b) is the league (e d g f).

More formally, if (d; ...d),) is a subsequence of (d; ...d,), we will denote by

(di . da)\ (d) ... d))

the subsequence of (d; ... d,) obtained by deleting the elements of (d} ... d),). Tn our particular
context, this operation can be done in O(p) steps. Indeed, once a problem is split in two sub-
problems, there is no need to backtrack in the former problems. Therefore, at any point in
the algorithm, each gene belongs to exactly two ordered leagues, one in each chromosome. If
the gene data structure contains pointers to the previous and the following gene — if any — in
both leagues, the structure can be updated in constant time as soon as an extracted gene is
identified. Since p genes are extracted, the operation can be done in O(p) steps. An example
of such an “extraction” operation is shown in Fig. 1.

C T TNy VYR /AN AV
D ARV YRV AVARVAINAVIEN
. ;TN Ny VYA : : VARV
. C1 ‘Cll i] e
00 O X XX KX —TT : HHH—H=EaHH
NN Ty T TN TN T \ . . . ANV
N D, Y & & & ‘D,, M 3 .) Y
: @ *—@ L : : = = = HeE-E

Figure 1: Extraction of a league P out of D. The initial problem on (C, D) is split in two
sub-problems on (C', D") and (C", D").

Fig. 2 contains the formal description of the algorithm FindTeams. The three cases
that are not shown correspond to the tests Ac(cp—p,cn—pt1) > 0, Ap(dy,dpi1) > 6 and
Ap(dp—p,dn—ps1) > 9, and are duplications of the first case, up to indices.

Theorem 1 On input ¢ and wp, algorithm FindTeams correctly identifies the d-teams of
chromosomes C and D.

Proof: Since X is a league, the first input to FindTeams will be a league. The correctness of
the algorithm comes from the fact that if a league S is supplied to the algorithm, then either

FindTeams((c ...cy), (d1 -..dy))

1. SubLeagueFound ¢« False

2. p+1

3. While (NOT SubLeagueFound) AND p < [n/2] Do

4. If Ac(cp,cpt1) >0 OR Ac(cp—p, Cn—pt1) > 9 OR

5. AD(dp,dp+1) >4 OR Ap (dn_p, dn_p+1) >0 Then
6. SubLeagueFound «+ True

7. Elsep+p+1

8. End of if

9. End of while

10. If SubLeagueFound Then

11. If Ac(cp,cpr1) >0 Then

12. (dy ...d,) « Extract((c1 ...¢p), D))

13. FindTeams((c; ...¢p),(d) ... d}))

14. FindTeams((cyy1...¢n), (di ... dy) \ (d] ...d}))
15. Else If ...

16. /* The three other cases are similar */
17. End of if

18. Else (ci...cy)is a Team

19. End of if

Figure 2: Fast recursive algorithm for gene teams identification.

S is a d-team, which is the condition tested by the four tests within the loop of line 3, or it
has a “small” sub-league, whose complement is also a league. [|

The space needed to execute algorithm FindTeams is easily seen to be O(n) since it
needs the four arrays containing 7¢, 7p, 7r51, 7r51, and the n genes, each with four pointers
coding implicitly for the ordered leagues.

3.3 Time Complexity of Algorithm FindTeams

In the last section, we saw that algorithm FindTeams splits a problem of size n in two
similar problems of size p and n — p, with p < n/2. The number of operations needed to split
the problem is O(plogp), but the value of p is not fixed from one iteration to the other. In
order to keep the formalism manageable, we will “... neglect certain technical details when we
state and solve recurrences. A good example of a detail that is glossed over is the assumption
of integer arguments to functions.”, [17] p. 53.

Assume that the number of operation needed to split the problem is bounded by aplog p,
and let F'(n) denote the number of operations needed to solve a problem of size n. Then F(n)
is bounded by the function T'(n) described by the following equation:

T(n) = lggﬁ/ZJ{aplongrT(p) +T(n—p)} (1)

with T(1) = 1.

Surprisingly, the worst case scenario of the above equation is when the input is always
split in half. Indeed, we will show that T'(n) is equal to the function:

an . n n
To(n) = Srlogz +20 (5) , 2)
with T5(1) = 1. One direction is easy:

Lemma 4 T(n) > Thr(n).

Proof: Suppose that T'(:) > T»(i) for all i < n, then

T(n) > 15}35/2{0417 logp + T5(p) + To(n — p)}
> (an/2)log(n/2) + Ta(n/2) + To(n — n/2)
= TQ(’H,)

In order to show the converse, we first obtain a closed form for Th(n).
Lemma 5 Ty(n) =n — (an/4)logn + (an/4)log? n.

Proof: Substituting the value T»(n/2) in the left side of Equation 2, and using the identity
log(n/2) = (logn) — 1 yields:

Ty(n) = (an/2)log(n/2) +2[n/2 — (an/8)log(n/2) + (an/8)log?(n/2)]
n — (an/4)logn + (an/4)log? n.

|
We use this relation to show the following remarkable property of T»(n). It says that when
a problem is split in two, the more unequal the parts, the better.

Proposition 3 If x <y then Ty(z) + To(y) + axlogz < Te(z + y).
Proof: Consider the variable z = y/z. The following identities are easy to derive:
log(z +y) — logz = log(1 + 2)
log(z +y) — logy = log(1 + 1/2)
2

log?(z +y) — log? z = [2log = + log(1 + 2)]log(1 +)

(
log?(x +y) — log?y = [2log = + log(1 + 2) + log 2] log(1 + 1/2).

Define H(z) = log(l + z) + zlog(l 4+ 1/2z). Its value for z = 1 is 2, and its derivative is
log(1 + 1/z), implying that the H(z) is strictly increasing. We will show that [T2(z + y) —
To(z) — Ta(y)]/(ax) > logx. Using the closed form for T, we have:

[To(z +y) — Ta(z) — Ta(y)]/ (ax)
= (1/4)[log*(z +y) — log® 2] + (y/4z)[log?(z +y) — log® y]
—(1/4)log(z +y) — log z] — (y/4x)[log(z +y) — log y].

10

Substituting y/x by z, the last expression becomes:

(H(z)/4)[2log z + log(1 + z) — 1] + (1/4)z log z log(1 + 1/ =)

> (H(z)/2)logz
> logz, since H(z) > 2, when z > 1.

|
Using Proposition 3, we get:
Proposition 4 T'(n) < Ty(n).
Proof: Suppose that T'(i) < Ty (i) for all i < n, then
T(n) = max {ap logp+T(p) +T(n—p)}
1<p<|n/
< max {aplogp+T2()+ To(n —p)}
1<p<|n/
< T: -
S { 2(p+n—p)}
< T:
< 1g;?%&f§/zj{ 2(n)}
|

We thus have:
Theorem 2 The time complezity of algorithm FindTeams is O(nlog?n).

Theorem 2 is truly a worst case behavior. It is easy to construct examples in which its
behavior will be linear, taking, for example, an input in which one chromosome has only
singletons as maximal J-chains.

3.4 A faster algorithm

Algorithm FindTeams can be optimized by using a parameter ¢ that depends on gene
density and the value of §:

Definition 4 Let &' be the mazimal number of genes contained in moving window of size 4§,
over all the chromosomes.

The optimization focuses on how to extract the small league P, or the pivot of Hopcroft’s
framework (see Section 4). Assume P to be of size p. The extraction algorithm will run in
O(plog ¢') instead of O(plogp). The idea is to locally sort the genes in small zones, and then
consider consecutive zones to find the maximal J-teams. These consecutive zones are built by
extending the neighborhood of each zone, without sorting the zones.

11

3.4.1 Associating a zone to each gene

Each chromosome is cut in at most 2n zones Z; of length d, and each gene on this chromosome
is associated with a specific zone. A table Z = Z; ... Zj, is built for each chromosome to insure
a direct access to a zone.

The zone building algorithm for a chromosome is given in Fig 3. The genes are scanned
from left to right (line 2), the current position is initialized with the position of the first gene,
the initial gene to the first gene, and the zone number to 1 (line 1). Then, if the distance
between the current gene and the initial gene is greater than 2§, we build two zones and reset
the process. If this distance is between § and 24, it means that we entered a consecutive zone
and we also reset the process, but increment the number of zones only by one. Finally, if the
distance is smaller than §, we stay in the same zone.

Build_zones((¢; ... c¢y,))
CurrentZone < 1
Fori=1...n Do
If Ac(InitGene, ¢;) > 26 Then
CurrentZone < CurrentZone+2
Else
If Ao (InitGene, ¢;) > 6 Then
CurrentZone < CurrentZone+1 ; InitGene < ¢;
End of if
End of if
0. Zone ¢(¢;) + CurrentZone
11. End of for

; InitGene < ¢

;i InitGene + ¢;

5 © 0N otk W=

Figure 3: Algorithm for assigning a zone to each gene of a chromosome C.

The h zones 71, ..., 7, computed with Build_zones have some obvious properties. There
are at most ¢ genes associated with the same zone. The total number A of zones is less than
or equal to 2n, since a gene creates at most 2 zones (line 4).

3.4.2 Sorting all zones

Assume now that we want to extract a league P of size p out of a chromosome C. We
first group together the genes of P that are associated to the same zone of the table Z of C.
Suppose we considered [zones Z; , ..., Z;, of size zj, i1 < j <4;. This takes time proportional
to p. We now sort each such zone using a classical optimal sort algorithm. Sorting Z;, requires
O(zjlog z;) time, which is, as z; < &', less or equal than O(z;logd’). The total complexity is
then less or equal to 0(22':1 zjlogd') = O(plogd’).

Note that for the rest of the extraction algorithm, we keep track, for each non empty zone
Zi;, of the minimal and maximal position of the genes in Z;;. This is given by the sorting
procedure without additional cost.

3.4.3 Extracting maximal j-chains

At this point, we have a list of [sorted zones Z;,,...,Z;, of genes, in a table Z = Z; ... Z),.
The zones are not sorted among each other, in the sense that we cannot address the zones

12

of Z;,,...,Z; according to their order in the table Z. We show now that even without
this information we can extract P in C. The idea is simply to consider for each zone Z;,,
1 < j <, the zone to its left in the table Z, that is Z;; 1 (if it exists), and chain Zi; with
Zi; if necessary. The zone Zi;—1 18 accessible in constant time through the table Z. The
order in which the zones Z;; are considered is irrelevant. There are three main cases:

L. Zone Z;; 1 does not exist (i; = 1). Zone Z;, is directly marked as an initial zone.

2. Zone Z;, 1 is empty. Then, the way zones are built by algorithm Build _zones (Fig.
3) insures that the genes in Z;, cannot be d-connected to other genes to the left, since
an empty zone means a distance greater than ¢ to any preceding gene. The zone Z;; is
then marked as an initial zone.

3. Zomne Z;, 1, is not empty. Then, if the distance between the last element of Z;,; and
the first element of Zi; is less or equal to d, then Zi; 18 chained to Zi;—1 as a following
zone. Otherwise, we apply a process similar to case 2.

At the end of that process, after having considered all zones in which at least one element
of P was found, all zones are either chained to the zone to their left, or initial. To finish
the process, for all the initial zones, we follow the links of chained zones and concatenate the
genes. This forms the maximal d-chains, since: (a) inside a zone, the genes are d-connected;
(b) if two zones Zi; 1 and Zi; are chained, the genes of these two zones are d-connected, since
we test whether the maximal gene of Z;;_; is connected to the minimal gene of Z;, or not;
(c) if the d-chain was not maximal, another zone (to the left or to the right) would have been
chained.

3.4.4 Complexity
Proposition 5 Splitting a league P of size p can be done in O(plogd’) worst case time.

Using the analysis of Section 3.3 or the amortized techniques of Hopcroft’s framework
(see Section 4), we get a new algorithm with O(nlognlogd’) worst case time complexity.
The optimization still requires O(n) space, since there are at most 2n zones per chromosome.
The complexity analysis extends to the case of m chromosomes, yielding an O(mn logn log d')
algorithm.

4 Hopcroft’s partitioning framework

Partition refinement with pivots is a widely used technique to solve a large class of problems
on graphs, strings, etc [4, 8]. The first designer was Hopcroft who used it to minimize
deterministic automata [10]. We propose another version of the faster algorithm, based on
partition refinement with pivots, for the computation of the J-teams of two chromosomes.
The algorithms extends to an arbitrary number m of chromosomes.

4.1 Gene teams and Hopcroft’s partitioning framework

Refining a partition can be done by splitting its classes into smaller ones, according to a
subset of ¥ called the pivot set: each class X of L is replaced by X NS and X \ S. We

13

say that the pivot set S splits the partition L into a new partition. In the computation of
0-teams, pivots will always be d-chains of one of the chromosomes.

Let Lo and Lp be the two initial partitions induced by maximal J-chains of chromosomes
C and D. We distinguish two types of pivots, called type C and type D. Pivots of type C split
the partition Lp while pivots of type D split the partition L. Partitions are implemented
by sorted lists. Therefore partitions are implicitly ordered. A partition) is compatible with
a partition P if every class of @) is included in a class of P and if the ordering in P respects
the ordering in @ (i.e if in P the class X is before the class Y, then any class X' C X of Q
is before any class Y’ C Y'). A pivot splits a partition into a compatible one. Moreover, and
this point differs slightly from general partition refinement schemes, each class of a partition
also is implemented by a sorted list. Each class of the partition L is sorted according to the
gene order given by chromosome C, and each class of the partition Lp is sorted accordingly
to the order given by D.

Definition 5 We say that a class X overlaps a set S if X ¢ S and X NS # 0. Given a
subset S of 3, a partition L of 3 is said to be S-stable when no class of L overlaps S.

Note that after a refinement step of L by S, the new partition is S-stable.

The PartitionRefinement algorithm is described in Fig. 4. While Hopcroft’s original
algorithm processes the “small half”, we process several “small parts”: initially, the stack
pivots contains all classes of the two partitions. Then, each class in the stack is either replaced
by smaller ones, or new small subclasses are stacked. The algorithm calls Sort_zones(P), a
procedure which computes a decomposition of the pivot P of type C (resp. D) into an union
of maximal d-chains of D (resp. C). This procedure is described in Sections 3.4.2 and 3.4.3.

Procedure Split(X, P), Fig. 5, is the main part of the algorithm. If a class X properly
overlaps the pivot set, the pivot splits the class X of Lo (resp. Lp) into at least two classes
according to the pivot set. The obtained subclasses are still d-chains of C' (resp. D). The
sizes of the subclasses are computed in parallel during the process, in order to avoid parsing
an eventual — unique — large subclass. The code uses the following functions. If X is d-chain
of the chromosome C, let (g1,...,gr) be the permutation of X induced by C. We denote by
next(g;, X) the gene g;11 when it exists, in which case hasnext(g;, X) is true. If it does not
exist, hasnext(g;, X) is false.

The correctness of Algorithm PartitionRefinement is obtained with the following in-
variants of the while loop (line 6).

Proposition 6 Partitions Lo and Lp always verify:
1. Each class of Lo (resp. Lp) is a 0-chain of C' (resp. D).

2. The union of two distinct classes of Lo (resp. Lp) is not a 0-set.

Proof. During the initialization of Algorithm PartitionRefinement, the classes of Lo and
Lp are d-chains of C' and D respectively, and Procedure Split transforms a collection of
d-chains into a collection of §-chains.

The conservation of the property 2 follows from the following property 2’: for any pivot
P, any element g of P and any element ¢’ ¢ P, g and ¢’ cannot be in a same maximal J-set.
Properties 2’ and 2 are true after the initialization step. Let us assume that they are both
satisfied at some time. Then, after a splitting of a class X under a pivot, any two elements

14

PartitionRefinement(chromosomes C, D)

1. Initializations

2. L¢ (resp. Lp) « the collection of maximal d-chains of C' (resp. D),
(each class of Le (resp. Lp) is ordered by C' (resp. D)).

3 Let pivots be an empty stack of pivots.

4 Add each class of Lo (resp. Lp) in pivots as a pivot of type C' (resp. D).

5 Refinements

6. While (pivots is not empty) Do

7 Pick a pivot P in pivots.

8 Sort_zones(P)

9. If P has type D (the case type C' is similar) Then

10. If Lo is not P-stable Then

11. Let M be the set of classes of Lo properly overlapping P.

12. For each class X € M Do

13. Let (X1, Xo,. .., X,) = Split(X, P)

14. If (X is contained in the stack pivots) Then

15. Remove X from pivots and add Xy, Xo,..., X,

16. as pivots of type C.

17. Else

18. For each class X; such that size[X;] < size[X]/2 Do

19. Add X; in pivots as a pivot of type C.

20. End of for

21. End of if

22. End of for

23. End of if

24. End of if

25. End of while

Figure 4: Hopcroft-like algorithm for gene teams identification.

of two distinct subclasses cannot belong to a same maximal d-set, by construction. Thus the
new pivots of the stack obtained from lines 15-16 of Algorithm PartitionRefinement or
from lines 18-19 of Algorithm PartitionRefinement still verify 2’, and the refined partition
still verifies 2. O

Proposition 6 implies that no §-team will be split during the process. The next proposition
insures that there is always enough pivots in the stack to properly identify all -teams.

Proposition 7 If the partition L¢ is not Y -stable for every classY € Lp, (or if the partition
Lp is not X-stable for every class X € L¢), then some pivot of type D (resp. C) in the stack
pivots will strictly refine this partition.

In the case of more than two chromosomes, at the end of the execution of the algorithm,
each partition of one chromosome is X-stable for each class X of a partition of another
chromosome.

Proof. We show that if the partition Lo is not Y-stable for every class Y € Lp, then some
pivot in pivots will strictly refine the partition Lp. Let us assume that there is a class X € L¢
such that X properly overlaps a classY € Lp. Let g € YN X, and f € (X¥\Y)NX. Consider
the first time g and ¢’ are split apart into two different classes Z; and Zy of Lp. If these

15

Split(class X € L¢, pivot P of type D)

ouputs a list of classes L with their sizes

1. Let L be the empty list.

2. Extract maximal d-chains X1, ..., X, of elements from X N P
3. Extract maximal d-chains X7, ..., X/ of elements from X N (X \ P)
4. For (each chain X;) Do

5. Compute size[X;] with an exploration of the chain Xj.

6. Add X; to L.

7. size[X] ¢ size[X] — size[X;]

8. End of for

9. Let L' = (X{,..., X))

10. For (each chain X' € L') Do

11. Set g(X') as the first element of X'.

12. size[X'] + 1.

13. End of for

14. While (L' contains more than one chain) Do

15. While (hasnext(g(X'), X') for each X' € ') Do

16. For (each X' € L') Do

17. 9(X') « next(g(X"), X').

18. size[X'] size[X'] + 1.

19. End of for

20. End of while

21. For (each X' € L such that NOT hasnext(g(X'), X')) Do
22. Add X' to L.

23. Remove X' from L'.

24. size[X] < size[X] — size[X'].

25. End of for

26. End of while

27. If (L' is nonempty, and hence contains a unique chain X') Then
28. Add X' to L.

29. size[X'] ¢ size[X].

30. End of if

31. return L.

Figure 5: Splitting a class under a pivot.

classes are classes of the initial partition Lp, then Z; is an initial pivot. Otherwise, there
is a splitting of a class Z 3 ¢,¢' into Z; > ¢, 7 > ¢',...,Z,. Then either Z was already in
the stack of pivots, and all subclasses Z; have been added as pivots (lines 15-16 of Algorithm
PartitionRefinement), or Z was not in the stack, and all subclasses Z; but at most one
have been added as pivots (lines 18-19 of Algorithm PartitionRefinement). This produces
a pivot either containing g and not ¢’, or ¢’ and not g. Such a pivot cannot go out of the
stack since pivoting on it would split X into at least two classes. If it is split himself inside
the stack (lines 15-16 of Algorithm PartitionRefinement), another pivot seperating g and
¢ still remains in the stack. Thus the stack contains a pivot able to strictly refine L. O

As a consequence, at the end of the execution of the process, L¢o is Y-stable for every
class Y € Lp, and Lp is X-stable for every class X € Leo. Thus Le and Lp are collections
of the same J-sets. It follows from Proposition 6, property 2 that these d-sets are maximal.
We obtain the expected d-teams as Lo or Lp.

16

4.2 Complexity

To achieve a good complexity, we use the following data structures. Any class of Lo (resp.
Lp) is stored in a doubly linked list, ordered by C (resp. D). All the classes of a partition are
stored in a doubly linked list. Each element of a class has a pointer to its class. Moreover, each
gene can be accessed directly in Lo and in Lp, by the use of a table. This data structure
is illustrated by Figure 6 which represents the initial partition Lo for the two following
chromosomes C, D with § = 2.

C = c¢c * x e d a * b
D = a b x x x ¢ % d e.

The initializations are performed in a linear time O(n) for two chromosomes.

©T 00T

Figure 6: The initial partition L¢.

The complexity analysis uses amortized techniques, especially the pointed parts technique
used in [4] or [2, p. 331]. We consider pairs (P, g) made of a pivot P going out of the stack of
pivots (line 7 of the algorithm PartitionRefinement), and an element of g in P. The basic
result is the following:

Proposition 8 FEach gene g appears at most 2logn times in a pivot P going out of the stack.

Proof. If a pivot P containing an element g is going out of a stack and has size p, a pivot
containing g which enters the stack later is included in P, and has size at most p/2. Thus, it
will have a size at most p/2 while going out of the stack also. A gene g belongs initially to
two pivots, one of type C and one of type D. O

Let ¢(P, g) be the amortized cost of processing the pointed pair (P, g). Then, by Proposi-
tion 8 the global cost of the algorithm will be given by 2n ¢(P, g) logn. We establish, in the
next proposition that ¢(P, g) is O(log d’).

[Note that the complexity analysis assumes the following data structures. Any class of
L¢ (resp. Lp) is stored in a doubly linked list, ordered by C' (resp. D). All the classes of a
partition are stored in a doubly linked list. Each element of a class has a pointer to its class.
Moreover, each gene can be accessed directly in Lo and in Lp, by the use of a table.]

Proposition 9 The amortized cost ¢(P,g) = ¢y logd' + co, where ¢y and co are constants.

17

Proof. Let us assume that we pick a pivot P of type D, and of size p, in the stack. This pivot
is first processed by Sort_zones in time O(plogd’). We assign to each (P, g) a cost logd’,
so that the sum of these costs for all g in P equals the cost of the sorting operation. The
computation of the set M of lines 10-11 of the algorithm is done in time O(p) by exploring
P and using the direct links from a gene to its position in a class. This increments the cost
of each (P, g) by a constant.

We now consider the cost induced by Procedure Split. Let h be the size of the class X to
be split. We claim that the extractions of lines 2-3 also are performed in time O(p). Indeed,
one extracts a d-chain X; of elements of X N P by exploring the list P, and by checking
the d-connection for the order induced by C. More precisely, when an element, candidate to
be added in X;, is not d-connected to the previous ones for the order C, one builds a new
class X;i1. If it is d-connected, it is removed from X in constant time. If X is no longer
d-connected, we cut it into a d-chain X7 of elements in X N (2X\ P), and a new d-chain X. This
increments the cost of each (P, g) only with another constant. Remark that this implies that
there are at most p subclasses X;. Note also that, at this time, the sizes of the subclasses,
and the pointers from each element in a class to its class, have not been updated.

We next consider the cost of the computation of the sizes of the subclasses. The compu-
tation of the sizes of the subclasses X; is performed lines 4-8 of Procedure Split in time O(p),
since the sum of the sizes of these subclasses is at most p. This charges (P, g) with a constant
again. The computation of the sizes s;- of the subclasses X]’ is done in lines 14-30. Recall
that a small subclass has a size less than or equal to h/2. Since L' in lines 14-26 has at least
two subclasses, the subclasses removed in line 23 are small. At line 26, all subclasses that
have been read completely are small, and the beginning of an eventual unique large subclass
Y may have been explored. Nevertheless, the maximal number of elements of Y read is the
maximal size of all other subclasses. The pointers from each element in a class to its class
are recomputed for all subclasses but Y. Thus the cost of the computation of the sizes and
pointers of all subclasses is at most 2> jed 3;-, where .J is the index set of all subclasses but
Y. Since all subclasses but Y are at some time contained in the stack of pivots, and can go
out of it by being removed in line 14, one charges again each (P, g) with one more constant,
in order to count the cost of these operations. O

Proposition 10 The time complezity of the algorithm PartitionRefinement is O(n log n log ')
for two chromosomes and O(mnlognlogd') for m chromosomes.

4.3 From Hopcroft like algorithm to FindTeams

The two algorithms PartitionRefinement and FindTeams are very close. The algorithm
FindTeams is in fact a recursive simplification of the Hopcroft like one. The simplication is
based on the two following remarks.

First, the stack pivots of lines 6-8 of Algorithm PartitionRefinement is simulated in
FindTeams by the recursive calls to itself of lines 13-14. This uses a property of the problem
that is not valid for all Hopcroft like algorithms, and allows to divide the original problem in
two subproblems. Indeed, assume that in line 11 of PartitionRefinement a pivot P (say
of Lp) splits the set of classes M of Lo whose alphabet intersects that of P. The split is
performed using Split, which partitions the resulting classes of Lo in two sets, those that
contains elements of P and the others. Some of these classes will be reintegrated in the
list pivots in lines 18-19 of PartitionRefinement and reused later to split other classes. A

18

simple observation is that the classes of L built with elements of P after Split, if reused
as pivots, would only cut classes built with elements of P of Lp. This property allows us to
derive two sub-problems after a Split, on one hand all classes of L¢ built of elements of P
together with P on Lp, and, on the other hand, all the classes remaining on L¢ and Lp.
This is used in FindTeams to recursively call the same algorithm on these two sets in lines
13-14 of Algorithm FindTeams.

A second remark concerns the computation of the sizes of the classes. In the Hopcroft-
like algorithm, when splitting a class X with a pivot P, the sizes of the resulting classes of
size less than or equal to size[X]/2 are computed in lines 14-30 of Split. After the split,
in lines 18-19 of algorithm PartitionRefinement, the classes are kept as potential pivots.
Algorithm FindTeams simplifies this step lines by finding a small class of size p (if it exists)
in O(p) and considering it as a pivot.

5 Extensions

5.1 Multiple Chromosomes

The most natural extension of the definition of d-teams to a set {C1, ..., Cy,} of chromosomes,
is to define a d-set S as a d-chain in each chromosome C to C,, and consider maximal d-sets
as in Definition 2. For example, with § = 2, the only d-team of chromosomes:

X = ¢ * x e d a * b
Y = a b « * ¢ *x d e
Z = b a e x x ¢ * d

that is not a lonely gene is the set {a, b}.

All the definitions and results of Section 2 apply directly to this new context, replacing C'
and D by the m chromosomes.

Algorithm Findteams can be readily adapted to m chromosomes by modifying its two
main tasks of finding and extracting small leagues. Identifying a small league in m partitions
can be done in O(mp). This small league must then be extracted from m — 1 chromosomes,
yielding two sub-problems, one of which is of size p. The analysis of Section 3.3 yields
directly an O(mmn log® n) time bound for this algorithm, since the parameter o in Equation 1
was arbitrary.

5.2 Extension to Circular Chromosomes

In the case of circular chromosomes, we first modify slightly the assumptions and definitions.
The positions of genes are given here as values on a finite interval:

» 2 (0.1,

in which position L is equivalent to position 0. The distance between two genes g and ¢’ such
that Po(g) < Po(g') is given by:

n_ .| Peld') — Pclg)
Ac(gag)—mm{ Pg(g)—i—Li?Dc(g')-

19

The permutation 7¢ = (g1 . .. gn) is still well defined for circular chromosomes, but so are
the permutations, for 1 < m < n:

7 = (G Gng1 - G 1)

A §-chain in a circular chromosome is any d-chain of at least one of these permutations.
A circular 6-chain is a d-chain (g; ...gg) such that Ac(gk,g1) < 0: it goes all around the
chromosome. All other definitions of Section 2 apply without modifications.

Adapting algorithm FindTeams to circular chromosomes requires a special case for the
treatment of circular J-chains. Indeed, in Section 3.2, the beginning and end of a chromosome
provided obvious starting places to detect leagues. In the case of circular chromosomes,
assume that S is a league of chromosomes C' and D, and that the genes of S are respectively
ordered in C' and D, from arbitrary starting points, as:

(c1...¢y) and (dy ... dy).

If none of these sequences is a circular J-chain, then there is a gap of length greater than
0 on each chromosome, and the problem is reduced to a problem of linear chromosomes. If
both are circular J-chains, then S is a d-team. Thus, the only special case is when one is a
circular d-chain, and the other, say (c; ... ¢;,) has a gap greater than § between two consecutive
elements, or between the last one and the first one. Without loss of generality, we can assume
that the gap is between ¢, and ¢;. Then, if S is not a team, there exists a value p < n/2 such
that one of the following sequence is a league:

(c1...¢p)
(n—pt1---Cn.)

The extraction procedure is similar to the one in Section 3.2, but both the extracted
leagues can again be circular d-chains, as illustrated in Fig. 7.

Figure 7: Special case that might occur when extracting the league p out of a circular league
of D. Both extracted leagues are again circular d-chains of D’ and D".

The circularity can be detected in O(p) steps, since the property is destroyed if and only
if an extracted gene creates a gap of length greater than § between its two neighbors.

20

5.3 Teams With a Designated Member

A particular case of the team problem is to find, for various values of §, all J-teams that
contain a designated gene g. Clearly, the output of algorithm FindTeams can be filtered for
the designated gene, but it is possible to do better. In lines 13 and 14 of Fig. 1, the original
problem is split in two subproblems. Consider the first case, in which the sub-league (c; ... ¢cp)
is identified:

1. If gene g belongs to (ci ...c¢p), then the second recursive call is unnecessary.

2. If gene g does not belong to (ci...c,), then the extraction of (d,d),), and the first

recursive call, are not necessary.

These observations lead to a simpler recurrence for the time complexity of this problem,
since roughly half of the work can be skipped at each iteration. With arguments similar to
those in Section 3.3, we get that the number of operations is bounded by a function of the
form:

T(n) = a(n/2)iog(n/2) + T(n/2),

where T'(1) = 1, and whose solution is: T'(n) = anlogn — 2an + 2« + 1.

6 Conclusions and perspectives

We defined the unifying notion of geme teams and we constructed two distinct identifica-
tion algorithms for n genes belonging to two or more chromosomes, the faster one achieving
O(mnlognlogd’) time for m linear or circular chromosomes. Both algorithms require only
linear space.

The gene team identification problem is more complex than one could think in view
of the simplicity of the first recursive algorithm. We showed in a second part that this
algorithm is in fact a nice simplification of a full Hopcroft partitioning algorithm. However,
instead of leading to a faster algorithm, this strong link reinforces our estimation of the
intrinsic complexity of the gene team identification problem. In some particular Hopcroft
like algorithms, a clever pivot choice can reduce the complexity from O(nlogn) to O(n) [8].
Obtaining faster algorithms or lower bounds for the gene team identification problem remains
open.

We intend to extend our work in two directions that will further clarify and simplify the
concepts and algorithms used in comparative genomics. The first is to relax some aspect of
the definition of gene teams. For large values of m, the constraint that a set S be a d-chain
in all m chromosomes might be too strong. Sets that are d-chains in a quorum of the m
chromosomes could have biological significance as well. We also assumed, in this paper, that
each gene in the set ¥ had a unique position in each chromosome. Biological reality can be
more complex. Genes can go missing in a certain species — their function being taken over by
others, and genes can have duplicates.

In a second phase, we plan to extend our notions and algorithms to combine distance with
other relations between genes. For example, interactions between proteins are often studied
through metabolic or regulatory pathways, and these graphs impose further constraints on
teams.

21

A complete implementation handling multiple linear or circular chromosomes is available

at http://www-igm.univ-mlv.fr/“raffinot/geneteam.html.

Acknowledgment

We

would like to thank Marie-France Sagot for interesting discussions, Laure Vescovo and

Nicolas Luc for a careful reading, and Myles Tierney for suggestions on the terminology. A
special thanks goes to Laurent Labarre for his bibliography work.

References

1]

2]

3]

[4]

[6]

7]

[10]

[11]

A K. Bansal. An automated comparative analysis of 17 complete microbial genomes.
Bioinformatics, 15(11):900-908, 1999.

D. Beauquier and J. Berstel an P. Chrétienne, editors. FEléments d’algorithmique. Masson,
Paris, 1992.

A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. In Workshop
on Algorithms in Bioinformatics (WABI), number 2452 in Lecture Notes in Computer
Science, pages 464-476. Springer-Verlag, Berlin, 2002.

A. Cardon and M. Crochemore. Partitioning a graph in O(|A|logy |V'|). Theoretical
Computer Science, 19(1):85-98, 1982.

T. Colombo, A. Guénoche, and Y. Quentin. Inférence fonctionnelle par I'analyse du
contexte génétique: une application aux transporteurs ABC, 2002. Journées ALBIO,
Montpellier, March.

T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order: a fingerprint
of proteins that physically interact. Trends Biochem. Sci., 23(9):324-328, 1998.

W. Fujibuchi, H. Ogata, H. Matsuda, and M. Kanehisa. Automatic detection of conserved
gene clusters in multiple genomes by graph comparison and p-quasi grouping. Nucleic
Acids Research, 28(20):4029-4036, 2000.

M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: an interesting algo-
rithmic tool kit. International Journal of Foundations of Computer Science, 10(2):147—
170, 1999.

S. Heber and J. Stoye. Finding all common intervals of k permutations. In Combinatorial
Pattern Matching (CPM), number 2089 in Lecture Notes in Computer Science, pages
207-218. Springer-Verlag, Berlin, 2001.

J. E. Hopcroft. An nlogn algorithm for minimizing the states in a finite automaton. In
7. Kohavi, editor, The Theory of Machines and Computations, pages 189-196. Academic
Press, 1971.

M. Huynen, B. Snel, W. Lathe, and P. Bork. Predicting Protein Function by Ge-
nomic Context: Quantitative Evaluation and Qualitative Inferences. Genome Research,
10:1024-1210, 2000.

22

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

N. Luc, J.-L. Risler, A. Bergeron, and M. Raffinot. Gene Teams: A New Formalization
of Gene Clusters For Comparative Genomics. Computational Biology and Chemistry (ex.
Computer and Chemistry), 27(1):59-67, 2002.

A. Morgat. Synténies bactériennes, 2001. Entretiens Jacques Cartier on Comparative
Genomics, Lyon, December.

H. Ogata, W. Fujibuchi, S. Goto, and M. Kanehisa. A heuristic graph comparison
algorithm and its application to detect functionally related enzyme clusters. Nucl. Acids.
Res., 28(20):4021-4028, 2000.

R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. The use of gene
clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96(6):2896-2901, 1999.

Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. STAM
Journal on Computing, 16(6):973-989, 1987.

C. Leiserson T. Cormen and R. Rivest, editors. Introduction to Algorithms. MIT Press,
1992.

R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin. The COG database:
a tool for genome-scale analysis of protein functions and evolution. Nucl. Acids. Res.,
28(1):33-36, 2000.

T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290-309, 2000.

23

