
HAL Id: hal-00619206
https://hal.science/hal-00619206

Submitted on 5 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algorithmic view of gene teams
Marie-Pierre Béal, Anne Bergeron, Sylvie Corteel, Mathieu Raffinot

To cite this version:
Marie-Pierre Béal, Anne Bergeron, Sylvie Corteel, Mathieu Raffinot. An algorithmic view of gene
teams. Theoretical Computer Science, 2004, 320 (2-4), pp.395-418. �hal-00619206�

https://hal.science/hal-00619206
https://hal.archives-ouvertes.fr

An Algorithmi
 View of Gene TeamsMarie-Pierre B�eal� Anne Bergeron y Sylvie Corteelz Mathieu RaÆnotxAbstra
tComparative genomi
s is a growing �eld in
omputational biology, and one of itstypi
al problem is the identi�
ation of sets of orthologous genes that have virtually thesame fun
tion in several genomes. Many di�erent bioinformati
s approa
hes have beenproposed to de�ne these groups, often based on the dete
tion of sets of genes that are\not too far" in all genomes. In this paper, we propose a unifying
on
ept,
alled geneteams, whi
h
an be adapted to various notions of distan
e. We present two algorithmsfor identifying gene teams formed by n genes pla
ed on m linear
hromosomes. The �rstone runs in O(mn log2 n) and uses a divide and
onquer approa
h based on the formalproperties of gene teams. We next propose an optimization of the original algorithm,and, in order to better understand the
omplexity bound of the algorithms, we re
ast theproblem in the Hop
roft's partition re�nement framework. This allows us to analyze the
omplexity of the algorithms with elegant amortized te
hniques. Both algorithms requirelinear spa
e. We also dis
uss extensions to
ir
ular
hromosomes that a
hieve the same
omplexity. R�esum�eLa
omparaison des g�enomes est un domaine
roissant en biologie
omputationnelleet l'un de ses probl�emes typiques est l'identi�
ation d'ensembles de g�enes orthologuesqui ont virtuellement la même fon
tion dans plusieurs g�enomes. Plusieurs appro
hes bio-informatiques distin
tes ont �et�e propos�ees pour d�e�nir
es groupes. Elles sont souventbas�ees sur la d�ete
tion d'ensembles de g�enes qui ne sont pas \trop �eloign�es" dans tousles g�enomes
onsid�er�es. Dans
et arti
le, nous proposons un
on
ept uni�
ateur, appel�e�equipe de g�enes, qui peut être adapt�e �a di��erentes notions de distan
es. Nous pr�esentonsdeux algorithmes pour identi�er les �equipes de g�enes form�ees par n g�enes situ�es sur m
hromosomes lin�eaires. Le premier a une
omplexit�e en temps de O(mn log2 n) et utiliseune appro
he \diviser pour r�egner" bas�ee sur des propri�et�ees formelles des �equipes deg�enes. Nous proposons ensuite une optimisation de
et algorithme, et, a�n de mieux
omprendre la borne sur sa
omplexit�e, nous repla�
ons le probl�eme dans le
adre d'uns
h�ema de raÆnement de partitions de Hop
roft. Ce
i nous permet d'analyser la
om-plexit�e par des te
hniques plus �el�egantes de
omplexit�e amortie. Les deux algorithmesont une
omplexit�e en espa
e lin�eaire. Nous
onsid�erons �egalement des extensions au
asdes
hromosomes
ir
ulaires qui ont la même
omplexit�e.�Institut Gaspard-Monge, Universit�e de Marne-la-Vall�ee, Cit�e Des
artes, Champs-sur-Marne, 77454 Marne-la-Vall�ee Cedex 2, Fran
e. Marie-Pierre.Beal�univ-mlv.fr.yLaCIM, Universit�e du Qu�ebe
 �a Montr�eal, Canada. anne�la
im.uqam.
azCNRS - Laboratoire PRiSM, Universit�e de Versailles, 45 Avenue des Etats-Unis, 78035 Versailles
edex,Fran
e. E-mail: syl�prism.uvsq.frxCNRS - Laboratoire G�enome et Informatique, Tour Evry 2, 523, Pla
e des Terrasses de l'Agora, 91034Evry, Fran
e. raffinot�genopole.
nrs.fr 1

1 Introdu
tionIn the last few years, resear
h in genomi
s s
ien
e evolved rapidly. More and more
ompletegenomes are now available due to the development of semi-automati
 sequen
er ma
hines.Many of these sequen
es { parti
ularly prokaryoti
 ones { are well annotated: the position oftheir genes are known, and sometimes parts of their regulation or metaboli
 pathways.A new
omputational
hallenge is to extra
t gene or protein knowledge from high level
omparison of genomes. For example, the knowledge of sets of orthologous or paralogous geneson di�erent genomes helps to infer putative fun
tions from one genome to the other. Manyresear
hers have explored this avenue, trying to identify groups or
lusters of orthologous genesthat have virtually the same fun
tion in several genomes [1, 6, 5, 7, 9, 11, 13, 14, 15, 18℄.These resear
hes are often based on a simple, but biologi
ally veri�ed fa
t, that proteins thatintera
t are often
oded by genes
losely pla
ed in the genomes of di�erent spe
ies. Withthe knowledge of the positions of genes, it be
omes possible to automate the identi�
ation ofgroups of
losely pla
ed genes in several genomes. For a more
omplete biologi
ally orienteddis
ussion on these groups of genes, we refer the reader to [12℄.From an algorithmi
 and
ombinatorial point of view, the formalizations of the
on
eptof
losely pla
ed genes are still fragmentary, and sometimes
onfusing. The distan
e betweengenes is variously de�ned as di�eren
es between physi
al lo
ations on a
hromosome, distan
efrom a spe
i�ed target, or as a dis
rete
ount of intervening a
tual or predi
ted genes. Thealgorithms often la
k the ne
essary grounds to prove their
orre
tness, or assess their
om-plexity. This paper
ontributes to a resear
h movement of
lari�
ation of these notions. Weaim to formalize, in the simplest and most
omprehensive ways, the
on
epts underlying thenotion of distan
e-based
lusters of genes. We
an then make use of these
on
epts, and theirformal properties, to design sound and eÆ
ient algorithms.A �rst step in that dire
tion has been done in [9, 19℄ with the
on
ept of
ommon intervals.A
ommon interval is a set of orthologous genes that appear
onse
utively, possibly in di�erentorders, on a
hromosome of two or more spe
ies. This
on
ept
overs simplest
ases of setsof
losely pla
ed genes, but does not take in a

ount the nature of the gaps between genes.Common intervals
an be de�ned on
hromosomes with paralogous genes, that is, ea
h gene
ould have multiple lo
ations on the
hromosomes. However, the algorithms in [9, 19℄ aredesigned only for the
ase where ea
h gene o

urs on
e on ea
h
hromosome.In this paper, we extend this notion by relaxing the \
onse
utive"
onstraint. We assumethat ea
h gene o

urs on
e on ea
h
hromosome. We allow genes to be separated by gaps thatdo not ex
eed a �xed threshold. We develop a simple formal setting for these
on
epts, andgive two polynomial algorithms that dete
t maximal sets of
losely pla
ed genes,
alled geneteams, in m
hromosomes. Note that we fo
us in this paper on the algorithmi
 part of thegene team
on
ept. A
omplete study validating this model from a biologi
al point of view isavailable in [12℄, an the results
on
erning the divide-and-
onquer algorithm were announ
edin [3℄.The �rst algorithm re�nes the partitions indu
ed by gene
hains of two or more
hromo-somes. It uses a divide-and-
onquer approa
h based on the existen
e of small
lasses of thepartitions. The apparent simpli
ity hides a
omplex underlying problem that �rst appearedin the non trivial
omplexity of this �rst algorithm.Next, in order to better understand the
omplexity bounds, and analysis, of this algorithm,we re
ast the problem in the Hop
roft's partition re�nement framework [10℄, whi
h
overs awide range of appli
ations [8, 16℄. We develop a new algorithm based of the �rst Hop
roft2

minimization algorithm, and show that the �rst algorithm des
ribed is a
leverly disguisedHop
roft-like algorithm. The
lose links between the two algorithms allows us to derive anelegant
omplexity analysis, based on amortized te
hniques, whi
h is mu
h more intuitivethan the equational approa
h. Moreover, the fa
t that Hop
roft-like algorithms have beenextensively studied
on�rms the intrinsi
 diÆ
ulties of the gene teams identi�
ation problem.This paper is organized as follows. In Se
tion 2, we formalize the
on
ept of gene teamsthat uni�es most of the
urrent approa
hes, and dis
uss their basi
 properties. In Se
tion 3we present two algorithms that identify the gene teams of two
hromosomes. The linksbetween Hop
roft's partitioning framework and gene teams identi�
ation are explored inSe
tion 4. Finally, in Se
tion 5, we extend our algorithms to m
hromosomes, and to
ir
ular
hromosomes. An extended abstra
t of this paper appeared in [3℄.2 Gene Teams and their PropertiesMu
h of the following de�nitions refer to sets of genes and
hromosomes. These are biologi
al
on
epts whose de�nitions are outside the s
ope of this paper. However, we will assume someelementary formal properties relating genes and
hromosomes: a
hromosome is an orderingdevi
e for genes that belong to it, and a gene
an belong to several
hromosomes. If a genebelongs to a
hromosome, we assume that its position is known, and unique.2.1 De�nitions and ExamplesLet � be a set of n genes that belong to a
hromosome C, and let PC be a fun
tion:� PC�! Rthat asso
iates to ea
h gene g in � a real numberPC(g),
alled its position.Fun
tions of this type are quite general, and
over a wide variety of appli
ations. Theposition
an be, as in [14, 15, 11℄, the physi
al lo
ation of an a
tual sequen
e of nu
leotides ona
hromosome. In more qualitative studies, su
h as [1, 13℄, the positions are positive integersre
e
ting the relative ordering of genes in a given set. In other studies [5℄, positions are bothnegative and positive numbers
omputed in relation to a target sequen
e.The fun
tion PC indu
es a permutation on any subset S of �, ordering the genes of S fromthe gene of lowest position to the gene of highest position. We will denote the permutation
orresponding to the whole set � by �C . If g and g0 are two genes in �, their distan
e �C(g; g0)in
hromosome C is given by jPC(g0)� PC(g)j.For example, if � = fa; b;
; d; eg,
onsider the following
hromosome X, in whi
h genesnot in � are identi�ed by the star symbol:X =
 � � e d a � b:De�ne PX(g) as the number of of genes appearing to the left of g. Then �X(
; d) = jPX(d)�PX(
)j = 4, �X = (
 e d a b), and the permutation indu
ed on the subset fa;
; eg is (
 e a).De�nition 1 Let S be a subset of �, and (g1 : : : gk) be the permutation indu
ed on S ona given
hromosome C. For Æ > 0, the set S is
alled a Æ-
hain of
hromosome C if�C(gj ; gj+1) � Æ; for 1 � j < k. 3

For example, if Æ = 3, then fa;
; eg is a Æ-
hain of X, sin
e ea
h pair of
onse
utiveelements in the permutation (
 e a) is distant by less than Æ.We will also refer to maximal Æ-
hains with respe
t to the partial order indu
ed on thesubsets by the in
lusion relation. For example, with Æ = 2, the maximal Æ-
hains of X aref
g and fa; b; d; eg. Note that singletons are always Æ-
hains, regardless of the value of Æ.De�nition 2 A subset S of � is a Æ-set of
hromosomes C and D if S is a Æ-
hain both in Cand D. A Æ-team of the
hromosomes C and D is a maximal Æ-set with respe
t to in
lusion.A Æ-team with only one element is
alled a lonely gene.Consider, for example, the two
hromosomes:X =
 � � e d a � bY = a b � � �
 � d e:For Æ = 3 then fd; eg and f
; d; eg are Æ-sets, but not f
; dg sin
e the latter is not a Æ-
hainin X. The Æ-teams of X and Y , for values of Æ from 1 to 4 are given in the following table.Æ Æ-teams Lonely Genes1 fd; eg fag; fbg; f
g2 fa; bg; fd; eg f
g3 fa; bg; f
; d; eg4 fa; b;
; d; egNote that two gene teams
an overlap. For instan
e, if X = a
 b d, Y = a b � �
 d andÆ = 2, then fa; bg and f
; dg are two overlapping gene teams.Our goal is to develop algorithms for the eÆ
ient identi�
ation of gene teams. The mainpitfalls are illustrated in the next two examples.The interse
tion of Æ-
hains is not always a Æ-set. A naive approa
h to
onstru
tÆ-sets is to identify maximal Æ-
hains in ea
h sequen
e, and interse
t them. Although thisworks on some examples, the approa
h does not hold in the general
ase. For example, in the
hromosomes: X = a b
Y = a
 � � b;with Æ = 1, the maximal Æ-
hain of X is fa; b;
g, and the maximal Æ-
hains of Y are fa;
gand fbg. But fa;
g is not a Æ-team.Gene teams
annot be grown from smaller Æ-sets. A typi
al approa
h for
onstru
tingmaximal obje
ts is to start with initial obje
ts that have the desired property, and
lusterthem with a suitable operation. For gene teams, the singletons are perfe
t initial obje
ts,but there is no obvious operation that, applied to two small Æ-sets, produ
es a bigger Æ-set.Consider the following
hromosomes:X = a b
 dY =
 a d b :4

For Æ = 1, the only Æ-sets are the sets fag, fbg, f
g and fdg, and the set fa; b;
; dg. Ingeneral, it is possible to
onstru
t pairs of
hromosomes with an arbitrary number of genes,su
h that the only Æ-sets are the singletons and the whole set. For example,
onsider thefollowing
hromosomes, in whi
h the genes are represented by numbers in order to illustratethe
onstru
tion: X = 1 2 3 ::: ::: 2kY = 2 4 6 ::: 2k 1 3 5 ::: 2k � 1:For Æ = 1, any Æ-set larger than a singleton must
ontain both odd and even genes be
ausethey alternate in
hromosome X, but any Æ-
hain in Y that
ontains odd and even genes must
ontain genes 1 and 2k, implying that the only team with more than one gene is the whole set.Instead of growing teams from smaller Æ-sets, we will extra
t them from larger sets that
ontain only teams. This leads to the following de�nition:De�nition 3 A Æ-league of
hromosomes C and D is a union of Æ-teams of the
hromosomesC and D.As the two last examples show, the
ombinatorial properties of Æ-sets are not elementary,and we need to establish them in order to develop and prove our algorithms.2.2 Properties of Æ-sets and teams.The �rst
ru
ial property of Æ-teams is that they form a partition of the set of genes �. It isa
onsequen
e of the following lemma:Lemma 1 If S and T are two Æ-
hains of
hromosome C, and S \T 6= ;, then S [T is alsoa Æ-
hain.Proof: Consider the permutation indu
ed on the set S [T , and let g and g0 be two
onse
-utive elements in the permutation. If g and g0 both belong to S (or to T), then they are
onse
utive in the permutation indu
ed by S (or by T), and �(g; g0) � Æ. If g is in S but notin T , and g0 is in T but not in S, then either g is between two
onse
utive elements of T , org0 is between two
onse
utive elements of S. Otherwise, the two sets S and T would have anempty interse
tion. If g is between two
onse
utive elements of T , for example, then one ofthem is g0, implying �(g; g0) � Æ.We now have easily:Proposition 1 For a given set of genes �, the Æ-teams of
hromosomes C and D form apartition of the set �.Proof: Sin
e any singleton of � is a Æ-set, any gene of � belongs to a Æ-team. If the in-terse
tion of two di�erent Æ-teams T1 and T2 is not empty, then the interse
tion of the twounderlying Æ-
hains is not empty neither in C nor in D, therefore their union is also a Æ-
hainin both sequen
es, implying that T1 [T2 is a Æ-set, and
ontradi
ting the maximality of T1and T2.Proposition 1 has the following
orollary: 5

Corollary 1 If a set S is both a league, and a Æ-set, of
hromosomes C and D, then S is aÆ-team.Proof: Sin
e the maximal Æ-sets form a partition of �, any Æ-set is
ontained in a uniqueÆ-team.The algorithms des
ribed in the next se
tion work on leagues, splitting them while ensuringthat a league is split in smaller leagues. The pro
ess stops when ea
h league is a Æ-set.Corollary 1 provides a simple proof that su
h an algorithm
orre
tly identi�es the teams.The next proposition gives the \initial" leagues for the �rst algorithm.Proposition 2 Any maximal Æ-
hain of C or of D is a league.Proof: First observe that the set of maximal Æ-
hains in a
hromosome also forms a partitionof �. Therefore, any Æ-
hain is in
luded in a unique maximal Æ-
hain. If T is a team of C andD, then T is a Æ-
hain in both
hromosomes, thus T is in
luded in a single maximal
hain inboth
hromosomes.3 Algorithms to Find Gene TeamsIt is quite straightforward to develop O(n2) algorithms that �nd gene teams in two
hro-mosomes. In the following subse
tion, we present some of the pitfalls of naive approa
hesto partition re�nement that
an lead to an O(n2) worst
ase s
enario. However, sin
e theultimate goal is to be able to upgrade the de�nitions and algorithms to more than two
hro-mosomes, su
h a threshold is too high. In Se
tion 3.2, we develop an O(n log2 n) algorithm,whose
omplexity is analysed in se
tion 3.3. We then propose in Se
tion 3.4 an optimizationof the �rst algorithm, redu
ing its time
omplexity to O(n logn log Æ0), where Æ0 is, for allprati
al purpose, a small
onstant.3.1 Partition Re�nementAssume that we are given two permutations on �, �C and �D, ea
h already partitioned intomaximal Æ-
hains of
hromosomes C and D:�C = (
1 : : :
k1)(
k1+1 : : :
k2) : : : (
ks+1 : : :
n)�D = (d1 : : : dl1)(dl1+1 : : : dl2) : : : (dlt+1 : : : dn):Let (
i : : :
j) be one of the
lasses of the partition of �C , by Proposition 2 (
i : : :
j) is aleague. Our goal is to split this
lass in v sub
lasses S1; : : : ; Sv su
h that: a) ea
h sub
lass isa league; b) ea
h sub
lass is a Æ-
hain in C; and
) ea
h sub
lass is
ontained in one of the
lasses of �D.Consider, for example, the following two
hromosomes { in whi
h we identi�ed the genesas numbers, and k � 1:X = (3 1 5 2 7 4 9 : : : 2k + 1 2k � 2 2k + 3 2k) (2k + 2)Y = (1 2 3 4 5 : : : 2k + 1 2k + 2 2k + 3):6

If one
ompares the �rst league of
hromosome X to the �rst league of
hromosome Y , one
an observe that genes 2k+2 and 2k+3 must be isolated in both partitions. But the resultingproblemX 0 = (3 1 5 2 7 4 9 : : : 2k + 1 2k � 2) (2k + 3) (2k) (2k + 2)Y 0 = (1 2 3 4 5 : : : 2k + 1) (2k + 2) (2k + 3);has the same form tas the original one, showing that a bad
hoi
e of leagues to
ompare
anyield to O(n) iterations of the pro
ess. This partition re�nement approa
h has the drawba
kthat big leagues must be read over and over again, in order to extra
t the small leagues thatare buried in them. In the next se
tion, we take the point of view of the small
lasses, andshow that their extra
tion
an be done eÆ
iently.3.2 A Divide-and-Conquer AlgorithmThe following algorithm to identify teams is a divide-and-
onquer algorithm that works byextra
ting small leagues from larger ones. Its basi
 prin
iple is des
ribed in the followingparagraph.Assume that S is a league of
hromosomes C and D, and that the genes of S are respe
-tively ordered in C and D as: (
1 : : :
n); and (d1 : : : dn):By Proposition 1, if S is a Æ-set, then S is a Æ-team. If S is not a Æ-set, there are at leasttwo
onse
utive elements, say
i and
i+1 that are distant by more than Æ. Therefore, both(
1 : : :
i) and (
i+1 : : :
n) are leagues, splitting the initial problem in two sub-problems. Thefollowing two lemmas explain how to split a problem eÆ
iently.Lemma 2 If S is a league, but not a team, of
hromosomes C and D, then there exists asub-league of S with at most jSj=2 genes.Proof: Let jSj = n, if all sub-leagues of S have more than n=2 genes, it follows that ea
hteam in
luded in S has more than bn=2
 genes, and the interse
tion of two su
h teams
annotbe empty.The above lemma implies that if S is a league, but not a team, and if the sequen
es(
1 : : :
n) and (d1 : : : dn) are the
orresponding permutations in
hromosomes C and D, thenthere exist a value p � n=2 su
h that at least one of the following sequen
es is a league:(
1 : : :
p);(
n�p+1 : : :
n);(d1 : : : dp);(dn�p+1 : : : dn):For example, if X = a b
 � d e f gY =
 a e d b g fand Æ = 1, then (a b
) is easily identi�ed as a league, sin
e the distan
e between
 andd is greater than 1 in
hromosome X. The next problem is to extra
t the
orrespondingpermutation in
hromosome Y . This is taken
are of the following lemma that des
ribes thebehavior of the fun
tion \Extra
t((
1 : : :
p);D)":7

Lemma 3 Assume that �C and �D, and their inverse, are known. If (
1 : : :
p) is a set ofgenes ordered in in
reasing position in
hromosome C, then the
orresponding permutation(d01 : : : d0p) on
hromosome D
an be obtained in time O(p log p).Proof: Given (
1 : : :
p), we �rst
onstru
t the array A = (��1D (
1); : : : ; ��1D (
p)). SortingA requires O(p log p) operations, yielding the array A0. The sequen
e (d01 : : : d0p) is given by(�D(A01) : : : �D(A0p)).The last operation needed to split a league is to
onstru
t the ordered
omplement of anordered league. For example, for the league �Y = (
 a e d b g f), the
omplement of theleague (
 a b) is the league (e d g f).More formally, if (d01 : : : d0p) is a subsequen
e of (d1 : : : dn), we will denote by(d1 : : : dn) n (d01 : : : d0p)the subsequen
e of (d1 : : : dn) obtained by deleting the elements of (d01 : : : d0p). In our parti
ular
ontext, this operation
an be done in O(p) steps. Indeed, on
e a problem is split in two sub-problems, there is no need to ba
ktra
k in the former problems. Therefore, at any point inthe algorithm, ea
h gene belongs to exa
tly two ordered leagues, one in ea
h
hromosome. Ifthe gene data stru
ture
ontains pointers to the previous and the following gene { if any { inboth leagues, the stru
ture
an be updated in
onstant time as soon as an extra
ted gene isidenti�ed. Sin
e p genes are extra
ted, the operation
an be done in O(p) steps. An exampleof su
h an \extra
tion" operation is shown in Fig. 1.
P

D

C

D’’

C’’

Extraction of P

C’

D’Figure 1: Extra
tion of a league P out of D. The initial problem on (C;D) is split in twosub-problems on (C 0;D0) and (C 00;D00).Fig. 2
ontains the formal des
ription of the algorithm FindTeams. The three
asesthat are not shown
orrespond to the tests �C(
n�p;
n�p+1) > Æ, �D(dp; dp+1) > Æ and�D(dn�p; dn�p+1) > Æ, and are dupli
ations of the �rst
ase, up to indi
es.Theorem 1 On input �C and �D, algorithm FindTeams
orre
tly identi�es the Æ-teams of
hromosomes C and D.Proof: Sin
e � is a league, the �rst input to FindTeams will be a league. The
orre
tness ofthe algorithm
omes from the fa
t that if a league S is supplied to the algorithm, then either8

FindTeams((
1 : : :
n); (d1 : : : dn))1. SubLeagueFound False2. p 13. While (not SubLeagueFound) and p � bn=2
 Do4. If �C(
p;
p+1) > Æ or �C(
n�p;
n�p+1) > Æ or5. �D(dp; dp+1) > Æ or �D(dn�p; dn�p+1) > Æ Then6. SubLeagueFound True7. Else p p+ 18. End of if9. End of while10. If SubLeagueFound Then11. If �C(
p;
p+1) > Æ Then12. (d01 : : : d0p) Extra
t((
1 : : :
p); D))13. FindTeams((
1 : : :
p); (d01 : : : d0p))14. FindTeams((
p+1 : : :
n); (d1 : : : dn) n (d01 : : : d0p))15. Else If : : :16. /* The three other
ases are similar */17. End of if18. Else (
1 : : :
n) is a Team19. End of ifFigure 2: Fast re
ursive algorithm for gene teams identi�
ation.S is a Æ-team, whi
h is the
ondition tested by the four tests within the loop of line 3, or ithas a \small" sub-league, whose
omplement is also a league.The spa
e needed to exe
ute algorithm FindTeams is easily seen to be O(n) sin
e itneeds the four arrays
ontaining �C , �D, ��1C , ��1D , and the n genes, ea
h with four pointers
oding impli
itly for the ordered leagues.3.3 Time Complexity of Algorithm FindTeamsIn the last se
tion, we saw that algorithm FindTeams splits a problem of size n in twosimilar problems of size p and n� p, with p � n=2. The number of operations needed to splitthe problem is O(p log p), but the value of p is not �xed from one iteration to the other. Inorder to keep the formalism manageable, we will \... negle
t
ertain te
hni
al details when westate and solve re
urren
es. A good example of a detail that is glossed over is the assumptionof integer arguments to fun
tions.", [17℄ p. 53.Assume that the number of operation needed to split the problem is bounded by �p log p,and let F (n) denote the number of operations needed to solve a problem of size n. Then F (n)is bounded by the fun
tion T (n) des
ribed by the following equation:T (n) = max1�p�bn=2
f�p log p+ T (p) + T (n� p)g: (1)with T(1) = 1. 9

Surprisingly, the worst
ase s
enario of the above equation is when the input is alwayssplit in half. Indeed, we will show that T (n) is equal to the fun
tion:T2(n) = �n2 log n2 + 2T2 �n2� ; (2)with T2(1) = 1. One dire
tion is easy:Lemma 4 T (n) � T2(n).Proof: Suppose that T (i) � T2(i) for all i < n, thenT (n) � max1�p�n=2f�p log p+ T2(p) + T2(n� p)g� (�n=2) log(n=2) + T2(n=2) + T2(n� n=2)= T2(n):In order to show the
onverse, we �rst obtain a
losed form for T2(n).Lemma 5 T2(n) = n� (�n=4) log n+ (�n=4) log2 n.Proof: Substituting the value T2(n=2) in the left side of Equation 2, and using the identitylog(n=2) = (log n)� 1 yields:T2(n) = (�n=2) log(n=2) + 2[n=2� (�n=8) log(n=2) + (�n=8) log2(n=2)℄= n� (�n=4) log n+ (�n=4) log2 n:We use this relation to show the following remarkable property of T2(n). It says that whena problem is split in two, the more unequal the parts, the better.Proposition 3 If x < y then T2(x) + T2(y) + �x log x < T2(x+ y).Proof: Consider the variable z = y=x. The following identities are easy to derive:log(x+ y)� log x = log(1 + z)log(x+ y)� log y = log(1 + 1=z)log2(x+ y)� log2 x = [2 log x+ log(1 + z)℄ log(1 + z)log2(x+ y)� log2 y = [2 log x+ log(1 + z) + log z℄ log(1 + 1=z):De�ne H(z) = log(1 + z) + z log(1 + 1=z). Its value for z = 1 is 2, and its derivative islog(1 + 1=z), implying that the H(z) is stri
tly in
reasing. We will show that [T2(x + y) �T2(x)� T2(y)℄=(�x) > log x. Using the
losed form for T2, we have:[T2(x+ y)� T2(x)� T2(y)℄=(�x)= (1=4)[log2(x+ y)� log2 x℄ + (y=4x)[log2(x+ y)� log2 y℄�(1=4)[log(x+ y)� log x℄� (y=4x)[log(x+ y)� log y℄:10

Substituting y=x by z, the last expression be
omes:(H(z)=4)[2 log x+ log(1 + z)� 1℄ + (1=4)z log z log(1 + 1=z)� (H(z)=2) log x> log x; sin
e H(z) > 2, when z > 1.Using Proposition 3, we get:Proposition 4 T (n) � T2(n).Proof: Suppose that T (i) � T2(i) for all i < n, thenT (n) = max1�p�bn=2
f�p log p+ T (p) + T (n� p)g� max1�p�bn=2
f�p log p+ T2(p) + T2(n� p)g� max1�p�bn=2
fT2(p+ n� p)g� max1�p�bn=2
fT2(n)g= T2(n):We thus have:Theorem 2 The time
omplexity of algorithm FindTeams is O(n log2 n).Theorem 2 is truly a worst
ase behavior. It is easy to
onstru
t examples in whi
h itsbehavior will be linear, taking, for example, an input in whi
h one
hromosome has onlysingletons as maximal Æ-
hains.3.4 A faster algorithmAlgorithm FindTeams
an be optimized by using a parameter Æ0 that depends on genedensity and the value of Æ:De�nition 4 Let Æ0 be the maximal number of genes
ontained in moving window of size Æ,over all the
hromosomes.The optimization fo
uses on how to extra
t the small league P , or the pivot of Hop
roft'sframework (see Se
tion 4). Assume P to be of size p. The extra
tion algorithm will run inO(p log Æ0) instead of O(p log p). The idea is to lo
ally sort the genes in small zones, and then
onsider
onse
utive zones to �nd the maximal Æ-teams. These
onse
utive zones are built byextending the neighborhood of ea
h zone, without sorting the zones.
11

3.4.1 Asso
iating a zone to ea
h geneEa
h
hromosome is
ut in at most 2n zones Zi of length Æ, and ea
h gene on this
hromosomeis asso
iated with a spe
i�
 zone. A table Z = Z1 : : : Zh is built for ea
h
hromosome to insurea dire
t a

ess to a zone.The zone building algorithm for a
hromosome is given in Fig 3. The genes are s
annedfrom left to right (line 2), the
urrent position is initialized with the position of the �rst gene,the initial gene to the �rst gene, and the zone number to 1 (line 1). Then, if the distan
ebetween the
urrent gene and the initial gene is greater than 2Æ, we build two zones and resetthe pro
ess. If this distan
e is between Æ and 2Æ, it means that we entered a
onse
utive zoneand we also reset the pro
ess, but in
rement the number of zones only by one. Finally, if thedistan
e is smaller than Æ, we stay in the same zone.Build zones((
1 : : :
n))1. CurrentZone 1 ; InitGene
12. For i = 1 : : : n Do3. If �C(InitGene;
i) > 2Æ Then4. CurrentZone CurrentZone+2 ; InitGene
i5. Else6. If �C(InitGene;
i) > Æ Then7. CurrentZone CurrentZone+1 ; InitGene
i8. End of if9. End of if10. Zone C(
i) CurrentZone11. End of forFigure 3: Algorithm for assigning a zone to ea
h gene of a
hromosome C.The h zones Z1; : : : ; Zh
omputed withBuild zones have some obvious properties. Thereare at most Æ0 genes asso
iated with the same zone. The total number h of zones is less thanor equal to 2n, sin
e a gene
reates at most 2 zones (line 4).3.4.2 Sorting all zonesAssume now that we want to extra
t a league P of size p out of a
hromosome C. We�rst group together the genes of P that are asso
iated to the same zone of the table Z of C.Suppose we
onsidered l zones Zi1 ; : : : ; Zil of size zj , i1 � j � il. This takes time proportionalto p. We now sort ea
h su
h zone using a
lassi
al optimal sort algorithm. Sorting Zij requiresO(zj log zj) time, whi
h is, as zj � Æ0, less or equal than O(zj log Æ0). The total
omplexity isthen less or equal to O(Plj=1 zj log Æ0) = O(p log Æ0).Note that for the rest of the extra
tion algorithm, we keep tra
k, for ea
h non empty zoneZij , of the minimal and maximal position of the genes in Zij . This is given by the sortingpro
edure without additional
ost.3.4.3 Extra
ting maximal Æ-
hainsAt this point, we have a list of l sorted zones Zi1 ; : : : ; Zil of genes, in a table Z = Z1 : : : Zh.The zones are not sorted among ea
h other, in the sense that we
annot address the zones12

of Zi1 ; : : : ; Zil a

ording to their order in the table Z. We show now that even withoutthis information we
an extra
t P in C. The idea is simply to
onsider for ea
h zone Zij ,1 � j � l, the zone to its left in the table Z, that is Zij�1 (if it exists), and
hain Zij withZij�1 if ne
essary. The zone Zij�1 is a

essible in
onstant time through the table Z. Theorder in whi
h the zones Zij are
onsidered is irrelevant. There are three main
ases:1. Zone Zij�1 does not exist (ij = 1). Zone Zij is dire
tly marked as an initial zone.2. Zone Zij�1 is empty. Then, the way zones are built by algorithm Build zones (Fig.3) insures that the genes in Zij
annot be Æ-
onne
ted to other genes to the left, sin
ean empty zone means a distan
e greater than Æ to any pre
eding gene. The zone Zij isthen marked as an initial zone.3. Zone Zij�1, is not empty. Then, if the distan
e between the last element of Zij�1 andthe �rst element of Zij is less or equal to Æ, then Zij is
hained to Zij�1 as a followingzone. Otherwise, we apply a pro
ess similar to
ase 2.At the end of that pro
ess, after having
onsidered all zones in whi
h at least one elementof P was found, all zones are either
hained to the zone to their left, or initial. To �nishthe pro
ess, for all the initial zones, we follow the links of
hained zones and
on
atenate thegenes. This forms the maximal Æ-
hains, sin
e: (a) inside a zone, the genes are Æ-
onne
ted;(b) if two zones Zij�1 and Zij are
hained, the genes of these two zones are Æ-
onne
ted, sin
ewe test whether the maximal gene of Zij�1 is
onne
ted to the minimal gene of Zij or not;(
) if the Æ-
hain was not maximal, another zone (to the left or to the right) would have been
hained.3.4.4 ComplexityProposition 5 Splitting a league P of size p
an be done in O(p log Æ0) worst
ase time.Using the analysis of Se
tion 3.3 or the amortized te
hniques of Hop
roft's framework(see Se
tion 4), we get a new algorithm with O(n logn log Æ0) worst
ase time
omplexity.The optimization still requires O(n) spa
e, sin
e there are at most 2n zones per
hromosome.The
omplexity analysis extends to the
ase of m
hromosomes, yielding an O(mn logn log Æ0)algorithm.4 Hop
roft's partitioning frameworkPartition re�nement with pivots is a widely used te
hnique to solve a large
lass of problemson graphs, strings, et
 [4, 8℄. The �rst designer was Hop
roft who used it to minimizedeterministi
 automata [10℄. We propose another version of the faster algorithm, based onpartition re�nement with pivots, for the
omputation of the Æ-teams of two
hromosomes.The algorithms extends to an arbitrary number m of
hromosomes.4.1 Gene teams and Hop
roft's partitioning frameworkRe�ning a partition
an be done by splitting its
lasses into smaller ones, a

ording to asubset of �
alled the pivot set : ea
h
lass X of L is repla
ed by X \ S and X n S. We13

say that the pivot set S splits the partition L into a new partition. In the
omputation ofÆ-teams, pivots will always be Æ-
hains of one of the
hromosomes.Let LC and LD be the two initial partitions indu
ed by maximal Æ-
hains of
hromosomesC andD. We distinguish two types of pivots,
alled type C and type D. Pivots of type C splitthe partition LD while pivots of type D split the partition LC . Partitions are implementedby sorted lists. Therefore partitions are impli
itly ordered. A partition Q is
ompatible witha partition P if every
lass of Q is in
luded in a
lass of P and if the ordering in P respe
tsthe ordering in Q (i.e if in P the
lass X is before the
lass Y , then any
lass X 0 � X of Qis before any
lass Y 0 � Y). A pivot splits a partition into a
ompatible one. Moreover, andthis point di�ers slightly from general partition re�nement s
hemes, ea
h
lass of a partitionalso is implemented by a sorted list. Ea
h
lass of the partition LC is sorted a

ording to thegene order given by
hromosome C, and ea
h
lass of the partition LD is sorted a

ordinglyto the order given by D.De�nition 5 We say that a
lass X overlaps a set S if X 6� S and X \ S 6= ;. Given asubset S of �, a partition L of � is said to be S-stable when no
lass of L overlaps S.Note that after a re�nement step of L by S, the new partition is S-stable.The PartitionRe�nement algorithm is des
ribed in Fig. 4. While Hop
roft's originalalgorithm pro
esses the \small half", we pro
ess several \small parts": initially, the sta
kpivots
ontains all
lasses of the two partitions. Then, ea
h
lass in the sta
k is either repla
edby smaller ones, or new small sub
lasses are sta
ked. The algorithm
alls Sort zones(P), apro
edure whi
h
omputes a de
omposition of the pivot P of type C (resp. D) into an unionof maximal Æ-
hains of D (resp. C). This pro
edure is des
ribed in Se
tions 3.4.2 and 3.4.3.Pro
edure Split(X;P), Fig. 5, is the main part of the algorithm. If a
lass X properlyoverlaps the pivot set, the pivot splits the
lass X of LC (resp. LD) into at least two
lassesa

ording to the pivot set. The obtained sub
lasses are still Æ-
hains of C (resp. D). Thesizes of the sub
lasses are
omputed in parallel during the pro
ess, in order to avoid parsingan eventual { unique { large sub
lass. The
ode uses the following fun
tions. If X is Æ-
hainof the
hromosome C, let (g1; : : : ; gk) be the permutation of X indu
ed by C. We denote bynext(gi;X) the gene gi+1 when it exists, in whi
h
ase hasnext(gi;X) is true. If it does notexist, hasnext(gi;X) is false.The
orre
tness of Algorithm PartitionRe�nement is obtained with the following in-variants of the while loop (line 6).Proposition 6 Partitions LC and LD always verify:1. Ea
h
lass of LC (resp. LD) is a Æ-
hain of C (resp. D).2. The union of two distin
t
lasses of LC (resp. LD) is not a Æ-set.Proof. During the initialization of Algorithm PartitionRe�nement, the
lasses of LC andLD are Æ-
hains of C and D respe
tively, and Pro
edure Split transforms a
olle
tion ofÆ-
hains into a
olle
tion of Æ-
hains.The
onservation of the property 2 follows from the following property 2': for any pivotP , any element g of P and any element g0 =2 P , g and g0
annot be in a same maximal Æ-set.Properties 2' and 2 are true after the initialization step. Let us assume that they are bothsatis�ed at some time. Then, after a splitting of a
lass X under a pivot, any two elements14

PartitionRe�nement(
hromosomes C;D)1. Initializations2. LC (resp. LD) the
olle
tion of maximal Æ-
hains of C (resp. D),(ea
h
lass of LC (resp. LD) is ordered by C (resp. D)).3. Let pivots be an empty sta
k of pivots.4. Add ea
h
lass of LC (resp. LD) in pivots as a pivot of type C (resp. D).5. Re�nements6. While (pivots is not empty) Do7. Pi
k a pivot P in pivots.8. Sort zones(P)9. If P has type D (the
ase type C is similar) Then10. If LC is not P -stable Then11. Let M be the set of
lasses of LC properly overlapping P .12. For ea
h
lass X 2M Do13. Let (X1; X2; : : : ; Xr) = Split(X;P)14. If (X is
ontained in the sta
k pivots) Then15. Remove X from pivots and add X1; X2; : : : ; Xr16. as pivots of type C.17. Else18. For ea
h
lass Xi su
h that size[Xi℄ � size[X ℄=2 Do19. Add Xi in pivots as a pivot of type C.20. End of for21. End of if22. End of for23. End of if24. End of if25. End of whileFigure 4: Hop
roft-like algorithm for gene teams identi�
ation.of two distin
t sub
lasses
annot belong to a same maximal Æ-set, by
onstru
tion. Thus thenew pivots of the sta
k obtained from lines 15-16 of Algorithm PartitionRe�nement orfrom lines 18-19 of Algorithm PartitionRe�nement still verify 2', and the re�ned partitionstill veri�es 2. 2Proposition 6 implies that no Æ-team will be split during the pro
ess. The next propositioninsures that there is always enough pivots in the sta
k to properly identify all Æ-teams.Proposition 7 If the partition LC is not Y -stable for every
lass Y 2 LD, (or if the partitionLD is not X-stable for every
lass X 2 LC), then some pivot of type D (resp. C) in the sta
kpivots will stri
tly re�ne this partition.In the
ase of more than two
hromosomes, at the end of the exe
ution of the algorithm,ea
h partition of one
hromosome is X-stable for ea
h
lass X of a partition of another
hromosome.Proof. We show that if the partition LC is not Y -stable for every
lass Y 2 LD, then somepivot in pivots will stri
tly re�ne the partition LD. Let us assume that there is a
lass X 2 LCsu
h that X properly overlaps a
lass Y 2 LD. Let g 2 Y \X, and f 2 (�nY)\X. Considerthe �rst time g and g0 are split apart into two di�erent
lasses Z1 and Z2 of LD. If these15

Split(
lass X 2 LC , pivot P of type D)ouputs a list of
lasses L with their sizes1. Let L be the empty list.2. Extra
t maximal Æ-
hains X1; : : : ; Xr of elements from X \ P3. Extra
t maximal Æ-
hains X 01; : : : ; X 0s of elements from X \ (� n P)4. For (ea
h
hain Xi) Do5. Compute size[Xi℄ with an exploration of the
hain Xi.6. Add Xi to L.7. size[X ℄ size[X ℄� size[Xi℄8. End of for9. Let L0 = (X 01; : : : ; X 0s)10. For (ea
h
hain X 0 2 L0) Do11. Set g(X 0) as the �rst element of X 0.12. size[X 0℄ 1.13. End of for14. While (L0
ontains more than one
hain) Do15. While (hasnext(g(X 0); X 0) for ea
h X 0 2 L0) Do16. For (ea
h X 0 2 L0) Do17. g(X 0) next(g(X 0); X 0).18. size[X 0℄ size[X 0℄ + 1.19. End of for20. End of while21. For (ea
h X 0 2 L su
h that not hasnext(g(X 0); X 0)) Do22. Add X 0 to L.23. Remove X 0 from L0.24. size[X ℄ size[X ℄� size[X 0℄.25. End of for26. End of while27. If (L0 is nonempty, and hen
e
ontains a unique
hain X 0) Then28. Add X 0 to L.29. size[X 0℄ size[X ℄.30. End of if31. return L.Figure 5: Splitting a
lass under a pivot.
lasses are
lasses of the initial partition LD, then Z1 is an initial pivot. Otherwise, thereis a splitting of a
lass Z 3 g; g0 into Z1 3 g; Z2 3 g0; : : : ; Zr. Then either Z was already inthe sta
k of pivots, and all sub
lasses Zi have been added as pivots (lines 15-16 of AlgorithmPartitionRe�nement), or Z was not in the sta
k, and all sub
lasses Zi but at most onehave been added as pivots (lines 18-19 of Algorithm PartitionRe�nement). This produ
esa pivot either
ontaining g and not g0, or g0 and not g. Su
h a pivot
annot go out of thesta
k sin
e pivoting on it would split X into at least two
lasses. If it is split himself insidethe sta
k (lines 15-16 of Algorithm PartitionRe�nement), another pivot seperating g andg0 still remains in the sta
k. Thus the sta
k
ontains a pivot able to stri
tly re�ne LC . 2As a
onsequen
e, at the end of the exe
ution of the pro
ess, LC is Y -stable for every
lass Y 2 LD, and LD is X-stable for every
lass X 2 LC . Thus LC and LD are
olle
tionsof the same Æ-sets. It follows from Proposition 6, property 2 that these Æ-sets are maximal.We obtain the expe
ted Æ-teams as LC or LD.16

4.2 ComplexityTo a
hieve a good
omplexity, we use the following data stru
tures. Any
lass of LC (resp.LD) is stored in a doubly linked list, ordered by C (resp. D). All the
lasses of a partition arestored in a doubly linked list. Ea
h element of a
lass has a pointer to its
lass. Moreover, ea
hgene
an be a

essed dire
tly in LC and in LD, by the use of a table. This data stru
tureis illustrated by Figure 6 whi
h represents the initial partition LC for the two following
hromosomes C;D with Æ = 2.C =
 � � e d a � bD = a b � � �
 � d e:The initializations are performed in a linear time O(n) for two
hromosomes.
a

LC X1 X2

c e

d

a
b
c
d
e

bFigure 6: The initial partition LC .The
omplexity analysis uses amortized te
hniques, espe
ially the pointed parts te
hniqueused in [4℄ or [2, p. 331℄. We
onsider pairs (P; g) made of a pivot P going out of the sta
k ofpivots (line 7 of the algorithm PartitionRe�nement), and an element of g in P . The basi
result is the following:Proposition 8 Ea
h gene g appears at most 2 log n times in a pivot P going out of the sta
k.Proof. If a pivot P
ontaining an element g is going out of a sta
k and has size p, a pivot
ontaining g whi
h enters the sta
k later is in
luded in P , and has size at most p=2. Thus, itwill have a size at most p=2 while going out of the sta
k also. A gene g belongs initially totwo pivots, one of type C and one of type D. 2Let
(P; g) be the amortized
ost of pro
essing the pointed pair (P; g). Then, by Proposi-tion 8 the global
ost of the algorithm will be given by 2n
(P; g) log n. We establish, in thenext proposition that
(P; g) is O(log Æ0).[Note that the
omplexity analysis assumes the following data stru
tures. Any
lass ofLC (resp. LD) is stored in a doubly linked list, ordered by C (resp. D). All the
lasses of apartition are stored in a doubly linked list. Ea
h element of a
lass has a pointer to its
lass.Moreover, ea
h gene
an be a

essed dire
tly in LC and in LD, by the use of a table.℄Proposition 9 The amortized
ost
(P; g) =
1 log Æ0 +
2, where
1 and
2 are
onstants.17

Proof. Let us assume that we pi
k a pivot P of type D, and of size p, in the sta
k. This pivotis �rst pro
essed by Sort zones in time O(p log Æ0). We assign to ea
h (P; g) a
ost log Æ0,so that the sum of these
osts for all g in P equals the
ost of the sorting operation. The
omputation of the set M of lines 10-11 of the algorithm is done in time O(p) by exploringP and using the dire
t links from a gene to its position in a
lass. This in
rements the
ostof ea
h (P; g) by a
onstant.We now
onsider the
ost indu
ed by Pro
edure Split. Let h be the size of the
lass X tobe split. We
laim that the extra
tions of lines 2-3 also are performed in time O(p). Indeed,one extra
ts a Æ-
hain Xi of elements of X \ P by exploring the list P , and by
he
kingthe Æ-
onne
tion for the order indu
ed by C. More pre
isely, when an element,
andidate tobe added in Xi, is not Æ-
onne
ted to the previous ones for the order C, one builds a new
lass Xi+1. If it is Æ-
onne
ted, it is removed from X in
onstant time. If X is no longerÆ-
onne
ted, we
ut it into a Æ-
hain X 0j of elements in X\(�nP), and a new Æ-
hain X. Thisin
rements the
ost of ea
h (P; g) only with another
onstant. Remark that this implies thatthere are at most p sub
lasses Xi. Note also that, at this time, the sizes of the sub
lasses,and the pointers from ea
h element in a
lass to its
lass, have not been updated.We next
onsider the
ost of the
omputation of the sizes of the sub
lasses. The
ompu-tation of the sizes of the sub
lasses Xi is performed lines 4-8 of Pro
edure Split in time O(p),sin
e the sum of the sizes of these sub
lasses is at most p. This
harges (P; g) with a
onstantagain. The
omputation of the sizes s0j of the sub
lasses X 0j is done in lines 14-30. Re
allthat a small sub
lass has a size less than or equal to h=2. Sin
e L0 in lines 14-26 has at leasttwo sub
lasses, the sub
lasses removed in line 23 are small. At line 26, all sub
lasses thathave been read
ompletely are small, and the beginning of an eventual unique large sub
lassY may have been explored. Nevertheless, the maximal number of elements of Y read is themaximal size of all other sub
lasses. The pointers from ea
h element in a
lass to its
lassare re
omputed for all sub
lasses but Y . Thus the
ost of the
omputation of the sizes andpointers of all sub
lasses is at most 2Pj2J s0j, where J is the index set of all sub
lasses butY . Sin
e all sub
lasses but Y are at some time
ontained in the sta
k of pivots, and
an goout of it by being removed in line 14, one
harges again ea
h (P; g) with one more
onstant,in order to
ount the
ost of these operations. 2Proposition 10 The time
omplexity of the algorithm PartitionRe�nement is O(n log n log Æ0)for two
hromosomes and O(mn logn log Æ0) for m
hromosomes.4.3 From Hop
roft like algorithm to FindTeamsThe two algorithms PartitionRe�nement and FindTeams are very
lose. The algorithmFindTeams is in fa
t a re
ursive simpli�
ation of the Hop
roft like one. The simpli
ation isbased on the two following remarks.First, the sta
k pivots of lines 6-8 of Algorithm PartitionRe�nement is simulated inFindTeams by the re
ursive
alls to itself of lines 13-14. This uses a property of the problemthat is not valid for all Hop
roft like algorithms, and allows to divide the original problem intwo subproblems. Indeed, assume that in line 11 of PartitionRe�nement a pivot P (sayof LD) splits the set of
lasses M of LC whose alphabet interse
ts that of P . The split isperformed using Split, whi
h partitions the resulting
lasses of LC in two sets, those that
ontains elements of P and the others. Some of these
lasses will be reintegrated in thelist pivots in lines 18-19 of PartitionRe�nement and reused later to split other
lasses. A18

simple observation is that the
lasses of LC built with elements of P after Split, if reusedas pivots, would only
ut
lasses built with elements of P of LD. This property allows us toderive two sub-problems after a Split, on one hand all
lasses of LC built of elements of Ptogether with P on LD, and, on the other hand, all the
lasses remaining on LC and LD.This is used in FindTeams to re
ursively
all the same algorithm on these two sets in lines13-14 of Algorithm FindTeams.A se
ond remark
on
erns the
omputation of the sizes of the
lasses. In the Hop
roft-like algorithm, when splitting a
lass X with a pivot P , the sizes of the resulting
lasses ofsize less than or equal to size[X℄=2 are
omputed in lines 14-30 of Split. After the split,in lines 18-19 of algorithm PartitionRe�nement, the
lasses are kept as potential pivots.Algorithm FindTeams simpli�es this step lines by �nding a small
lass of size p (if it exists)in O(p) and
onsidering it as a pivot.5 Extensions5.1 Multiple ChromosomesThe most natural extension of the de�nition of Æ-teams to a set fC1; : : : ; Cmg of
hromosomes,is to de�ne a Æ-set S as a Æ-
hain in ea
h
hromosome C1 to Cm, and
onsider maximal Æ-setsas in De�nition 2. For example, with Æ = 2, the only Æ-team of
hromosomes:X =
 � � e d a � bY = a b � �
 � d eZ = b a e � �
 � d;that is not a lonely gene is the set fa; bg.All the de�nitions and results of Se
tion 2 apply dire
tly to this new
ontext, repla
ing Cand D by the m
hromosomes.Algorithm Findteams
an be readily adapted to m
hromosomes by modifying its twomain tasks of �nding and extra
ting small leagues. Identifying a small league in m partitions
an be done in O(mp). This small league must then be extra
ted from m� 1
hromosomes,yielding two sub-problems, one of whi
h is of size p. The analysis of Se
tion 3.3 yieldsdire
tly an O(mn log2 n) time bound for this algorithm, sin
e the parameter � in Equation 1was arbitrary.5.2 Extension to Cir
ular ChromosomesIn the
ase of
ir
ular
hromosomes, we �rst modify slightly the assumptions and de�nitions.The positions of genes are given here as values on a �nite interval:� PC�! [0::L℄;in whi
h position L is equivalent to position 0. The distan
e between two genes g and g0 su
hthat PC(g) < PC(g0) is given by:�C(g; g0) = min� PC(g0)� PC(g)PC(g) + L� PC(g0):19

The permutation �C = (g1 : : : gn) is still well de�ned for
ir
ular
hromosomes, but so arethe permutations, for 1 < m � n:�(m)C = (gm : : : gng1 : : : gm�1):A Æ-
hain in a
ir
ular
hromosome is any Æ-
hain of at least one of these permutations.A
ir
ular Æ-
hain is a Æ-
hain (g1 : : : gk) su
h that �C(gk; g1) � Æ: it goes all around the
hromosome. All other de�nitions of Se
tion 2 apply without modi�
ations.Adapting algorithm FindTeams to
ir
ular
hromosomes requires a spe
ial
ase for thetreatment of
ir
ular Æ-
hains. Indeed, in Se
tion 3.2, the beginning and end of a
hromosomeprovided obvious starting pla
es to dete
t leagues. In the
ase of
ir
ular
hromosomes,assume that S is a league of
hromosomes C and D, and that the genes of S are respe
tivelyordered in C and D, from arbitrary starting points, as:(
1 : : :
n) and (d1 : : : dn):If none of these sequen
es is a
ir
ular Æ-
hain, then there is a gap of length greater thanÆ on ea
h
hromosome, and the problem is redu
ed to a problem of linear
hromosomes. Ifboth are
ir
ular Æ-
hains, then S is a Æ-team. Thus, the only spe
ial
ase is when one is a
ir
ular Æ-
hain, and the other, say (
1 : : :
n) has a gap greater than Æ between two
onse
utiveelements, or between the last one and the �rst one. Without loss of generality, we
an assumethat the gap is between
n and
1. Then, if S is not a team, there exists a value p � n=2 su
hthat one of the following sequen
e is a league:(
1 : : :
p)(
n�p+1 : : :
n:)The extra
tion pro
edure is similar to the one in Se
tion 3.2, but both the extra
tedleagues
an again be
ir
ular Æ-
hains, as illustrated in Fig. 7.

D’ D’’

C’ C’’

C

D

P

Extraction of P

Figure 7: Spe
ial
ase that might o

ur when extra
ting the league p out of a
ir
ular leagueof D. Both extra
ted leagues are again
ir
ular Æ-
hains of D0 and D00.The
ir
ularity
an be dete
ted in O(p) steps, sin
e the property is destroyed if and onlyif an extra
ted gene
reates a gap of length greater than Æ between its two neighbors.20

5.3 Teams With a Designated MemberA parti
ular
ase of the team problem is to �nd, for various values of Æ, all Æ-teams that
ontain a designated gene g. Clearly, the output of algorithm FindTeams
an be �ltered forthe designated gene, but it is possible to do better. In lines 13 and 14 of Fig. 1, the originalproblem is split in two subproblems. Consider the �rst
ase, in whi
h the sub-league (
1 : : :
p)is identi�ed:1. If gene g belongs to (
1 : : :
p), then the se
ond re
ursive
all is unne
essary.2. If gene g does not belong to (
1 : : :
p), then the extra
tion of (d01; d0p), and the �rstre
ursive
all, are not ne
essary.These observations lead to a simpler re
urren
e for the time
omplexity of this problem,sin
e roughly half of the work
an be skipped at ea
h iteration. With arguments similar tothose in Se
tion 3.3, we get that the number of operations is bounded by a fun
tion of theform: T (n) = �(n=2)log(n=2) + T (n=2);where T (1) = 1, and whose solution is: T (n) = �n log n� 2�n+ 2�+ 1:6 Con
lusions and perspe
tivesWe de�ned the unifying notion of gene teams and we
onstru
ted two distin
t identi�
a-tion algorithms for n genes belonging to two or more
hromosomes, the faster one a
hievingO(mn logn log Æ0) time for m linear or
ir
ular
hromosomes. Both algorithms require onlylinear spa
e.The gene team identi�
ation problem is more
omplex than one
ould think in viewof the simpli
ity of the �rst re
ursive algorithm. We showed in a se
ond part that thisalgorithm is in fa
t a ni
e simpli�
ation of a full Hop
roft partitioning algorithm. However,instead of leading to a faster algorithm, this strong link reinfor
es our estimation of theintrinsi

omplexity of the gene team identi�
ation problem. In some parti
ular Hop
roftlike algorithms, a
lever pivot
hoi
e
an redu
e the
omplexity from O(n logn) to O(n) [8℄.Obtaining faster algorithms or lower bounds for the gene team identi�
ation problem remainsopen.We intend to extend our work in two dire
tions that will further
larify and simplify the
on
epts and algorithms used in
omparative genomi
s. The �rst is to relax some aspe
t ofthe de�nition of gene teams. For large values of m, the
onstraint that a set S be a Æ-
hainin all m
hromosomes might be too strong. Sets that are Æ-
hains in a quorum of the m
hromosomes
ould have biologi
al signi�
an
e as well. We also assumed, in this paper, thatea
h gene in the set � had a unique position in ea
h
hromosome. Biologi
al reality
an bemore
omplex. Genes
an go missing in a
ertain spe
ies { their fun
tion being taken over byothers, and genes
an have dupli
ates.In a se
ond phase, we plan to extend our notions and algorithms to
ombine distan
e withother relations between genes. For example, intera
tions between proteins are often studiedthrough metaboli
 or regulatory pathways, and these graphs impose further
onstraints onteams. 21

A
omplete implementation handling multiple linear or
ir
ular
hromosomes is availableat http://www-igm.univ-mlv.fr/~raffinot/geneteam.html.A
knowledgmentWe would like to thank Marie-Fran
e Sagot for interesting dis
ussions, Laure Ves
ovo andNi
olas Lu
 for a
areful reading, and Myles Tierney for suggestions on the terminology. Aspe
ial thanks goes to Laurent Labarre for his bibliography work.Referen
es[1℄ A.K. Bansal. An automated
omparative analysis of 17
omplete mi
robial genomes.Bioinformati
s, 15(11):900{908, 1999.[2℄ D. Beauquier and J. Berstel an P. Chr�etienne, editors. El�ements d'algorithmique. Masson,Paris, 1992.[3℄ A. Bergeron, S. Corteel, and M. RaÆnot. The algorithmi
 of gene teams. In Workshopon Algorithms in Bioinformati
s (WABI), number 2452 in Le
ture Notes in ComputerS
ien
e, pages 464{476. Springer-Verlag, Berlin, 2002.[4℄ A. Cardon and M. Cro
hemore. Partitioning a graph in O(jAj log2 jV j). Theoreti
alComputer S
ien
e, 19(1):85{98, 1982.[5℄ T. Colombo, A. Gu�eno
he, and Y. Quentin. Inf�eren
e fon
tionnelle par l'analyse du
ontexte g�en�etique: une appli
ation aux transporteurs ABC, 2002. Journ�ees ALBIO,Montpellier, Mar
h.[6℄ T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order: a �ngerprintof proteins that physi
ally intera
t. Trends Bio
hem. S
i., 23(9):324{328, 1998.[7℄ W. Fujibu
hi, H. Ogata, H. Matsuda, and M. Kanehisa. Automati
 dete
tion of
onservedgene
lusters in multiple genomes by graph
omparison and p-quasi grouping. Nu
lei
A
ids Resear
h, 28(20):4029{4036, 2000.[8℄ M. Habib, C. Paul, and L. Viennot. Partition re�nement te
hniques: an interesting algo-rithmi
 tool kit. International Journal of Foundations of Computer S
ien
e, 10(2):147{170, 1999.[9℄ S. Heber and J. Stoye. Finding all
ommon intervals of k permutations. In CombinatorialPattern Mat
hing (CPM), number 2089 in Le
ture Notes in Computer S
ien
e, pages207{218. Springer-Verlag, Berlin, 2001.[10℄ J. E. Hop
roft. An n logn algorithm for minimizing the states in a �nite automaton. InZ. Kohavi, editor, The Theory of Ma
hines and Computations, pages 189{196. A
ademi
Press, 1971.[11℄ M. Huynen, B. Snel, W. Lathe, and P. Bork. Predi
ting Protein Fun
tion by Ge-nomi
 Context: Quantitative Evaluation and Qualitative Inferen
es. Genome Resear
h,10:1024{1210, 2000. 22

[12℄ N. Lu
, J.-L. Risler, A. Bergeron, and M. RaÆnot. Gene Teams: A New Formalizationof Gene Clusters For Comparative Genomi
s. Computational Biology and Chemistry (ex.Computer and Chemistry), 27(1):59{67, 2002.[13℄ A. Morgat. Synt�enies ba
t�eriennes, 2001. Entretiens Ja
ques Cartier on ComparativeGenomi
s, Lyon, De
ember.[14℄ H. Ogata, W. Fujibu
hi, S. Goto, and M. Kanehisa. A heuristi
 graph
omparisonalgorithm and its appli
ation to dete
t fun
tionally related enzyme
lusters. Nu
l. A
ids.Res., 28(20):4021{4028, 2000.[15℄ R. Overbeek, M. Fonstein, M. D'Souza, G. D. Pus
h, and N. Maltsev. The use of gene
lusters to infer fun
tional
oupling. Pro
. Natl. A
ad. S
i. USA, 96(6):2896{2901, 1999.[16℄ Robert Paige and Robert E. Tarjan. Three partition re�nement algorithms. SIAMJournal on Computing, 16(6):973{989, 1987.[17℄ C. Leiserson T. Cormen and R. Rivest, editors. Introdu
tion to Algorithms. MIT Press,1992.[18℄ R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin. The COG database:a tool for genome-s
ale analysis of protein fun
tions and evolution. Nu
l. A
ids. Res.,28(1):33{36, 2000.[19℄ T. Uno and M. Yagiura. Fast algorithms to enumerate all
ommon intervals of twopermutations. Algorithmi
a, 26(2):290{309, 2000.

23

