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Abstract. In many machine learning applications, like Brain-Computer Interfaces

(BCI), high-dimensional sensor array data are available. Sensor measurements are

often highly correlated and Signal to Noise Ratio (SNR) is not homogeneously spread

across sensors. Thus, collected data are highly variable and discrimination tasks are

challenging. In this work, we focus on sensor weighting as an efficient tool to improve

the classification procedure. We present an approach integrating sensor weighting in

the classification framework. Sensor weights are considered as hyper-parameters to

be learned by a Support Vector Machine (SVM). The resulting sensor weighting SVM

(sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error.

Experimental studies on two data sets are presented, a P300 data set and an Error

Related Potential (ErrP) data set. For the P300 data set (BCI competition III), for

which a large number of trials are available, the sw-SVM proves to perform equivalently

with respect to the ensemble SVM strategy that won the competition. For the ErrP

data set, for which a small number of trials are available, sw-SVM shows superior

performances as compared to three state-of-the art approaches. Results suggest that

sw-SVM promises to be useful in event-related potentials classification, even with a

small number of training trials.

Submitted to: J. Neural Eng.
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1. Introduction

Brain-computer interfaces (BCI) are assistive technologies using brain signals to decode

the users’ intention without resorting to any muscles or peripheral nerves [1]. Some

classes of BCI potentially provide motor-disabled people with a communication channel

even when motricity is not preserved at all [2, 3]. More recently, BCI research has focused

on improving/integrating traditional communication devices such as the keyboard and

joystick, for example, in video-game applications [4, 5].

Because of its high temporal resolution, ease of use and low cost, most BCI are

based on EEG (ElectroEncephaloGraphy). The EEG is a high dimensional (typically 8

to 128 sensors) scalp measurement of a smooth potential field. Whereas the potential

field accurately reflects the global cerebral electrophysiological activity, the volume

conduction, scalp smearing and the high spatial resolution of the sampling introduces

a high correlation between the observed data at different electrodes (sensors) [6].

Moreover, the measured potentials are of low amplitude (of the order of tens of

microvolts) and the measurements are very sensitive to noise of biological, environmental

and instrumental origin. Such noise is of nonstationary nature and may vary

considerably across sensors and along time. The poor Signal-to-Noise Ratio (SNR),

which is an inherent characteristic of EEG, requires adequate processing techniques

to tackle the problems of dimension reduction and noise cancelation. So far the

BCI classification task has classically been solved in two steps: 1) feature extraction

techniques, typically amounting to frequential, temporal and/or spatial filtering and 2)

a machine learning classification task.

Concerning optimal sensor weighting or spatial filtering techniques, signal-

processing criteria like the Signal-to-Noise Ratio and ratio of class variances [7, 8, 9, 10]

have been often employed because of the instantaneous and approximately linear relation

between the amplitudes of the generating cerebral electrophysiological current sources

and the amplitude of the observed scalp potential field. The idea here is to find a

linear transformation of the data (optimal spatial filters) optimizing the extraction of

the relevant EEG feature and the noise suppression. The performance of such filters

mainly depends on the accuracy of spatial covariance estimations and is jeopardized by

the non-stationary nature of the noise. Although a relation might be found between the

objective functions of [7, 8, 9, 10], yielding optimal filters, and class separability, this

relation has, to the best of our knowledge, never been addressed explicitly.

Depending on the features to be extracted, some EEG sensors may not provide

useful information, but, instead, add noise to the system. It is often the case for the

most inferior temporal sensors (electrodes T3, T4, T5 and T6) of the international 10/20

system, which may convey more electromyographic data than EEG, due to steady or

intermittent jaw contractions. In addition, temporal leads carry little information about

sources generating evoked potentials such as the P300, thus for P300 detection they

can usually be discarded. But, the leads affected by biological artifacts are subject-

and session-dependent. For instance, some subjects tend to display more muscular
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contamination on the frontal sensors (FP1, FP2) or on the occipital sensors (O1, O2)

than on sensors covering the temporal region. Instrumental and environmental artifacts

also may affect different leads, and again, this is subject- and session-dependent. It is

thus crucial to derive data-driven criteria for sensor weighting.

Concerning the classification task, simple linear classifiers have been found to

perform well in Event-Related Potential (ERP) paradigms [7, 11]. This has led to a

prevailing view among BCI researchers that the effort to search for more sophisticated

machine-learning approaches is irrelevant. Usually, preprocessed data are fed to a simple

classifier borrowed from the machine learning literature without inquiring about possible

improvements that could be done, thus resulting in classifiers that do not fully exploit

the proprieties of the data. Nonetheless, a BCI is essentially a learning machine.

As mentioned above, in this work we focus on the optimal weighting of sensor

data so as to improve the separability of the classes. We treat the problem within the

classification problem itself. By introducing the sensor weighting as hyper-parameters in

a Support Vector Machine (SVM), weights are optimized for the specific classification

problem at hand. The SVM is particularly well-suited to online processing required

for BCI data due to its reduced computational complexity. Indeed, SVM complexity

depends far more on the number of training trials than on the number of features used

to describe each one of them. The proposed algorithm has been named sensor weighting

SVM (sw-SVM) and is built upon the Multiple Kernel Learning (MKL) framework

[12, 13]. sw-SVM offers a very flexible approach, in that it can handle any kind of

features, thus adapting to any kind of EEG-based BCI (P300, motor imagery, SSVEP,

etc.) or any data selection and classification task. In this paper we focus on ERP

data analysis, whereas in the discussion, we offer possible directions for its use in other

contexts.

Two BCI data sets are considered to illustrate the efficiency of the proposed sw-

SVM algorithm as compared to a state-of-the art SVM approach. The first is the P300

speller data set of the BCI competition III [14], for which the competition winner used an

ensemble-SVM (e-SVM) approach [15]. An e-SVM constructs an ensemble of classifier

decision functions on different subsets of the data and assigns a blind pattern according

to the average of all decision functions. The BCI competition III data set has been

chosen so as to provide a comparative element versus a state-of-the-art technique. The

second data set is an Error-Related Potential (ErrP) data set and contains very few

learning trials, thus no ensemble strategy is possible. Therefore, it provides an adequate

base to ascertain the robustness of the proposed algorithm as compared to a spatial filter

maximizing a ratio of class variances followed by an SVM classifier [16], to a spatial filter

maximizing an SNR criterion followed by an SVM classifier [10] and to a classical SVM

approach [17].

The remainder of this article is organized as follows. The proposed sw-SVM

algorithm is introduced in section 2 where the general SVM framework is reminded.

The sw-SVM optimization problem and a possible solution are presented. Section 3

accounts for the BCI data sets description and explains the preprocessing techniques
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Figure 1. Schematic illustration of linear SVM. Slack variables ξp are observations

for which classification errors are tolerated to improve generalization performance in

non-linearly separable data sets. Circled points positioned on the dashed lines are

called Support Vectors (SV).

used for each data set. Classification techniques used to compute comparative results

are discussed and justified in Section 4. Finally, Section 5 holds our conclusions.

2. Method

In this section, the SVM primal and dual problems are firstly recalled. Secondly, the

proposed sw-SVM method is detailed.

2.1. Support Vector Machine

The Support Vector Machine is a classification technique developed by Vapnik [17] which

has shown to perform well in a number of real world problems, including BCI [18]. Given

a set of labeled patterns {(x1, y1), . . . , (xp, yp), . . . , (xP , yP )} with patterns xp ∈ R
d and

labels yp ∈ {−1, 1} referring to two different classes. The central idea of SVM is to

separate data by finding a hyperplane yielding the largest possible margin (a margin is

the distance between nearest data points of different classes, as illustrated in Figure 1.

Within this figure it is the distance between the two dashed lines.). This hyperplane is

defined by a weight vector w ∈ R
d and an offset b ∈ R. Apart from being an intuitive

idea, SVM has been shown to provide theoretical guaranties in terms of generalization

ability [17].

One variant of binary linear SVM consists of solving the following primal
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optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

P
∑

p=1

ξp

subject to yp(〈w,xp〉+ b) ≥ 1− ξp ∀p ∈ {1, . . . , P}

and ξp ≥ 0 ∀p ∈ {1, . . . , P},

(1)

where 〈·, ·〉 stands for the inner product of two vectors. The parameters ξp are called

slack variables and ensure that the problem has a solution in case the data is not linearly

separable. The function f(xp) = 〈w,xp〉 + b, solution of problem (1), should correctly

classify patterns along with minimizing ‖w‖2. The trade-off between a low training error
∑P

p=1
ξp and a large margin is controlled by the regularization parameter C. Finding

a good value for C is part of the model selection procedure. If no prior knowledge is

available, C has to be estimated from the training data, e.g., by using cross validation.

The dual problem of (1) can be formulated as follows :

max
α1,...,αP

P
∑

p=1

αp −
1

2

P
∑

p=1

P
∑

q=1

αpαqypyq〈xp,xq〉

subject to

P
∑

p=1

αpyp = 0

and 0 ≤ αp ≤ C ∀p ∈ {1, . . . , P}.

(2)

The linear SVM was extended to a non-linear classifier by applying the kernel trick

[19] originally proposed by Aronszjan [20]. The space of possible functions f(.) is now

reduced to a Reproducing Kernel Hilbert Space (RKHS) H with kernel function K(., .).

Let φ : Rd → H be the mapping defined over the input space. Let 〈., .〉H be a dot

product defined in H. The kernel K(·, ·) over Rd ×R
d is defined by:

∀ (xp,xq) ∈ R
d ×R

d : K(xp,xq) = 〈φ(xp), φ(xq)〉H ∈ R

The resulting algorithm is formally similar to (2), except that every dot product

is replaced by a non-linear kernel function K(., .). This allows the algorithm to fit

the maximum-margin hyperplane in a transformed feature space. The transformation

is generally non-linear and the transformed space high dimensional. Thus, though

the classifier is a hyperplane in the RKHS, it is generally non-linear in the original

input space. Some common kernels include Gaussian radial basis function, polynomial

function, etc. For a detailed discussion please refer to [21].

2.2. Sensor Weighting procedure

The sw-SVM formulation involves sensor weights in the primal and dual optimization

problem and tunes these weights as hyper-parameters of SVM. To illustrate the proposed

method, let us consider time-locked evoked response potentials (ERP). Each ERP is

considered in a short time period of T samples recorded over S sensors and represented

as a matrix X̃p ∈ R
T×S. A pattern xp is obtained by concatenating elements of X̃p
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columnwise in a vector of Rd×1, with d = TS. A trial xp is thus a vector containing all

the spatio-temporal information.

Our task consists in finding spatial weights that maximize the separation margin

between two post-stimulus responses recorded on a given subject. We assume that

sensor weights for a given subject are similar across all the trials. Thus, we

aim at finding a matrix D ∈ R
d×d of sensor weights assigned to each of the trials xp

so that {Dxp}
P
p=1

maximize the margin of the SVM. For the application of EEG sensor

weighting, time features belonging to a same EEG sensor, hereafter indexed by s, have

to be dealt with in a congeneric way so that a spatial interpretation remains possible.

In this work, time samples of one sensor are treated equally. The resulting matrix D is

thus diagonal with S different unknown coefficients, each coefficient ds is being repeated

T times on the diagonal as:

D =











d1IT 0 · · · 0

0 d2IT · · · 0
...

...
. . .

...

0 0 · · · dSIT











where IT is the identity matrix in R
T×T and ds are coefficients that weigh the sensors.

From this context, our objective is to find the coefficients ds that maximize the margin

of a linear SVM classifier. In this sense, we are providing a method for large-margin

sensor weighting.

According to the SVM definition given above, the optimization problem of the

linear SVM sensor weighting problem can be stated as:

min
w,b,ξ,D

1

2
‖w‖2 + C

P
∑

p=1

ξp

subject to yp(〈w,Dxp〉+ b) ≥ 1− ξp ∀p ∈ {1, . . . , P}

and ξp ≥ 0 ∀p ∈ {1, . . . , P}

and
S
∑

s=1

d2s = 1.

(3)

By setting to zero the derivatives of the partial associated Lagrangian according to

the primal variables w, b and ξp the optimization problem of the dual formulation can

be written as :

min
D̃

max
α

1T
α−

1

2
α

TYTXT D̃XYα

subject to yT
α = 0

and 0 ≤ αp ≤ C ∀p ∈ {1, . . . , P}

and
S
∑

s=1

d̃s = 1,

(4)

where we have used D̃ = DTD and thus d̃s = d2s. α is the vector of Lagrangian

multipliers, X = {x1, ...,xP} is the matrix containing the trials, y = {y1, ..., yP}
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is the vector containing the labels and Y = Diag(y) is a diagonal matrix

containing the labels on its diagonal. The overall problem remains a concave

problem in α and boils down to a Multiple Kernel Learning (MKL) problem

where a linear kernel is used over each sensor’s time series. {d̃s} are the

positive mixing coefficients associated with the multiple kernels. According

to this relationship, we propose to use a MKL algorithm based on a reduced

gradient method, as in SimpleMKL [22], for solving the problem.

We proceed with an alternate optimization algorithm. For any admissible

value of D̃, the maximization problem over α is strictly concave. Noteworthy,

for an admissible value of D̃, the objective function reduces to a regular

SVM optimization. Hence, we can use any SVM solver to find α for once

D̃ has been fixed [23]. For the so obtained α, the minimization problem

over D̃ is smooth and convex [24]. Hence, we can use a reduced gradient

method which converges for such functions [25]. Once the gradient of the

first equation in (4) is computed, D̃ is updated by using a descent direction

ensuring that the equality constraint and the non-negativity constraints on

{d̃s} are satisfied. These two steps are iterated until a stopping criterion is

reached. The stopping criterion we chose is based on a norm variation of the

sensor weights.

3. Experimental Data

Experiments were performed on a P300 data set and an Error-related Potential (ErrP)

data set. Experimental set up, preprocessing techniques and notations are detailed in

this section.

3.1. The P300 speller data set

The P300 speller data set from the BCI competitions 2004 [14] was used to benchmark

the proposed filtering algorithm and to compare it to the competition winner, where

an ensemble SVM approach clearly outperformed the competitors [15]. A P300 speller

paradigm allows the user to choose a character among a predefined set of alphanumeric

characters [26] (letters from A to Z, digits from 1 to 9 and ). A 6×6 matrix of

characters is presented to the user and the rows and columns of the matrix

are flashed (intensified) in random order. The user can select a character

by concentrating on it. Since the target character is rare as compared to

the others, a P300 evoked response is elicited when the target flashes. The

task of the P300 speller is to guess what target the subject focuses upon

by comparing responses evoked by each row/column intersection. The P300

potential is in the order of a few microvolts highly corrupted by noise and

superimposed on background activity of significantly higher amplitude (as

an integration over multiple ongoing activities). Thus, in order to obtain
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sufficient accuracy, the sequence of flashes must be repeated several times

for each character to be spelled, typically 8 to 15 times and responses should

be averaged to reduce noise and enhance the signal of interest.

3.1.1. Experimental setup and mental task EEG signals were recorded from two

subjects using a 64 ear lobe-referenced scalp electrodes. Before digitization at a sample

rate of 240 Hz, signals have been bandpass-filtered from 0.1 − 60 Hz. A detailed

description of the data set can be found in the BCI competition paper [27]. For each

subject, the training set is composed of 85 characters and the test set of 100 characters.

One spelled character corresponds to 180 post-stimulus labeled signals (12 row/column

intensifications ×15 repetitions per letter). Only 30 post-stimuli from the 180 correspond

to a target intensification yielding a P300 deflection.

Five sessions were recorded for each subject. Each session consisted of

a number of runs where subjects focused attention on a series of characters.

For each spelled character the matrix was displayed for a 2.5 s period during

which each character had the same intensity. This period informed the user

that the previous character spelling was completed and gave instruction to

focus on the next character in the word, which was displayed on the top of

the screen. Subsequently, each row and column in the matrix was randomly

intensified for 100 ms alternating with a blank period of 75 ms. Row/column

intensifications were block randomized in blocks of 12.

3.1.2. Data preprocessing In ”oddball” paradigms such as the one described above,

the perception of the rare stimulus typically triggers a positive low amplitude deflection

approximately 300 ms following the stimulus onset, also known as the P3b

component of the P300 waveform [28, 29]. Consequently, only time-window of

approximately 667 ms post stimulus onset, corresponding to 160 time samples, were

retained. Before submitting the data to the feature extraction and learning algorithms

the data were band-pass filtered between 0.1 Hz and 20 Hz with a 4th order Tchebychev

filter (type 1) and then decimated so as to retain 14 samples per sensor for each trial.

Prior to decimation, the signal is filtered with an 8th order Chebyshev Type

I low pass filter. This acts as an anti-aliasing filter suppressing frequency

contents above 0.8FS

2fd
, where fd is the decimation factor (here fd = 12).

Secondly, we downsample the so obtained signal to a sample frequency of
FS

fd
, retaining each 12th sample (14 samples in total). Thus, the dimensionality

of the input vector is 14 × 64. Let P denote the number of stimuli of the data sets

(P = 15300 = 12 intensifications ×15 repetitions ×85 characters for the training set

and P = 18000 for the test set) and let d denote the data dimension (d = 14×64 = 896

for each stimulus). A trial is denoted as xp ∈ R
d, p = 1 . . . P , with labels yp ∈ {−1, 1}.

A label y = 1 corresponds to an expected P300 post-stimulus signal and y = −1

corresponds to an expected absence of a post-stimulus P300 signal.
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Figure 2. Temporal diagram of one ErrP trial.

3.2. The Error Related Potential data set

In 1991, Falkenstein et al. [30] reported the presence of a negative deflection in the

EEG when subjects committed errors in a time-reaction task. Since then, several

studies have shown the presence of Error related Potentials (ErrP) components such

as error related negativity (ERN or Ne) and error-related positivity (Pe) in a variety of

experimental paradigms. Error processing systems were categorized in timed reaction

tasks [31, 32], feedback tasks indicating incorrect performance after a decision task

[33, 34] or observation tasks following observation of errors made by an interface or

someone else [35].

The experiment, described in the following, is based on a visual feedback presented

on a computer screen following a memorization task.

3.2.1. Experimental setup and mental task Eight healthy volunteers (including three

women) participated in this experiment. All subjects were BCI-naive at the time of the

experiment. Subjects had to retain the position of an ensemble of two to nine digits.

The digits were displayed as a sequence in square boxes and evenly distributed along

a circle. When the sequence disappeared, a target digit was shown and subjects were

asked to click on the box where it previously appeared. A visual feedback indicates

whether the answer was wrong or correct. The experiment involved two sessions that

lasted together approximately half an hour. Each session consisted of six blocks of six

trials, for a total of 6× 6× 2 = 72 trials.

The temporal order of each trial, illustrated in Figure 2, is detailed next. The

score, initially zero, was displayed for 3000 ms followed by a fixation cross, which was

in turn displayed for 3000 ms. Then the memorization sequence started with variable

duration depending on the number of digits the subject had to memorize. When it

ended the subject was asked to click on the box where the target digit had appeared.

Once the subject had answered the interface was paused for 1500 ms and then turned

the clicked box into green upon a correct answer or into red upon an erroneous answer.

This feedback lasted for 2500 ms. The 1500 ms preceding the feedback was introduced

to avoid any contamination of ErrP by beta rebound motor phenomena linked to mouse

clicking [36]. The subject was then asked to report if the feedback (correct/error)

matched his expectation by a mouse click (”yes”/”no”). Following his answer a random

break of 1000 ms to 1500 ms preceded the beginning of the new trial. The number of

digits was adapted with an algorithm tuned to allow about 20% errors for all subjects.

The mean error rate (standard deviation) was equal to 17.87(±4.64)% of the trials.



sw-SVM : sensor weighting Support Vector Machines 10

Recordings of the EEG were made using 31 sensors from the extended

10/20 system. Both earlobes were used as electrical reference. Connection

between sensors are performed digitally by the Mitsar 202 DC EEG

acquisition software. The ground sensor was positioned on the forehead.

During acquisition, EEG was band-pass filtered in the range 0.1− 70 Hz and

digitized at 500 Hz.

3.2.2. Data preprocessing Raw EEG potentials were first re-referenced to the common

average by subtracting from each sensor the average potential (over the 31 sensors) for

each time sample. Many studies report two peaks, Ne and Pe, as the main components of

Error Related Potential components [33]. Ne shows up about 250 ms after the response

as a sharp negative peak and Pe shows up about 300 to 500 ms after the response

as a broader positive peak. According to these knowledge, only a window of 1000

ms posterior to the stimulus has been considered for each trial, which results in 500

samples per sensor. A 1 − 10 Hz 4th order Butterworth filter was applied as error

related potentials are known to be a relatively slow cortical potential. Finally, EEG

signals were decimated so as to retain 16 samples, with the same process as

mentioned above (anti-aliasing filter followed by a decimation with factor 32).

Thus the dimensionality of the input vector is 16 × 31. No artifact rejection algorithm

was applied and all trials were kept for analysis. Let P denote the number of training

vectors (trials) of the data sets (P = 72 for all 8 data sets) and let d denote the data

dimension (d = 16 × 31 = 496 for all 8 data sets). A trial is denoted as xp ∈ R
d,

p = 1 . . . P , with labels yp ∈ {−1, 1}. For the task used in this paper y = 1 denotes

error trial, y = −1 denotes correct one.

3.3. Cross Validation

For the P300 data set, an ensemble of linear sw-SVM classifiers was used to make

results comparable to those of the competition winner [15] where an ensemble of SVM

(e-SVM) was learned. Data set was split, as per the competition winner method [15],

into 17 subsets, each one composed of five characters or 5×12×j post-stimuli, with j the

number of repetitions for one character. An ensemble of classifiers system for each single

subject was designed. For the ensemble of sw-SVM, 17 sw-SVM classifiers were trained

for j = 15 repetitions on one of the 17 subsets and its regularization parameter C was

chosen by validating performances on the remaining 16 subsets. To assign a test data to

one of the 36 classes, 17 real-valued sw-SVM decision functions were computed for each

j = 1 . . . 15, the most probable row and column at the jth repetition was the one that

maximizes the average of the 17 sw-SVM classifiers scores. For the e-SVM, 17 linear

SVM classifiers with backward elimination technique were trained for j = 15

repetitions on one of the 17 subsets and its regularization parameter C was

chosen by validating performances on the remaining 16 subsets. To assign a

test data to one of the 36 classes, 17 real-valued SVM decision functions with
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Figure 3. P300 component (solid) and non-P300 component (dotted) are illustrated

for subjects A (left) and B (right). Components are the projection of the original post-

stimuli (with 160 samples per post-stimulus window) according to the sw-SVM filters

computed on down-sampled post-stimuli (with 14 samples per post-stimulus window).

the selected sensors were computed for each j = 1 . . . 15 repetitions, the most

probable row and column at the jth repetition was the one that maximizes

the average of the 17 SVM classifiers scores. For the Error related Potential

data set, only five subsets were considered because of the limited number of trials. An

sw-SVM classifier was learned on four subsets with different regularization parameter

C and performances were computed on the remaining subset. For a set of pre-defined

values of C, this process was repeated five times for a given subject and averaged. The

highest average accuracy was reported. Besides, five cross validation results with SVM

preceded by the optimal filter obtained by xDAWN [10], SVM preceded by optimal

spatial filter as proposed by Hoffmann et al. [16] and baseline SVM without previous

spatial filtering, were reported for comparison.‡ It is noteworthy that for the ErrP data

set, a non-linear SVM with second degree polynomial kernel was used.

4. Results

4.1. P300 experimental results

In this experiment, an ensemble of sw-SVM is compared to e-SVM [15]. For each single

classifier built on one of the 17 subsets, sensor weighting has been performed based on

the training set A.k or B.k (k = 1 . . . 17) and the related validation set. sw-SVM can

be considered as a one-component spatial filter, and thus, a unique linear combination

of sensor measurement can be computed. Figure 3 shows the average of the weighted

potential for common (non-P300 in dotted line) and rare (P300 in solid line) signals for

‡ Although a one-level cross validation performance may give optimistic results, we did

not opt for a two-level cross validation performance because of the data set properties

(few trials, high variability, highly unbalanced classes).
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Figure 4. Topographies of sw-SVM weights for subjects A (left) and B (right).

a random subset of data, referring to subjects A (left) and B (right). For both subjects,

a positive deflection in voltage with a latency of roughly 300 to 600 ms can be clearly

identified. This analysis suggests that the sw-SVM provides an efficient spatial filter.

4.1.1. Sensor weighting results Sensors PO7, PO8, Pz and CPz receive consistently the

highest weights, which is in line with our expectation. As compared to [15], where some

frontal sensors were top ranked, the weight analysis of sw-SVM is more consistent to the

midline central generation of the P300. Also, as expected, weighting varies considerably

from one classifier to another and from subject to subject.

Typical topographies of sw-SVM weights are given for subjects A and B in Figure

4. These maps are in line with previous findings in P300 research (e.g., [37, 38, 26]) and

confirm the ability of sw-SVM to weight sensors in such a way as to extract relevant

information about the P300.

4.1.2. Classification results The character recognition rate (in %) is presented for

several number of repetitions for both subject A and B in Figure 5. They are compared

to the winner results of BCI competition III [15] (e-SVM) and the classical single SVM

treating all sensors homogeneously.

Figure 5 illustrates that sw-SVM performs at least as good as e-SVM

and simple SVM without sensor weighting, especially for small number of

repetitions (less than seven repetitions for subject A and five repetitions

for subject B). For 15 repetitions all three strategies give similar results.

We conclude that sw-SVM is well suited for noisy data where small number

of trials is available. It enables to reduce the number of required stimulus

repetitions and consequently boosts the information transfer rate.

The e-SVM [15] witnesses in favor of the good performance of ensemble classifier

averaging methods. Therefore, an ensemble of sw-SVM was used. We are of the opinion

that it is interesting to reveal the advantages of sensor weighting by using a single

sw-SVM.
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Figure 5. Percentage of correctly recognized characters for subject A (left) and B

(right) for different number of repetitions. sw-SVM (black bar) results are compared

with the winner results of BCI competition III [15] (e-SVM, gray bar) and a single

SVM classifier (white bar).
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Figure 6. Average of error (solid line) and correct (dotted line) trials on channel FCz

for the 8 subjects.

4.2. Error Related Potential experimental results

For ErrP data sets, the number of available trials is very low. Hence, it was not possible

to use ensemble SVM strategy. Moreover, no artifact rejection whatsoever is carried out,

making it a challenging classification task. The main goal of this experiment is to test

robustness of sw-SVM to EEG waves of various nature and to validate the performance

of a simple sw-SVM on raw data set. Eight subjects are considered to test the ability

of sw-SVM to adapt to inter-subject variability. We compare the performance of sw-

SVM classifier, in terms of classification accuracy, against an SVM classifying spatially

filtered data as proposed by Rivet et al. [10] (xDAWN+SVM) or by Hoffmann et

al.[16] (Hoff+SVM), and a baseline SVM classifier without any spatial filtering or sensor

selection procedure.
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Figure 7. Topographical maps of the weights averaged across the five subsets for the

ErrP dataset. Each map refers to a subject. The large variability is caused by the low

number of trials.

Figure 6 shows the averages of error and correct trials for sensor FCz. As expected,

and in accordance with [39], a negative deflection (Ne) can be seen after the feedback

for error trials followed by a positive one for almost all the subjects. Latency and

amplitudes are very different from subject to subject. Inter-subject differences are large

in this data set due to the small number of trials available for averaging. For some

subjects, like subjects S3 and S5, Ne and Pe do not clearly appear on sensor FCz.

For subjects S2 and S3, there is no major difference to be noticed between potentials

generated for correct and incorrect trials, as recorded on sensor FCz. As a consequence,

the classification task promises to be hard for this data set.

4.2.1. sw-SVM sensor weighting results Results elucidate clearly the sparsity promoted

by sw-SVM. Figure 7 shows the sensor weights found by sw-SVM averaged across the

five subsets as topographic maps. For six out of the eight subjects central area holds

the strongest weights, which is in accordance with current knowledge on error related

potentials. Indeed several studies cite the Anterior Cingulate Cortex (ACC, Brodmann

areas 24&32) as the main source responsible for the generation of the Ne [40, 41]. For

subject S7, sensor Cz captures almost all necessary information. It is also remarkable

that for subjects S2 and S8 weights do not have a medial central or fronto-central

distributions, but rather a fronto lateral distribution, a fact that can be put in relation

with studies pointing to the lateral prefrontal cortex as another possible generator of

the Ne [42].

4.2.2. Comparison of classification results Figure 8 reports the recognition rates

(mean and standard deviations) for the eight subjects and their average, obtained by

four filtering/classification algorithms (sw-SVM, xDAWN+SVM, Hoff+SVM, baseline
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SVM). Interestingly, sw-SVM shows classification accuracies between 74% and 91%,

averaging to about 81%. These figures have been achieved with a relatively low number

of sensors (from 1 to 11 sensors). Noteworthy, available data include a small number of

trials (only 72 trails are available in total) with a small number of errors (for instance,

only 10 error trials were available for subject S4). Thus, as expected, the cross-validation

variance is elevated. Since no artifact rejection was applied as pre-processing, our results

refer to a realistic situation of BCI use.
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Figure 8. Accuracies (standard deviation) of the 8 subjects and their average for

sw-SVM(black bar), xDAWN+SVM (dark gray bar), Hoff+SVM (light gray bar) and

baseline SVM (white bar).

Mean (standard deviation) accuracies across the 8 subjects were 80.71(±6.61)%

for sw-SVM, 77.85(±5.54)% for xDAWN+SVM, 76.78(±7.23)% for Hoff+SVM and

70.71(±10.77)% for baseline SVM. Three repeated-measure t-tests have been performed

to test the null hypothesis of no difference in the performance of sw-SVM against

xDAWN+SVM, Hoff+SVM and SVM. Pairwise comparison of means reveals that sw-

SVM proves significantly and constantly superior to the other three, methods (swSVM

vs. xDAWN+SVM : t(7) = 3.5362, p-value = 0.0095; swSVM vs. Hoff+SVM :

t(7) = 2.6720, p-value = 0.0319 and swSVM vs. SVM : t(7) = 5.2389, p-value = 0.0012).

As a comparison with previous single-trial ErrP classification studies, our results

are competitive in terms of accuracy. For instance, Ferrez et al. [43] reported an average

detection rate of 76.2(±4.6)% for error and 81.8(±3.5)% for correct trials. Six subjects

participated in their study, they used 64 sensors and 1500 trials (1125 to train the

classifiers and 375 to test them) with 20% of erroneous trials, see also [44, 45]). It is

important to note that for the above mentioned studies, training data sets are much

larger than our sets. Considering previous studies on error-related potentials the level

of performance already achieved on these small data sets appears very promising.
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4.2.3. Discussion In this data set, the sw-SVM approach yields both a significant

dimensionality reduction and a considerable performance improvement. sw-SVM has

only one degree of freedom inherent to the regularization parameter of SVM whilst

xDAWN and Hoffmann filters require, along with tuning classifier parameters, an

estimation of the number of spatial components providing the highest accuracy (model

order selection). For the xDAWN algorithm, a recent study [38] proposed a strategy

to find the number of filters yielding the optimal classification performance. But sw-

SVM extracts the component that directly optimizes the classification, while xDAWN

and Hoffmann filters optimize criteria that are not explicitly related to the classification

accuracy. This may lead to a suboptimal solution from the point of view of the classifier.

Another reason advocating for sw-SVM is the fact that it is well suited for situations

wherein one has high dimensional data with a rather limited number of trials. In these

conditions, Hoffmann’s method may lead to poor performance. Indeed, since it is based

on an empirical estimation of scatter matrices, a proper regularization technique to

handle situations of high dimensionality and small data size is needed [16, 7].

4.3. Discussion

Our experimental investigations suggest that the sw-SVM localizes relevant information

from a physiological and a classification point of view and it reliably classifies ERPs. Its

particularity lies in the ability to select a relatively small proportion of sensors bearing

useful information, while optimally weighting them. For EEG data, in which large

numbers of trials are difficult to collect, and in which each trial may contain many

thousands of sample points across dozens of sensors, this is a considerable advantage.

sw-SVM is a completely data driven method not imposing any assumption regarding

EEG dynamics. It appears to be a flexible technique that can be directly used in various

BCI scenarios. This flexibility is mainly due to the criterion used to weight

sensors, which consists in maximizing the SVM margin (and thus the ability

to generalize from the examples) and the fact that one may populate the

input feature vector xp with any kind of features, such as amplitude, power,

coherence, etc.

SVM margin was recently introduced as a criterion for multi-modal data filtering

[46] and has proven good performance. Future work may look simultaneously to the

best ”spatial” configuration, as in the current paper, the best ”spectral” configuration,

as in [46] and best temporal configuration as well. Such attempt would consider all

relevant aspects of EEG dynamics to find the best margin SVM. Such extension would

also allow to exploit more than one EEG source. For instance, in ErrP data it would

be possible to separate and exploit the source of Ne and Pe components.
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5. Conclusion

In this paper, we have considered the problem of sensor weighting from a machine

learning point of view. Sensor weights are introduced in the SVM theoretical framework

and tuned as hyper-parameters of SVM. They maximize the margin between classes and

optimize classification performances. The proposed sensor weighting SVM (sw-SVM)

involves spatial filtering along with classification in one optimization step. Unlike usual

spatial filter techniques that do not directly optimize a discrimination criterion, sw-SVM

helps locating sensors which are relevant for optimal classification performance.

Experimental data on P300 and ErrP data sets illustrate the efficiency of the

proposed approach. Our algorithm performs well in experimental situations as well

in terms of spatial distribution as in terms of classification accuracy. For the P300

data set (BCI competition III) the sw-SVM proves equivalent performance with respect

to the strategy that won the competition. For the ErrP data set, sw-SVM shows

competitive performance as compared to three state-of-the art approaches (spatially

filtered data using xDAWN followed by SVM, spatially filtered data using Hoffmann’s

method followed by SVM and baseline SVM).

We believe that sw-SVM is a promising tool for data classification that could

perform well on a large variety of EEG data types, even with a small number of training

trials. Besides, sw-SVM is a completely data driven strategy.

Simulations and experiments yield encouraging results motivating further research.

sw-SVM may be further extended toward a spatial-temporal-spectral filtering SVM

that can provide a comprehensive modeling of brain post-stimulus dynamics recorded

in an EEG. It is also possible to apply sw-SVM on input data populated

with various kinds of EEG feature, such as those extracted from event-related

synchronization/desynchronization, etc. In this case, weights to be found will

be considered non-negative and as such the outputs will be a non negative

weighting of signal power (energy). All other aspects of the method would

remain unchanged.
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