Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Accessing the cohomology of discrete groups above their virtual cohomological dimension

Alexander Rahm 1, *
* Corresponding author
Abstract : We introduce a method to explicitly determine the Farrell-Tate cohomology of discrete groups. We apply this method to the Coxeter triangle and tetrahedral groups as well as to the Bianchi groups, i.e. PSL_2 over the ring of integers in an imaginary quadratic number field, and to their finite index subgroups. We show that the Farrell-Tate cohomology of the Bianchi groups is completely determined by the numbers of conjugacy classes of finite subgroups. In fact, our access to Farrell-Tate cohomology allows us to detach the information about it from geometric models for the Bianchi groups and to express it only with the group structure. Formulae for the numbers of conjugacy classes of finite subgroups in the Bianchi groups have been determined in a thesis of Krämer, in terms of elementary number-theoretic information on the ring of integers. An evaluation of these formulae for a large number of Bianchi groups is provided numerically in the appendix. Our new insights about the homological torsion allow us to give a conceptual description of the cohomology ring structure of the Bianchi groups.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download
Contributor : Alexander Rahm <>
Submitted on : Thursday, September 26, 2013 - 2:25:26 PM
Last modification on : Friday, March 19, 2021 - 9:50:02 PM
Long-term archiving on: : Friday, April 7, 2017 - 3:29:52 AM


Files produced by the author(s)


  • HAL Id : hal-00618167, version 8
  • ARXIV : 1112.4262



Alexander Rahm. Accessing the cohomology of discrete groups above their virtual cohomological dimension. 2013. ⟨hal-00618167v8⟩



Record views


Files downloads