Accessing the cohomology of discrete groups above their virtual cohomological dimension

Alexander Rahm 1, *
* Auteur correspondant
Abstract : We introduce a method to explicitly determine the Farrell-Tate cohomology of discrete groups. We apply this method to the Coxeter triangle and tetrahedral groups as well as to the Bianchi groups, i.e. PSL_2 over the ring of integers in an imaginary quadratic number field, and to their finite index subgroups. We show that the Farrell-Tate cohomology of the Bianchi groups is completely determined by the numbers of conjugacy classes of finite subgroups. In fact, our access to Farrell-Tate cohomology allows us to detach the information about it from geometric models for the Bianchi groups and to express it only with the group structure. Formulae for the numbers of conjugacy classes of finite subgroups in the Bianchi groups have been determined in a thesis of Krämer, in terms of elementary number-theoretic information on the ring of integers. An evaluation of these formulae for a large number of Bianchi groups is provided numerically in the appendix. Our new insights about the homological torsion allow us to give a conceptual description of the cohomology ring structure of the Bianchi groups.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00618167
Contributeur : Alexander Rahm <>
Soumis le : jeudi 26 septembre 2013 - 14:25:26
Dernière modification le : jeudi 26 septembre 2013 - 19:56:33
Document(s) archivé(s) le : vendredi 7 avril 2017 - 03:29:52

Fichiers

accessing_cohomology_above_the...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00618167, version 8
  • ARXIV : 1112.4262

Collections

Citation

Alexander Rahm. Accessing the cohomology of discrete groups above their virtual cohomological dimension. 2013. 〈hal-00618167v8〉

Partager

Métriques

Consultations de
la notice

193

Téléchargements du document

77