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Abstract  25 

 26 

Technical and environmental constraints on agricultural practices can spatially and temporally 27 

concentrate or spread herbicide applications, thereby modifying herbicide losses in stream water. This 28 

study analyses the effect of such constraints on spatio-temporal patterns of sowing and weeding 29 

activities and, consequently, on herbicide losses, focusing on weeding operations in maize. Machine 30 

availability and farmer working time were considered technical constraints, while weather and soil 31 

conditions were considered environmental constraints. Simulated experiments were performed with 32 

the SACADEAU model, which combines a decision submodel with crop-growth and herbicide-33 

transfer submodels. The decision submodel designed in conjunction with agricultural experts contains 34 

decision rules that distribute crop sowing and weeding operations among fields. The model was 35 

applied on an agricultural catchment in western Europe, and the results were analysed over nine spring 36 

periods. Simulations suggest that, in addition to reducing overall herbicide-application rates, strategies 37 

that modify spatial distribution of herbicide applications by reducing herbicide applications in 38 

bottomlands could be particularly effective. Temporally distributing herbicide applications, for 39 

example via collective machine management, also is effective. Finally, spatial strategies that focus 40 

activities on a given area appear to be more efficient than temporal ones that spread activities over 41 

time because the former are less dependent on weather conditions. 42 
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1. Introduction 43 

To reduce the impact of pesticides on human health and ecosystems, the French government 44 

introduced the ‘Ecophyto 2018’ plan in 2008. The main objective of this plan is to halve the current 45 

use of pesticides in France by promoting agricultural practices that use less of them. Herbicides are a 46 

particular concern since they represent one-third of the current pesticide use in France. Maize crops 47 

represent 7% of the national surface area and 10% of the current pesticide use, and 75% of the 48 

pesticides used on maize are herbicides. In regions with the highest maize production, herbicides 49 

represent most of the pesticides detected in rivers (Aubertot et al., 2005). Implementing effective 50 

measures to reduce herbicide use and losses is a challenge for agricultural and water management 51 

(Campbell et al., 2004). 52 

Many factors affect herbicide stream losses. They can be classified into four categories: (1) site-53 

specific factors - soil and hydrologic properties and geomorphologic characteristics of the catchment; 54 

(2) weather factors - particularly precipitation and temperature; (3) anthropogenic factors - land-use 55 

and technical management; and (4) herbicide factors - chemical and physical properties and 56 

formulation (Lerch and Blanchard, 2003; Müller et al., 2006). These factors have been analysed 57 

individually (Müller et al., 2006; Reichenberger et al., 2007; Freitas et al., 2008); however, their 58 

interactions rarely have been studied. This diversity of factors demonstrates that mitigating herbicide 59 

impacts can involve regulating herbicide amounts or properties, but also involves additional 60 

constraints related to their use in space or time based on site-specific, weather, or anthropogenic 61 

factors. Such constraints on their use can concentrate or dilute herbicide applications spatially and 62 

temporally, thereby influencing herbicide losses. This paper aims to study how such constraints can 63 

modify the spatio-temporal distribution of herbicide applications and influence herbicide losses, 64 

possibly adding to the mitigating effects of simple reductions in application rates. 65 

Finding answers to this question requires agricultural and environmental impact assessments at 66 

the meso-scale (i.e. catchments 10-50 km² in size) to account for high landscape heterogeneity. 67 

Agricultural landscapes include farms, which contain a mosaic of fields with various slopes and soils; 68 

human infrastructures at field edges, such as grass strips, ditches, or hedgerows; and less-developed 69 
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areas along streams, such as riparian wetlands. These elements now are known to either buffer or aid 70 

in pollutant transport (Colin et al., 2000; Leu et al., 2004a and 2004b). Grass filter strips now are 71 

commonly used in regulating herbicide losses at the meso-scale. Therefore, environmental and 72 

technical constraints on herbicide applications should consider all of these natural and anthropogenic 73 

landscape elements.  74 

Since field experiments are complex (Reichenberger et al., 2007), costly, and sometimes even 75 

impossible to perform, particularly at a landscape level, a modelling approach is necessary. The 76 

SACADEAU model (French acronym for “Système d’Acquisition des Connaissances pour l’Aide à la 77 

Décision sur la qualité de l’eau”) is used to test the effect of herbicide application flexibility 78 

influenced by environmental and technical constraints (Tortrat, 2004; Trépos, 2008). This model 79 

represents biological, physical, and technical processes involved in herbicide applications and their 80 

transfer in a catchment. It combines three submodels, the first two previously described by Gascuel-81 

Odoux et al. (2009): a spatially distributed transfer model (SACADEAU-Transf), which represents 82 

biochemical and transfer processes in an agricultural landscape, a crop model, and a decision model 83 

(SACADEAU-Deci), specifically developed to test the effect of spatial and temporal constraints on 84 

herbicide applications. Technical decision processes generally are not considered in herbicide-transfer 85 

modelling (Keating and McCown, 2001), and simulation experiments often are based on unique dates, 86 

few herbicides, and random spatial and temporal applications (Huber et al., 1998; Du et al., 2006). 87 

SACADEAU-Deci fulfils the requirement for representing and analysing effects related both to 88 

environmental conditions in a catchment and agricultural constraints on one or more farms, as well as 89 

their interactions. In this model, sowing and weeding decisions are made via adaptive sequential plans 90 

that have resource and temporal constraints. The model provides agricultural interventions for sowing 91 

and weeding (date, location) and herbicide-application characteristics (substance, quantity) according 92 

to a set of predefined strategies, including weather and catchment conditions. Spatial constraints of 93 

fields are related mainly to their topography and the pattern of agricultural structures, such as farms or 94 

groups of farms. Temporal constraints are included, such as rules regarding work-time and 95 

agricultural-machine availability. Finally, weather, particularly rainfall, modifies the decision to 96 
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perform agricultural activities such as sowing and weeding. Consequently, the decision model 97 

represents spatial and temporal constraints; therefore, it provides realistic herbicide-application 98 

distributions strongly determined by decisions of individual farmers and driven by technical and 99 

environmental variables. Consequently, the model predicts their effect on herbicides losses.   100 

This study focuses on simulating maize-crop weeding and herbicide losses to streams in the 101 

months following applications to identify factors that could reduce herbicide losses to streams. It 102 

addresses two questions: (1) To what extent do technical constraints such as availability of machinery 103 

or work time, or environmental constraints such as topographic position influence herbicide losses? (2) 104 

Can delineating the location or period of sowing or weeding based on environmental or technical 105 

factors further reduce herbicide losses?  106 

 107 

2. Background 108 

2.1. Site and data description 109 

The study site, located in Brittany (in western France), is the 15-km² Frémeur catchment, which 110 

has a 28-km-long stream network and a drainage density of 1.65 km·km-² (Fig. 1). The slopes are 111 

moderate, with gradients of less than 5%. The landscape is made up of a medium-density bocage (a 112 

typical landscape often dedicated to animal production with fields partially surrounded by hedgerows). 113 

The soils are silt-loams with a mean organic-matter content around 50 g·kg-1. The soil system 114 

comprises a well-drained upland and a poorly drained bottomland. The soil overlies weathered 115 

bedrock 1-30 m deep that itself overlies fractured Brioverian schist. The physiographic setting is a 116 

temperate region with soils displaying moderate to low aggregate stability and shallow groundwater. 117 

This study site is a few kilometres from the Naizin catchment, which has similar physiographic 118 

characteristics. This site is highly instrumented and is included in a long-term hydrological 119 

observatory (http://www.inra.fr/ore_agrhys) (Molénat et al., 2008) on which some hydrological 120 

processes have been studied in detail. The subsurface flow is quantitatively dominant (Molénat et al., 121 

1999 and 2005), and Topmodel already has been applied there successfully (Bruneau et al., 1995; 122 

Franks et al., 1998; Molénat et al., 2005). The hypothesis of a water transfer time of more than one 123 
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year in shallow groundwater of the upper part of the hillslope has been verified (Molénat and Gascuel-124 

Odoux, 2002), as well a rapid and highly variable contamination of the shallow groundwater in the 125 

lower part of the hillslope (Molénat and Gascuel-Odoux, 2001). Surface flow occurs during winter as 126 

well as spring storm events, when soil surface conditions are degraded (Le Bissonnais et al., 2002). 127 

Stream water contamination is due mainly to maize herbicides and occurs in spring (Clément et al., 128 

1999). 129 

A Digital Elevation Model (DEM) of the Frémeur catchment was extracted from an elevation 130 

database for Brittany with a resolution of 20 m and was produced by stereoplotting panchromatic 131 

SPOT images to a resolution of 10 m. The parcel layer was digitised from the commune’s land-132 

registry map on a scale of 1:5000. The drainage network was extracted from the 1:25000 IGN 133 

(National Geographic Institute) map and the land-registry map. Field surveys augmented this drainage 134 

network by locating ditches, hedges, and grassed filter strips. 135 

Agricultural land accounts for 72% of the total catchment area, the remainder being distributed 136 

among woods, wasteland, residential areas, and roads. Agricultural land is distributed as follows: 137 

maize (38%), wheat (29%), grassland (21%), and vegetables (5%); the remaining 7% includes fallow 138 

land and potatoes. The catchment contains 37 farms, of which 20 measure less than 20 ha. The 139 

catchment contains approximately 2000 parcels; in 2000, 1420 were agricultural fields including 148 140 

in maize. Agricultural and maize fields have a mean area of 0.8 ha and 2.7 ha, respectively.  This 141 

catchment, therefore, exhibits large variability in farm and field size, presenting the complex 142 

landscape mosaic common in western Europe.  143 

We selected a 9-year period (1994-2002) to encompass multi-year weather variability. For each 144 

year, we focused on 1 Apr - 31 Jul, a period that starts with sowing operations and herbicide 145 

applications in maize and finishes when high herbicide concentrations in stream water generally are no 146 

longer observed in the field or predicted in herbicide-transfer models. Rainfall during these periods 147 

varied moderately (mean ± SD accumulation = 215 ± 80 mm) (Fig. 2, Table 1). The frequency of rain 148 

events, characterised by the number of days with rainfall greater than 2 and 10 mm, varied from 14-41 149 

and 2-10, respectively (Table 1). The wettest years were 1994 and 1998, while 1996 was the driest. 150 
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Past field observations provided accumulated-discharge data for the 1 Apr - 31 Jul period from 1998-151 

2002.  For 1994-1997, daily discharge was simulated by using TopModel (Beven and Kirkby, 1979) 152 

(Fig. 2). The application of TopModel to this catchment for studied periods (1 Apr - 31 Jul) for the 7 153 

years where discharge measurements are available (1998-2004), is relevant, as evidenced by Nash 154 

Efficiency criterion (Nash and Sutcliffe, 1970) of 0.75. Accumulated discharge calculated for the 1 155 

Apr - 31 Jul period, which mainly depends on the rainfall during the previous months, varied from 156 

0.03 m in 1997 to 0.16 m in 1994 (Table 1).  157 

 158 

2.2. Weed-management practices 159 

We identified farmers’ weed-management practices in the Frémeur catchment from a 2001-160 

2002 survey (Tortrat et al., 2004; Tortrat, 2005). The 75% of farmers for whom pig production was the 161 

predominant activity usually followed simple, predefined weeding strategies recommended by 162 

technical advisers. We identified three weeding strategies: (i) pre-emergence: a single herbicide 163 

application after sowing (the most common); (ii) post-emergence: two herbicide applications at the 164 

three- and five- to seven-leaf stages of maize; and (iii) intermediate: two herbicide applications after 165 

sowing and at the five-leaf stage. Alternative strategies, such as mechanical or mixed weeding 166 

(herbicide on rows and mechanical weeding between rows), were used by 20% of the 37 farmers, who 167 

generally shared machinery within cooperative organisations. Such innovative strategies, including a 168 

zero or reduced herbicide application rate are already present despite being considered time-169 

consuming and technically difficult compared to a conventional chemical weeding strategy. 170 

The herbicides used depend on the specific weeding strategy. Forty percent of the farmers on 171 

this catchment used two herbicides (Merot et al., 2009), having integrated a spatial rationale for 172 

herbicide applications: one on bottomlands (at risk for stream contamination) using less mobile and 173 

less persistent chemicals and one on uplands using chemicals considered more efficient. Fourteen 174 

different chemicals (usually applied at recommended rates) were used on this catchment, highlighting 175 

the diversity of technical advisers from agricultural organisations and private or cooperative 176 

companies who work in this area. 177 
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Herbicide application dates usually remained unknown because farmers often did not record 178 

them; thus, only general rules can be provided. Application dates are related to the weeding strategy 179 

(pre-emergence or post-emergence) and, therefore, to the stage of maize growth, which is a function of 180 

the sowing date and subsequent weather conditions. In the Frémeur catchment, sowing of each field 181 

tended to occur either in early April or late April, depending on its slope position. Fields at the bottom 182 

of the catchment had hydromorphic soil, experiencing longer periods with wet conditions than soils on 183 

the upper slopes. Therefore, to ensure soil workability, sowing and weeding operations generally were 184 

delayed on bottomland plots. Weeding operations are generally finished as quickly as possible, in 185 

regards to working constraints at the farm scale. Ultimately, herbicide application dates tended to be 186 

scattered inside different periods depending on farm and weather constraints. Since 2007, farmers are 187 

required to record herbicide application dates, but these data were neither collected nor analysed in 188 

this catchment. Hence, such data are absent in the literature, encouraging the use of a decision model 189 

to predict them. 190 

This survey revealed that techniques such as reducing the herbicide application rate, adopting 191 

spatial or temporal constraints on herbicide application, and increasing collective management of 192 

machinery or human work hours already existed in this catchment. Consequently, quantifying the 193 

efficiency of such measures and defining measures that could be emphasised to reduce herbicide 194 

losses appears relevant. 195 

 196 

 197 

3. The SACADEAU model 198 

3.1. Model overview 199 

The SACADEAU simulation model was designed to test the effect of farmers’ decisions on 200 

stream-water pollution by herbicides. The SACADEAU model combines three submodels that 201 

simulate decision-making, crop growth and pollutant transfer (Fig. 3). The latter submodel will be 202 

described briefly, as its description was published by Gascuel-Odoux et al. (2009). In contrast, the 203 

decision-model is new and therefore presented in detail. Decision-model outputs constitute a portion 204 
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of inputs to the transfer submodel; in contrast, there is no feedback from the transfer submodel to the 205 

decision submodel. Predicted water flows and herbicide concentrations at the catchment outlet depend 206 

upon the interaction of all submodels.  Furthermore, the SACADEAU model has been included in a 207 

meta-modelling framework to identify the main factors influencing water pollution and possible 208 

mitigation recommendations, through machine-learning techniques (Cordier, 2005; Cordier et al., 209 

2005; Trépos et al., 2005; Trépos, 2008). 210 

 211 

3.2. Decision submodel 212 

The decision submodel, designed in conjunction with local agricultural experts, simulates 213 

farmers’ technical decisions concerning maize crops in the spring, which include the sowing date and 214 

weed-management factors (e.g., herbicides used, dates, amounts, locations of herbicide applications) 215 

(Fig. 4). As input, the decision submodel uses the spatial distribution of maize crops on the catchment 216 

and the corresponding pre-defined sowing and weeding strategies for each of these fields. The 217 

submodel then simulates sowing and weeding activities on a daily time-step as a function of weather 218 

conditions and technical constraints. 219 

At the field level, the submodel relies on a temporal-window approach that has been used in 220 

other decision models, such as Otelo (Aubry et al., 1998), Moderato (Bergez et al., 2002), and Déciblé 221 

(Chatelin et al., 2005). This notion of temporal windows, or permitted periods for carrying out an 222 

operation, represents the way farmers manage the timing of a crop operation within the overall work 223 

organisation on the farm (Chatelin et al., 2005). The beginning and the end of temporal windows for 224 

weeding are defined by crop growth predicted by the crop submodel (Fig. 5). When the temporal 225 

window for an operation is open, the model checks each field daily to see whether an operation’s 226 

weather conditions and technical constraints are satisfied. When all conditions are fulfilled, the 227 

operation can be performed. We assumed that machine speed, availability of machines and working 228 

time, and field area determine the total duration of each operation. When the operation is finished, the 229 

operation window closes and simulation continues, waiting for the next operation window to open on 230 

the field, until the end of the simulation. 231 
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Temporal windows for sowing and weeding 232 

In the submodel, the date of sowing influences the development of maize and soil-surface 233 

conditions, as well as dynamics of the crop and transfer submodels. For each field, at the beginning of 234 

simulation, an early-sowing (10 Apr, day-of-year 100) or late-sowing (1 May, day-of-year 120) date is 235 

defined. Weeding operations occur on one or several dates, depending upon the strategy. For example, 236 

the window for the pre-emergence strategy opens just after sowing and closes 10 days later (Fig. 5a, 237 

Table 2). If weeding cannot be performed during this period, this operation is postponed to a new 238 

window that starts at the 3-leaf stage of maize, predicted by the crop submodel (Fig. 5a). Table 2 239 

defines the temporal windows for sowing and the two weeding strategies (pre- and post-emergence). 240 

Parameterisation of these temporal windows was based on farmer surveys and the expertise of 241 

agricultural advisers. At the time of application, the submodel chooses herbicide types and doses from 242 

a database based on each farmer’s weeding strategy. 243 

Environmental and technical conditions 244 

We assumed that farmers do not sow or apply herbicides on rainy days and that machines 245 

cannot work on a field when its soil is too wet to support them. Thus, in the submodel, operations can 246 

be performed only if daily rainfall is less than 2 mm and at least 2 days have passed since it last 247 

exceeded 2 mm (Table 2). The submodel also contains a daily working-time limit (T) for sowing and 248 

weeding operations per farmer. To this limit, overtime (εT) can be added to finish an operation on a 249 

given field in the same day. We assumed that only one machine performs each operation on a field, at 250 

rates of 1 and 4 ha per hour for sowing and weeding, respectively (Table 2). 251 

Spatial organisation  252 

The submodel allows organisation of machines at three spatial scales (farm, farm group, and 253 

catchment) to determine their use on individual fields. At the individual-farm level, each farm has its 254 

own set of machinery and fields that do not change over time (the current scenario of the Frémeur 255 

catchment). At the farm-group scale, a farm that has completed its sowing or weeding operations may 256 

share machinery with other farms in the group. At the catchment scale, a downhill-slope index (Crave 257 

and Gascuel-Odoux, 1997; Merot et al., 2003), slightly modified from the Beven index (Beven and 258 
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Kirkby, 1979), is used to classify each field in the catchment as well-drained (uplands) or wet 259 

(bottomlands). This index is a good predictor of hydromorphic soils (Merot et al., 2003). Since soil 260 

workability is linked to soil water content (Rounsevell et al., 1999) and this latter variable is controlled 261 

by topography (Crave and Gascuel-Odoux, 1997), we assumed in the submodels that farmers first 262 

work on upland fields of the catchment and then move to bottomlands. The submodel also can use this 263 

index to fix the sowing date of each field. Including these three spatial scales in the decision submodel 264 

provided the ability to simulate the spatial and temporal distribution of agricultural operations over the 265 

catchment in a more realistic manner. 266 

 267 

3.3. Crop submodel 268 

The only prediction required from the crop submodel is the number of leaves on maize, which 269 

determines the starting dates of temporal windows for weeding operations. Leaf number is predicted  270 

from cumulative degree days after sowing (Hammer et al., 1993) with a linear equation (i.e., 100, 200, 271 

and 300°C to reach 3, 5, and 7 leaves, respectively). 272 

 273 

3.4. Herbicide-transfer submodel 274 

The transfer model, detailed in Gascuel-Odoux et al. (2009), simulates surface and subsurface 275 

flow of herbicide in water, from its application on a field to the outlet of the catchment. The model 276 

separately calculates the discharge at the outlet of the catchment and the amount of pesticide 277 

transferred by surface and subsurface flow. Here, discharge is considered a global dilution factor 278 

affecting the amount of pesticide mobilised in the surface and subsurface flow. 279 

Surface flows of water and pesticide are aggregated at the catchment level using a tree structure 280 

linking the plot outlets and their contributing areas. This spatial representation is based on a spatial 281 

object-based modelling approach detailed elsewhere (Tortrat and al., 2004; Aurousseau et al., 2009). It 282 

allows the upslope surface flow to infiltrate in downslope plots or linear networks. If present, these 283 

linear networks, such as hedges or ditches, modify both the flow direction and the location of field 284 
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outlets, altering this tree structure. According to this spatial model, only 125 of 148 maize fields on the 285 

Frémeur catchment were connected to the stream; the other fields were considered total sinks.  286 

Surface flow is controlled either by soil surface sealing on the whole catchment or saturated 287 

conditions in bottomlands. The latter is related to the subsurface flow submodel. The surface flow 288 

controlled by soil surface sealing is estimated using the concepts and tools developed in the Stream 289 

model (Cerdan et al., 2001), an expert-based runoff model using expert rules in the form of matching 290 

tables characterising agricultural fields according to soil surface conditions (roughness, soil surface 291 

sealing, crop cover) to determine the soil infiltration capacity. This model has been successfully used 292 

in a variety of conditions (Evrard et al., 2009).  293 

The subsurface flow model aims to delineate saturated surfaces and estimate the amount of 294 

pesticide reaching the groundwater. This is carried out by estimating the storage of pesticide at the soil 295 

surface and a transfer coefficient depending on the depth of the water table. The depth of the water 296 

table is estimated only on the lower part of the hillslope, since water transfer time in shallow 297 

groundwater is estimated to be more than one year for the upper part of the hillslope, which is larger 298 

than duration of the studied simulations (4-5 months). Topmodel is used to calculate a mean saturation 299 

deficit at each point of the catchment, depending on a topographic index, which can be linked to the 300 

water table depth. This submodel provides a daily estimate of the depth of the water table per plot, 301 

grouped into different classes over the catchment. Finally, subsurface quantities of herbicide coming 302 

from these classes are aggregated into a single reservoir of constant volume that is drained according 303 

to a constant drainage coefficient linearly dependent on the catchment’s mean water table. 304 

Water and pesticide transfer are coupled in a unique way for the surface and subsurface flow. The 305 

initial herbicide concentration in the soil is calculated assuming a complete, rapid, and reversible 306 

mixing area between soil and herbicides. Herbicide degradation is predicted using a first-order kinetic 307 

equation with a standard half-life parameter. Before each rainfall event, the herbicide quantity in soil 308 

is calculated taking into account degradation and surface and subsurface transfer processes since the 309 

previous rainfall event. A constant exchange coefficient between soil and water and a fixed area of 310 

exchange is used to calculate the herbicide concentration of surface flow. Finally, the amount of 311 
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herbicide exported by surface and subsurface flow during rainy days is predicted, and the new amount 312 

of herbicide stored in soil is calculated. This model has been calibrated on the Frémeur catchment and 313 

is partly validated by observations (Gascuel-Odoux et al., 2009).  314 

  315 

3.5. Model output 316 

The SACADEAU model predicts two variables at the catchment outlet that are spatially and 317 

temporally aggregated: 318 

- Weeding Day Accumulation (WDA) is the difference between the last day (LastWeedingDay) 319 

and the first day (FirstWeedingDay) of herbicide application on the entire catchment: 320 

WDA = (LastWeedingDay – FirstWeedingDay + 1)     (1) 321 

- T-ratio is the ratio of the total amount of herbicides transferred by surface and subsurface 322 

routes to the catchment outlet (herbicide_output) over the total amount of herbicides applied on the 323 

catchment (herbicide_input): 324 

T-ratio =
∑

∑

t

t

inputherbicide_

ouputherbicide_
 * 100       (2) 325 

WDA summarises the effect of different environmental and technical constraints on the 326 

temporal distribution of weeding operation, while T-ratio summarises the effect of interactions 327 

between the spatial and temporal distribution of herbicide applications and the spatial structure of the 328 

catchment on the herbicide-transfer rate. Since T-ratio is the output variable of the transfer submodel, 329 

the accuracy and robustness of its predictions have been discussed previously (Gascuel-Odoux et al., 330 

2009). 331 

 332 

4. Simulation experiments 333 

4.1. Protocol of simulations 334 

Simulation experiments tested temporal factors related to availability of machines and working 335 

time; spatial factors created by the spatial structure of farms, farm groups, or the catchment; and 336 

factors related to herbicide dose and proportion of fields treated (Table 3). All simulations were 337 
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conducted using nine years of weather records (Fig. 2, Table 3). To simplify the interpretation of 338 

results, only one weeding strategy (pre-emergence) and one herbicide (dimethenamid) were chosen. 339 

We set the properties of dimethenamid, a chloroacetamid, as follows: sorption partition coefficients 340 

between water and organic carbon, Koc = 260 cm3..g-1·; standard half-life, DT50 = 20 days; 341 

application rate of 1.6 L ha-1 (active ingredient 1440 g ha-1, dimethenamid).  342 

 343 

4.2. Temporal factors: availability of machines and working time  344 

Experiment 1.1 represented the baseline simulation with no constraints. When conditions 345 

allowed working on a field, the operation was performed regardless of the predicted availability of 346 

machines or working time.  Subsequently, five simulation experiments were performed to study the 347 

effect of machine availability (Table 3). Working time was fixed at 8 hours, with a possible overtime 348 

of one hour.  Each machine was considered as operated by one person, which corresponded to 8 hours 349 

of work. For these experiments, an early sowing date was set for fields at higher elevations of the 350 

catchment (80% of the fields) and a later date for fields at lower elevations. In experiment 1.2, one 351 

machine was allocated per field. In experiment 1.3, one, two or four machines were allocated per farm. 352 

In experiment 1.4, one, two or four machines were allocated for the entire catchment (all farms 353 

combined). In experiment 1.5, one, two or four machines were allocated for the entire catchment, but 354 

machines also managed at farm level. Thus, when a farm's field needed to be worked and a machine 355 

was not available on the farm itself, one was allocated if available from the catchment machine pool. 356 

This assumption allowed several machines to be allocated to the same farm at the same time. Once the 357 

sowing or weeding operation was finished, the machine returned to the catchment pool. Finally, 358 

experiment 1.6 was a modification of experiment 1.5 in which the spatial location of fields determined 359 

the allocation of machines. When all upland fields (80% of the fields in the catchment) of a farm were 360 

sown or weeded, the machine returned to the catchment machine pool. 361 

One experiment was performed to study the effect of farmer working-time (experiment 2.1, 362 

Table 3). It considered a maximum working time per day of 4, 6, or 8 hours, with possible overtime of 363 

one hour. The minimum working time was set at 4 hours to simulate the fact that farmers do not 364 
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dedicate all their time to maize-related operations. For these experiments, two dates of sowing and one 365 

machine per field were assumed. 366 

 367 

4.3. Spatio-temporal distribution of sowing operations 368 

Additional simulation experiments tested different sowing dates as a function of the topographic 369 

position of fields (Table 3). For these experiments, one machine per field and 8 hours of working time 370 

were assumed. Four scenarios were tested: i) all fields with an early sowing date (experiment 3.1); ii) 371 

all fields with a late sowing date (experiment 3.2); iii) 80% of the fields with an early sowing date and 372 

20% of the fields with a late sowing date, based on the topographic index as spatial criterion 373 

(experiment 3.3); and iv) 150 replicate simulations of random allocations of the late sowing date for 374 

20% of the catchment fields regardless of location to introduce more variability into the previous 375 

scenario (experiment 3.4). This last experiment allows us to analyse the effect of different spatial 376 

allocation.  377 

 378 

4.4. Percentage of plots treated and herbicide dose 379 

A final set of five simulation experiments tested different strategies of herbicide reduction, 380 

either by reducing the number of fields treated or the herbicide dose (Table 3). For these experiments, 381 

two dates of sowing, one machine per field, and 8 hours of working time were assumed. The first 382 

experiment varied the percentage of treated fields from 30-100% (experiment 4.1). Then, fixing the 383 

percentage of treated fields at 50% (62 plots), we introduced three types of random field selection, 384 

performing 150 replicate simulations per year to avoid the effect of specific scenarios on the results. 385 

The remaining four experiments simulated ii) random selection among all fields in the catchment 386 

(experiment 4.2); iii) random selection of 25 bottomland fields and 37 upland fields using a spatial 387 

criterion (experiment 4.3); iv) random selection of 62 upland fields (experiment 4.4); and v) variation 388 

in herbicide dose on all plots from 15-100% (experiment 4.5). 389 

 390 

 391 
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5. Results 392 

5.1. Temporal factors: availability of machines and working time  393 

Depending upon the year, predicted WDA values varied from 2-75 days (Fig. 6a and 6b), while 394 

predicted T-ratios varied from 0.1-2.2% among all experiments and years (Fig. 6c and 6d). The low 395 

value and variability of predicted T-ratios indicate that a small proportion of herbicides were 396 

transferred to the stream, regardless of weather conditions. The highest values of the T-ratio in all 397 

experiments corresponded to the two wettest years (1994 and 1998).  398 

Predicted WDA values generally presented the same pattern, marked by low values in 1998, 399 

1999, and 2000 and high values in 1995, 1997, and 2002. The T-ratio and WDA values showed 400 

inverse trends: when WDA was short (4 days) the T-ratio was high (1998) and, conversely, when 401 

WDA was long (about 25 days), the T-ratio was low (1995-1997, 2001, and 2002). But the variability 402 

of the T-ratio cannot simply be explained by a single variable (WDA), as was seen in 2000, when both 403 

the predicted WDA and T-Ratio were low (Fig. 6a and 6c). 404 

Three groups of experiments with similar responses could be distinguished regarding WDA. 405 

The first corresponded to experiments with any number of machines at the farm or catchment scale, 406 

without any consideration of farm relations (experiments 1.1-1.4); among all years, predicted WDA 407 

values remained below 20 days (Fig. 6a). The second group corresponded to experiments with only 408 

one or two machines per catchment, but considered the spatial constraints of farm structure 409 

(experiment 1.5) and catchment topography (experiment 1.6 with 2 machines per catchment), for 410 

which predicted WDA varied among years from 40-75 days (Fig. 6b). The third group assuming four 411 

machines available with the same constraints (experiments 1.5 and 1.6) presented intermediate results 412 

(Fig. 6b). The values of the T-ratio could not be split clearly between these groups because of different 413 

trends from year to year. Therefore, the effect of machine availability on the T-ratio initially depended 414 

on the year. This was particularly well observed in experiment 1.5, with one machine available for the 415 

entire catchment. In this case, the T-ratio was either the lowest (1994, 1996, 1998, and 2002) or the 416 

highest (1995, 1997, 1999, and 2000) (Fig. 6d). Moreover collective machine management at the 417 

catchment scale that also considers the farm scale may reduce herbicide transfer significantly during 418 
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some years by temporarily increasing in time the distribution of weeding operations like in 1994 (Fig. 419 

6b and 6d). 420 

The availability of working time as tested here (experiment 2.1) had no effect on predicted 421 

WDA or T-ratio values, which were similar to those in the baseline (experiment 1.1). Working time 422 

did not constrain the spatial distribution of weeding operations and therefore had no effect on the T-423 

ratio. 424 

 425 

5.2. Spatio-temporal distribution of sowing operations 426 

Predicted WDA was short for both early and late sowing (Fig. 7a). As expected, a scenario with 427 

80% early sowing and 20% late sowing (experiment 3.3) greatly extend this duration. However, this 428 

experiment did not give the lowest T-ratio.   429 

The effect of the sowing date on the T-ratio also depended on the year (Fig. 7a). From 1997-430 

2000, this factor has no effect on the T-ratio, whereas the effect was large for 1994, 2001, and 2002. 431 

Early sowing for all fields (experiment 3.1) gave the lowest T-ratio, except for 2001. The results for 432 

the scenario with 80% early sowing and 20% late sowing (experiment 3.3) provided a little higher T-433 

ratio than the experiment 3.1. Considering this latest scenario (experiment 3.3), the results were 434 

relatively similar when date of sowing of fields were selected randomly (experiment 3.4) (Fig. 7b), 435 

except in 1994 and 2002 for which T-ratio was lower, and 2001 for which it was higher. These results 436 

show that considering different sowing dates, with (Fig. 7a) or without spatial criteria (Fig. 7b), did 437 

not consistently lead to a lower T-ratio except for a particularly rainy year like 1994 when early 438 

sowing can be promoted. 439 

 440 

5.3. Percentage and allocation of fields treated and herbicide dose 441 

The T-ratio decreased as the number of weeded fields decreased for all years (experiment 4.1), 442 

except in 1997, when it was always near zero. The range of the decrease depends on the year (Fig. 8a). 443 

It decreased from 2 to 0.6% and from 1.5 to 0.7%, in 1994 and 1998, respectively (Fig. 8a). A slight 444 

decrease in the percentage of fields weeded from 100 to 90% led to a significant decrease of the T-445 
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ratio, particularly when the T-ratio was high, as in 1994. Lastly, reducing the percentage of fields 446 

weeded decreased the T-ratio more than reducing the application rate (Fig. 8a). Indeed, the results of 447 

experiment 4.1 with 100 % of fields weeded were similar to those of experiment 4.5, regardless of the 448 

herbicide dose. In comparison to experiment 4.2, when a larger percentage of treated fields were 449 

randomly selected from bottomland (experiment 4.3), T-ratio increased (Figs. 8b and 8c). When 450 

herbicide applications were limited to upland fields (experiment 4.4), predicted T-ratios were lower 451 

than 1% (Fig. 8d), and the range of variation was lower than those of the other two spatial scenarios 452 

(Figs. 8b and 8c). 453 

 454 

6. Discussion 455 

6.1. Utility, evaluation and improvement of the model  456 

Developing and combining a decision model with crop and transfer models constitutes the 457 

uniqueness of this modelling approach; it shows that herbicide stream-water contamination is the 458 

result of a conjunction of environmental conditions, such as weather and soil patterns, and technical 459 

constraints, such as machine availability. 460 

The relevance of a model comes from the innovative measures that it can suggest or from the 461 

support it can provide to stakeholders regarding mitigation measures. From this point of view, we can 462 

emphasise the unexpected effect of machine availability on predicted herbicide losses in our 463 

simulations, which requires further investigation. We also highlight the comparison of the effects of 464 

different herbicide-reduction strategies, which suggest the potential for reducing herbicide losses by 465 

implementing spatial constraints on herbicide applications. 466 

The validation of such a model from observations is challenging. A rigorous validation process 467 

would require detailed data on the spatial and temporal distribution of the quantities of herbicides 468 

applied over the catchment. These data are not available at the present time, especially not for a long 469 

time-series, but they should be in the future, now that recent regulations require recording quantities of 470 

herbicide applied. In contrast, the elaboration of the model and the distribution of simulated sowing 471 

and weeding dates were discussed with local agricultural experts, who deemed them coherent. 472 



19  

A sensitivity analysis of the parameters was performed on the allocation of sowing and weeding dates. 473 

The number of replicate simulations (150 per year) (Fig. 7b and 8b,c,d) and the length of the weather 474 

series (nine years) covers a large range of environmental and technical conditions and yielded a 475 

predicted T-ratio that ranged from 0.1-3.5%. The observed T-ratio ranges from 0.1 to 0.6 % for six 476 

years (Clément et al., 1999) and therefore is included in the range of simulated T-ratio. The larger 477 

range of T-ratio is explained by a larger range of simulated conditions. Predictions were made 478 

assuming an average herbicide decay-rate (DT50), but it would be useful to test a wider range of 479 

values of this property, since they may influence herbicide losses greatly. Further experiments could 480 

also be done to test the effect of spatial and temporal distribution of agricultural activities. Especially, 481 

the spatial rule ‘farmers first work on upland fields of the catchment, then move to bottomlands’ could 482 

be relaxed or changed by analyzing its effects on T-ratio and WDA values. This rule is adapted to the 483 

studied environmental conditions where the bottom lands are longer wet than uplands, but could be 484 

relaxed in other environmental conditions. 485 

The model could be improved by including other processes such as the pre-sowing operations 486 

of ploughing or seed-bed preparation. These pre-sowing operations will influence the timing of 487 

operations that follow, depending on soil type and weather (Leenhardt and Lemaire, 2002), and 488 

influence water infiltration and surface runoff. Also, strategies based on observations of weed 489 

encroachment could be taken into account to adapt weeding operations. This improvement would 490 

require a crop model that represents weed growth and crop-weed competition. Adding equations to 491 

quantify yield effects of the different strategies also could help test their acceptability to farmers. 492 

Functions to adapt the herbicide dose to weather conditions also could be added. Because of the 493 

modular structure of SACADEAU, it has few limits to the inclusion and the test of different or more 494 

sophisticated models. Lastly, the output variables studied could be improved, in particular WDA, 495 

which describes the duration of weeding operations but not the effective number of working days for 496 

weeding or the spatial distribution of weeding operations. To estimate spatial distribution, an equation 497 

that calculates the mean distance of weeded plots to the stream over time could be proposed.  498 

 499 



20  

6.2. Interactions between agricultural practices and weather conditions 500 

The effect of weather on the WDA and the T-ratio is obvious but complex due to interactions 501 

between weather conditions and the spatial distribution of sowing and weeding operations. The effect 502 

of rainfall amount and frequency during each year is high. For the rainiest years of 1994 and 1998, the 503 

T-ratio and its variability are highest due to large individual rainfall events and rainfall frequency. 504 

The date of one rainfall event can have a large effect on the WDA and the T-ratio. For example, 505 

in the case of machine availability experiments, in simulation experiment 1.6 in 1998 (a rainy year), 506 

the WDA with one machine per catchment had a lower predicted WDA (18 days, days-of-year 150-507 

167) than that with two machines per catchment (65 days, days-of-year 103-167). Having one fewer 508 

machine on the catchment moved sowing dates to a rainier period in which pre-emergence weeding 509 

became impossible, delaying the entire weeding program to the 3-leaf stage. 510 

The distribution of rain also could have a significant effect on the WDA and the T-ratio, as 511 

shown when comparing the results experiments 3.1 (early sowing) and 3.2 (late sowing) in the two 512 

rainiest years (1994 and 1998). The predicted early-sowing T-ratio was half that of the late-sowing T-513 

ratio in 1994 but not in 1998 (Fig. 7a), despite similar rainfall amounts (Table 2). Analysis of the 514 

simulations shows that rainfall events in early spring 1998 concentrated weeding operations around 515 

day-of-year 122 regardless of the sowing date. Conversely, the absence of rainfall in early spring 1994 516 

separated weeding operations into two periods according to the sowing strategy. Consequently, in 517 

1994 predicted herbicide concentrations in the soil were lower after early sowing than late sowing 518 

because they had approximately 20 additional days to degrade. The low predicted T-ratio for the early 519 

sowing date in all 9 years shows that this date best limited herbicide transfer; however, this effect can 520 

be modified by spring rainfall distribution. 521 

Weather factors had smaller effects on the T-ratio, with low intra- and inter-year variability 522 

when herbicide applications were located on upland fields (Fig. 8d). Analysis of the relation between 523 

predicted WDA and T-ratio for all experiments and all years (Fig. 9) shows that these variables were 524 

partially correlated in years of exceptional rainfall (1994 and 1998). In 1998, T-ratio increased as 525 
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WDA increased, whereas in 1994, for WDA higher than 40 days, T-ratio decreased as WDA increased 526 

(Fig. 9). In other years, the predicted T-ratio ranged from 0.2-1% regardless of WDA.  527 

Finally, rainfall can delay herbicide applications, temporally concentrating them on a 528 

catchment, and increase herbicide transfer to streams by increasing runoff; both of these rainfall 529 

effects can increase the herbicide transfer ratio. A better investigation of the influence of rainfall could 530 

be achieved by using simulated weather in the model that specifies rainfall amount and frequencies, 531 

and by improving modelling at short timescale. The surface runoff model operates at hourly timescale, 532 

which does not allow the model to simulate correctly runoff and herbicide transfer when short and 533 

intense rainfall events occur at minutes to few hours scale. Not taking such flushing events into 534 

account may lead to underestimate the water and herbicide transfer.  535 

 536 

6.3. Strategies to reduce herbicide pollution 537 

Despite strong interactions between agricultural activities and weather conditions, and high 538 

inter-annual variability of T-ratio, which weeding strategies can be recommended? The results of the 539 

numeric experiments have been aggregated over the nine chosen years to compare them (Fig. 10). An 540 

experiment is more effective as the median and the variability are low, i.e. effective whatever the 541 

climatic conditions. From this criterion, experiments which reduce proportion of plots treated 542 

(experiment 4.1), especially by avoiding herbicide application bottomland fields of the catchment 543 

(experiment 4.4), are particularly effective. This mitigation measure must be undertaken collectively at 544 

the catchment scale because it would not imply the same constraints on all farms. 545 

Among all experiments, variations in working time had no effect because the 4-hours minimum was 546 

sufficient to perform the operations due to small size and low number of plots per farm, small farms 547 

sizes and high machine-throughput rates. As this variable seems to be context dependant, the 548 

application of the model to other contexts (larger plots, more plots, and more farms) could be 549 

interesting especially to test the sensitivity of this variable to the context, and analyze the effect of 550 

higher up to extreme of working time when conditions are optimal for farmers. 551 
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Similarly, machine management simultaneously at the farm and catchment scales always was 552 

sufficient to apply herbicide to all catchment fields (Fig. 6). As for the T-ratio, we can say that 553 

working time and machine availability are often over-dimensioned in simulations. A simulation 554 

considering that only 1-2 machines per catchment were able to distribute weeding operations over time 555 

and halve the T-ratio from 2.2 to 1% in 1994 and 1.6 to 0.8% in 1998 (experiment 1.5, Fig. 6d). 556 

Collective machine management and constraints on machine availability could be considered as 557 

potential factors to reduce water contamination at this stage of an exploratory approach. These 558 

scenarios would have to be tested with a more complex crop model to evaluate the effects of such 559 

measures on crop development, yield, and weed management and evaluate their acceptability by 560 

farmers and to analyse the variability regarding climatic conditions. 561 

 562 

 563 

7. Conclusion 564 

The decision submodel was developed to simulate decisions of farmers for sowing and weeding 565 

activities that take into account environmental constraints such as weather and slope position of the 566 

plots and technical constraints such as the availability of machines and farmers’ working time. These 567 

operations are performed during temporal windows if certain conditions are fulfilled. The decision 568 

submodel distributes a given agricultural operation over time and space more realistically than random 569 

or unique methods commonly used in numerical simulations. 570 

Simulation results show that herbicide transfer is not only the effect of the quantity of herbicides 571 

applied, but of technical and environmental factors that interact to concentrate or spread herbicide 572 

applications over time and space. Herbicide transfer depends greatly on annual weather conditions. 573 

Collective machine management and an early sowing date can decrease herbicide transfer, but their 574 

effects vary according to weather conditions. Nonetheless, these practices could be promoted more 575 

frequently. Spatial strategies that decrease the number of fields in the catchment on which herbicides 576 

are applied are always effective, particularly when herbicide applications occur only on upland fields. 577 
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Finally, our simulations indicate that modifying the spatio-temporal distribution of herbicide 578 

applications by considering environmental and technical constraints does not automatically decrease 579 

herbicide transfer rates, as assumed. The effect of a higher flexibility in time and space in herbicide 580 

applications appears to depend strongly on weather conditions, generally becoming more effective 581 

during rainy years.  582 
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Figure captions 710 

Figure 1. Location of the Frémeur catchment in western France and land use of its 2000 parcels. 711 

Figure 2. Rainfall (mm/day) and discharge (m/day) on the study catchment from 1 Apr to 31 Jul for 712 

1994-2002. The vertical dotted line shows the temporal discontinuity between periods. 713 

Figure 3. General SACADEAU model diagram. The T-ratio equals the ratio between predicted 714 

herbicide output and input. WDA (Weeding Day Accumulation) equals the difference between the last 715 

and first days of herbicide application on the catchment. 716 

Figure 4. Decision-model diagram. εRainfall = rainfall threshold; tRainfallEvent = day with rainfall higher 717 

than εRainfall  718 

Figure 5. Temporal diagram of decisions for (a) pre-emergence and (b) post-emergence weeding 719 

strategies. Plain brackets correspond to fixed dates and dotted brackets correspond to simulated 720 

variable dates. 721 

Figure 6. Predicted T-ratio and WDA from 1994-2002 for simulation experiments 1.1 to 1.6. (mach = 722 

machine). The legend of graph (c) is used for graph (a) and the legend of graph (d) is used for graph 723 

(b). See Table 3 for simulation experiments abbreviations. 724 

Figure 7. a) predicted T-ratio and WDA from 1994-2002 for simulation experiment 3.1-3.3 (3.1: all 725 

fields have an early sowing date; 3.2: all fields have a late sowing date; 3.3: 80% of fields have an 726 

early sowing date and 20% a late date); b) predicted T-ratio from 1994-2002 for simulation 727 

experiments 3.3 and 3.4. Standard boxplots show variability of predicted T-ratio from experiment 3.4. 728 

See Table 3 for simulation experiments abbreviations. 729 

Figure 8. a) predicted T-ratio from 1994-2002 when the percentage of weeded fields decreased 730 

(experiment 4.1). Standard boxplots of predicted T-ratio from 1994-2002 with 50% of fields treated 731 

with b) random choice from all fields (experiment 4.2); c) random choice of 25 bottomland fields and 732 

37 upland fields (experiment 4.3); d) random choice of 62 upland fields (experiment 4.4). 733 

See Table 3 for simulation experiments abbreviations. 734 

Figure 9. Comparison of predicted WDA (Weeding Day Accumulation) and T-ratio for all simulation 735 

experiments by year. 736 
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Figure 10. Standard boxplots of predicted T-ratio for all experiments with all years aggregated.  See 737 

Table 3 for simulation experiments abbreviations. 738 

 739 


