
HAL Id: hal-00616857
https://hal.science/hal-00616857

Submitted on 24 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Localized Algorithms for Detection of Critical Nodes
and Links for Connectivity in Ad hoc Networks

Milenko Jorgic, Michaël Hauspie, David Simplot-Ryl, Ivan Stojmenovic

To cite this version:
Milenko Jorgic, Michaël Hauspie, David Simplot-Ryl, Ivan Stojmenovic. Localized Algorithms for
Detection of Critical Nodes and Links for Connectivity in Ad hoc Networks. Mediterranean Ad Hoc
Networking Workshop, 2004, Turkey. pp.12. �hal-00616857�

https://hal.science/hal-00616857
https://hal.archives-ouvertes.fr

Localized algorithms for detection of critical nodes and links for connectivity in
ad hoc networks

Milenko Jorgić, Ivan Stojmenović

SITE, University of Ottawa, Ottawa,
Ontario K1N 6N5, Canada

{mjorgic, ivan}@site.uottawa.ca

Michaël Hauspie, David Simplot-Ryl
IRCICA/LIFL, Univ. Lille 1, INRIA futurs, France

{Michael.Hauspie, David.Simplot}@lifl.fr

Abstract

Ad hoc network normally has critical
connectivity properties before partitioning. The
timely recognition is important in order to perform
some data or service replication. Several existing
centralized or globalized algorithms declare an
edge or a node as critical if their removal will
separate the network into several components. We
introduce several localized definitions of critical
nodes and critical links, using topological or
positional information. A node is critical if the
subgraph of k-hop neighbours of node (without the
node itself) is disconnected. We propose three
definitions of critical links, based on verifying
common k-hop neighbours, loop length, and
critical status of link endpoints, respectively. The
experiments with random unit graph model of ad
hoc networks show high correspondence of local
and global decisions. For instance, in experiments
with 500 nodes in connected random unit graphs,
over half of locally estimated critical nodes and
links were indeed globally critical even for k=1
(the accuracy increases to over 70% for k=2 and
over 80% for k=3), for average number of
neighbours ranging from 3 to 15. The errors
mostly occur when alternative routes exist but are
relatively long, and therefore may not provide
satisfactory service in applications. Therefore our
localized protocols provide faster and often more
reliable partition warnings for possible timely
replication decisions.

1. Introduction

An ad hoc network is a collection of
wireless mobile hosts forming a temporary
network without the aid of any fixed
infrastructure. They have potential application in
civilian and military environments such as
disaster relief, conference, wireless office, and
battlefield. Ad hoc sensor networks for
monitoring environment are also being deployed.

In an ad hoc network a message sent by a
node reaches all its neighbouring nodes that are
located at distances up to the transmission radius.
A widely accepted basic graph-theoretical model
for ad hoc networks is a unit graph model,
defined in the following way. Two nodes A and B
in the network are neighbours (thus joined by an
edge) if and only if the Euclidean distance
between their coordinates in the network is at
most R, where R is the transmission radius which
is equal for all nodes in the network. Due to the
limited transmission radius, the routes between
two nodes are usually created through several
hops.

A node or link is critical if its removal
will disconnect the graph into two (or more)
separate components. Suppose we have a user E
and a server L (see Figure 1.). When user E
requests a service or data from L, the request
follows the path ECBAIJL. In this example, nodes
A, B and J, and link AB, are critical, since removal
(or movement) of any of them will partition the
network. Node E may initiate some actions, such
as replicating data from L in its own memory, or

look for alternative service in different part of
network, before it is too late.

Figure 1. U h representation of multi-hop
wireless ne

DFS (depth first search algorithm) was

used to detect critical links in [DBS, T, GC]. It is a
centralized algorithm, and can be also
implemented in globalized distributed manner. A
centralized algorithm requires that a node should
be aware of global topology. In practice, this
method is inefficient and involves a quadratic (in
number of nodes) communication overhead in
order to update link information when nodes are
moving, or when nodes change their status from
active to sleeping and vice versa. In a globalized
distributed implementation, DFS can be performed
in the network without global knowledge at any
node, but with memorization at nodes. In [GC]
once critical links in an ad hoc network are
detected, two ways are proposed to delay or avoid
their failure: changing the trajectory of one or both
nodes forming the critical link and bringing
another node to reinforce the link. Increased
delivery rates were reported due to prolonged
network connectivity. However, the
communication overhead due to running DFS for
detecting critical links was not measured. In this
article, we propose to apply localized algorithms
instead of globalized ones for partition detection.
Localized algorithms are distributed in nature and
resemble greedy algorithms, where simple local
behaviour achieves a desired global objective. In a
localized algorithm for detection of critical links
each node makes a decision to determine critical
nodes or links based only on limited local
knowledge.

The purpose of this article is to show that, with
high probability, possible partition can be detected
by localized algorithms, therefore greatly reducing
communication overhead and the speed of

detecting, allowing network to replicate data or
service in time if needed. The paper is organized
as follows. We describe the existing work on
critical links and node detection in Section 2. In
Section 3 we propose and evaluate localized
algorithms for detection of critical links/nodes and
compare our localized algorithms with the known
glob algorithm. Finally, we conclude our work
in Se tion 4.

cons
for
node
grap
algo
cons
by i
edge
conn
corre
cons
not c

critic
Bruy
Goy
centr
impl
Whi
start
the r
node
node
cont
conn
we k
edge
hithe
can
critic
iden
the d
whic
Sinc
in th
takes

ways
al
c

2. Literature Review

Critical nodes and links are only
idered for a connected graph (or separately
nit grap
twork
each connected component of a graph). A
 A is critical if its removal will disconnect the
h into two components. A straightforward
rithm for detecting critical nodes may
ider, for each node A, the subgraph obtained
ts removal and removal of all its adjacent
s, and testing whether this subgraph is
ected. If it is not connected, the
sponding node A is a critical node. As a
equence, node that has only one neighbour is
ritical (e.g. node N in Fig. 1).

A faster global algorithm for detecting
al nodes was described by Duque-Anton,
aux, and Semal [DBS], Tarjan [T], and

al and Caffery [GC] who used DFS. It is a
alized algorithm which can be also
emented in globalized distributed manner.
le executing DFS on an undirected graph, we
 at an arbitrarily chosen node which becomes
oot. We keep traversing fresh edges and mark
s as “visited”; on the way we keep pushing
s into a stack data structure. This process is
inued until we reach a node which is only
ected to already visited nodes. At this point
eep backtracking up to a vertex which has
s connecting them to nodes which have
rto not been visited. With a little thought it
be seen that such a node will always be a
al node of the graph. Alongside the

tification of the critical node, it is easy to pop
ownstream nodes from the stack into a set
h corresponds to a bi-connected component.
e the above steps can be executed during DFS
e same pass, identification of critical nodes
 only linear time.

Critical links can de defined in several
. One possible definition is that a link AB is

critical if both endpoints A and B are critical
nodes. However, two critical nodes may have
alternate path between them. For example, in Fig.
4, nodes O and Q are critical, but alternate path
between them exits via node P. It is therefore
better to define critical link as the link connecting
two critical nodes so that, when this link is
eliminated from the graph, the graph becomes
disconnected.

In [GC], once critical links in an ad hoc
network are detected, two ways are proposed to
delay or avoid their failure: changing the trajectory
of one or both nodes forming the critical link and
bringing another node to reinforce the link.
Increased delivery rates were reported due to
prolonged network connectivity. However, the
communication overhead due to running DFS for
detecting critical links was not measured.
Karumanchi, Muralidharan, and Prakash [KMP],
Li, and Rus [LR], Vahadat and Becker [VB], Park
and Corson [PC] attempt to improve the
communication without avoiding or delaying
partitioning (’post-partitioning’ approaches).

Hara [H] proposed three replica allocation
methods to improve data accessibility by
replicating data items on mobile hosts. The first
method is to make a lot of replicas at each node,
while the two others begin with a step in which
each mobile host periodically broadcasts its host
identifier and information on access frequencies to
data items. After all mobile hosts complete their
broadcasts, every host knows its connected mobile
hosts. This partition detection method clearly
requires a lot of communication overhead.

Wang and Li [WL1, WL2] proposed a
mechanism to allow servers in an ad hoc network
to detect the future partitions and to replicate them
in each predicted partition. However, this solution
uses a strong centralized approach to detect
partitions (their algorithm captures the network
mobility information using pattern recognition
technique in the velocity space, so that the time
and location of network partitioning can be
predicted) and its applicability as such may be
questionable.

Hauspie, Simplot and Carle [HSC] proposed to
evaluate stability of a path from a source to
destination by a function that depends on disjoint
path between them, and the hop distance of each
of these paths. When the function reaches a
threshold, data or service replication is performed.

The protocol has a significant communication
overhead for evaluating the function.

Koskinen [K] examined critical transmission
ranges for biconnectivity and triconnectivity of ad
hoc networks. He experimentally established an
asymptotic behaviour that these types of critical
links can be determined by a function which is
square root of the ratio of area and linear function
of number of nodes (coefficients of that function
are parameters to be determined).

Hajiaghayi, Immorlica, and Mirrokni
[HIM] considered the problem of assigning
transmission power to nodes so that the sum of
powers is minimized and the network is k-
connected. They use energy cost dα for
transmission between two nodes at distance d (α
is a constant between 2 and 6) and the algorithms
are globalized. To guarantee k-connectivity,
[BHM] uses a solution where most nodes need to
have 3k or more neighbors, by enforcing minimal
angle between two selected neighbors.

Shah, Chen, and Nahrstedt [SCN] aimed
at enhancing data access in an ad hoc network by
detecting partitions in it. They propose a data
replication mechanism based on partition
detection for allowing one node to access the data
from another node even if the connection is
physically broken. Each node of a connected
group knows the behavior of other members in a
group, because each node embeds a positioning
system (GPS) by successive measures computes
its velocity, and spreads that information to the
other nodes. Due to this information, it is possible
to predict when a node will leave its group. The
‘node-to-leave’ picks another node of the group to
be a host of the data and performs a data
replication on that node. The main advantage of
this method is that each node knows exactly when
the partition occurs (regular node movement is
assumed, without sudden changes in direction).
However, this method has two main
disadvantages. First, a positioning system is
needed. Second, the network is continuously and
relatively highly loaded due to information
exchange among nodes. While general ideas in
[SCN] are good, the essential details are missing.
The definition of group of nodes is not given, and
one can even assume the whole connected
network to be a group, since it also satisfies the
vague definition given. The protocol for
predicting link breakage, based on predicting

future locations and connectivity of two nodes, is
described in detail (a similar protocol was
described earlier by Stojmenovic, Russell and
Vukojevic [SRV]) but there is no description of
any protocol to detect group partitioning; it was
left up to a node to decide without giving details
on how it is actually decided.

Li and Rus [LR] propose an approach in which
nodes actively modify their
trajectories to transmit messages. They develop
algorithm that minimize the trajectory
modifications under two assumptions: the
movements of all the nodes in the system are
known and not known, respectively.

In cooperative caching, discussed by Cao, Yin
and Das [CYD], data from server are replicated on
some nodes in ad hoc network so that access
demands by other nodes can be satisfied by
replicated files rather than original files, which
should reduce traffic in the network or even
provide service if the server becomes disconnected
in the meanwhile. The described methods include
caching data paths toward replicated copy by
current node, or making another copy of data at
the node, plus some hybrid method based on some
criteria.

3 Localized algorithms for partition

detection

Distributed and dynamic nature of the ad-
hoc networks requires the design of localized
algorithms to address scalability, robustness and
energy efficiency issues. Localized algorithms that
we have developed discover all critical nodes and
links very quickly. However, these algorithms may
detect some nodes and links as critical although
they may not be globally critical. This is
unavoidable since local knowledge only is used,
therefore with such restriction it is impossible for a
node to learn about alternate connections in
different parts of the network. On the other hand,
in applications, often long alternate paths do not
provide satisfactory service, thus localized method
may even provide more useful decision. Moreover,
the partition detection is done faster and with
much less communication overhead.

We first define what is the local
knowledge available to nodes and how nodes gain
it. We use the notion of k-hop knowledge. Two
nodes are considered to be k-hop neighbours if and

only if the shortest route between them has k or
less hops. Awareness of itself only is represented
as 0-hop knowledge. This may or may not include
geographic position of the node. Localized
algorithms that use position information can only
be applied on nodes that are equipped with GPS
or find their relative coordinates by measuring
signal strengths or time delays in mutual
communication. Nodes collect k-hop knowledge
by sending ‘hello’ messages to its neighbours
containing the graph of their (k-1)-hop
neighbours. Thus 1-hop knowledge is a list of
direct neighbours, with or without their
geographic positions. We refer to these cases as
being topological and positional information, and
corresponding knowledge as being k-hop
topological or k-hop positional information,
respectively. The 2-hop topological information is
obtained by transmitting lists of 1-hop neighbours,
and the subgraph of 2-hop neighbours therefore
includes existing links between 1-hop neighbours,
and between a 1-hop and a 2-hop neighbours, but
not possible links between 2-hop neighbours. On
the other hand, 2-hop positional information
includes such links and information, since node
learns the position of 2-hop neighbours and may,
based on distances between them and the unit
graph used, decide whether or not they are
neighbours. Generalizing this, k-hop topological
information, and corresponding subgraph of k-hop
neighbours, include all existing links between a k-
hop and a (k-1)-hop neighbours, but not
information on whether or not two strictly k-hop
neighbours (that is, two nodes which are k-hop but
are not (k-1)-hop neighbours) are connected.
Since the information about any node in the
positional case includes its position, in case of k-
hop positional information, such information is
additionally available. Therefore, localized
algorithms with position information have more
information than localized algorithms with
topological information, and are consequently
more accurate; they discover less falsely detected
critical links and nodes. Furthermore, if a
node/link is declared critical by a local algorithm
that uses position information, it is also declared
as critical by the localized algorithm that uses the
corresponding topological information. The
reason is that the graph may only have fewer
edges and thus the partition detected by positional

information cannot be ‘sealed’ by the
corresponding topological information.

We shall now describe our localized
algorithms for detecting critical nodes and links. In
each of topological and positional cases, we give
one definition of critical nodes and three
definitions of critical links. The three definitions
are based on verifying common neighbours, loop
length, and critical status of link endpoints,
respectively.

3.1 Localized algorithms for detection of
critical nodes

For each node A, consider subgraph of k-
hop neighbours of A, where A and all its incident
edges are excluded. In case of positional
information, two nodes in that graph are connected
if they are connected in the original graph. In case
of topological information, two nodes in that graph
are connected if they are connected in the original
unit graph, and at least one of them is (k-1)-hop
neighbour of A.

A node A is k-critical node if the
corresponding subgraph of k-hop neighbours of A
is disconnected. Based on information used, this is
further specified as being topologically or
positionally k-hop critical node. The
corresponding algorithms are referred to as being
k-top_critical_node and k-pos_critical_node
algorithms.

Clearly, if a node is globally critical,
localized algorithm will detect it as such. Further,
if a node is not declared as critical by k-
top_critical_node algorithm it is also not declared
as critical by k-pos_critical_node algorithm. That
is, if a node is declared as critical by k-
pos_critical_node algorithm it is also declared
critical by k-top_critical_node algorithm.

Figure 2. Node A is 1-hop critical, node G is
topologically 3-hop critical and positionally 2-
critical, node M is 1-hop critical

We will now discuss particular cases and
give some examples as illustration. For k=1, if
topological information is used, no links between
neighbours exist in the decision graph, therefore
all nodes are declared critical with 1-
top_critical_node algorithm. This is obviously not
very helpful.

Figure 2 illustrates the localized
definitions of critical nodes. 1-hop neighbours of
A can be divided into two sets {B, C} and {E,F}
(circled in Fig. 2) which are disconnected.
Therefore A is positionally (and therefore
topologically) 1-hop critical. Node A is not 2-hop
critical since its 2-hop neighbour D will connect
two sets. Node M is 1-hop critical since its 1-hop
neighbours K and N are not connected. However,
it is not 2-hop critical since its two hop
neighbours K, N, and L create a connected
subgraph (marked by a rectangle in Fig. 2), both
topologically and positionally. Node G is
topologically 3-hop critical since its 3-hop
neighbours are divided in two subgraphs with
vertices {H, Z, D} and {J, Y, X, Q, P} (the two sets
are enclosed by polygons in Fig. 2) which are
disjoint. However, when position information is
added, node G can recognize that X and D are in
fact neighbors, and that two subgraphs are in fact
connected, therefore X is not positionally 3-hop
critical.

3.2 Localized algorithm for detection of critical
links based on common k-hop neighbours

If topological information is used, the
algorithm, referred to as k-link_top_critical
algorithm, applies the following criterion. AB is a
critical link if the sets of k-hop neighbours of A
and B (assuming that the link AB does not exist)
are disjoint. For k=1, this reduced to the following
1-link_top_critical algorithm: AB is critical link if
A and B have no common neighbours (that is,
there is no node C so that both AC and BC are in
the unit graph).

If position information is used, the
corresponding k-link_pos_critical algorithm is
defined as follows. AB is a critical link if the sets
of k-hop neighbours of A and B (assuming again
that the link AB is removed first from the graph)
are disjoint, and there are no two nodes, one from
each set, which are neighbours. For k=1, the
criterion is that A and B have no common
neighbours that are within transmission range of
each other (that is, neighbours).

Figure 3. Examples of critical links HI, AB, XY
and KL

Consider the example graph in Figure 3. It

has only one globally critical link, HI. Localized
algorithms will detect some more critical links.
For example, 1-top_critical_link algorithm
declares the link AB as critical, because nodes A
and B have disjoint 1-hop neighbours (C and D).
However, 1-pos_critical_link algorithm declares
correctly that the link AB is not critical, because A
and B may together agree that C and D are in fact
neighbours, therefore there exists an alternative
path from A to B which does contain the link AB.
The link XY is declared as critical with both 2-
top_critical_link and 2-pos_critical_link

algorithms. The 2 hop neighbours of X (H, G, I,
circled in Fig. 3) and Y (D, C, B, E, enclosed in a
quadrilateral in Fig. 3), are disjoint and there are
no two nodes, one from each set, which are
neighbours, hence the link is declared as critical.
Nevertheless, the 3-top_critical_link scheme
correctly declares the link XY as not being critical
because the 3-hop neighbors of X (H, I, O, T, S,G,
F) and Y (D, C, A, B, E, F) are not disjoint. If we
examine the link KL with 3-top_critical_link
algorithm, we declare it as critical, because the 3-
hop neighbors of K (O, P, M, T, S, I, H) and L (R,
Q, N), both enclosed in quadrilaterals in Fig.3, are
disjoint. On the other hand, 3-pos_critical_link
algorithm correctly detects that the link KL is not
critical. Even though the neighbors of K and L are
disjoint, the algorithm detects that the link
between M and N (which are 3-hop neighbors of
K and L respectively) exists and declares the link
KL as not being critical.

3.3. Localized algorithms for detection of
critical links based on loop length

 In this section, we introduce critical links
definitions which are based on finding the length
of shortest loop between two link endpoints. A
link UV is k-loop_critical if the hop distance
between U and V in the given graph, with only
edge UV being eliminated, is >k. There are
several possible implementations of this
definition, since a common decision should be
made between two nodes, link endpoints. In
general, we can consider kU-hop neighborhood of
U and kV-hop neighbourhood of V, kU +kV=k. If
topological information is used, the algorithm is
defined as follows. A link UV is (kU,kV)-
loop_top_critical if the sets of kU -hop neighbors
of U and kV -hop neighbors of V are disjoint. It
follows then that a link is k-link_top_critical if
and only if it is (k,k)-loop_top_critical (or 2k-
loop_critical in a more general definition).
Because of such equivalency, and expectation that
kU = kV is reasonable to assume, we did not
implement this definition. If positional
information is used, the corresponding algorithm
applies the following test. A link UV is (kU,kV)-
loop_pos_critical if the sets of kU -hop neighbors
of U and kV -hop neighbors of V are disjoint, and
there are no two nodes, one from each of these
sets, that are neighbours. It follows then that a link

is k-link_pos_critical if and only if it is (k,k)-
loop_pos_critical (that is, 2k-loop_critical). Note
that our initial definition of a k-loop_critical link
is equivalent to the new definition of (k,0)-
loop_critical link.
 Figure 4 illustrates these definitions. For
example, after applying 1- and 2-loop_top_critical
algorithms on link AB, we declare the link as
critical because from node A we can not reach the
node B with 2 hops. However, the link will not be
detected as critical with 2-loop_pos_critical
algorithm, since 2-hop neighbour node D of A is
neighbour of node B, based on their geographical
positions. The 3-loop_top_critical algorithm
detects the link XY as critical, but the 3-
loop_position_critical correctly detects the link as
not being critical, since 3-hop neighbour F of node
Y is a neighbour of X. The link JK is the link
where 3-loop_position_critical algorithm wrongly
declares it as critical. The loop is too wide, and
more hops are needed in order to correctly declare
the link as not being critical. The 1-
loop_top_critical scheme is very week, which is
illustrated on link MN. This scheme only detects
the node O, which obviously does not form a loop
from M to N, therefore, all the link is declared
critical with 1-loop_top_critical algorithm.
However, the 1-loop_pos_algorithm correctly
declares the link MN as not being critical.

Figure 4. Loop length based critical links AB, XY,

MN and JK

Localized algorithms for detection of critical links
based on loop length, falsely declare many links as
critical.

3.4 Localized algorithms for detection of
critical links based on critical nodes

Perhaps the simplest definition of critical
nodes is by using prior recognition of critical
nodes, as follows. A link AB is declared k-
pos_link-by-node_critical (k-top_link-by-
node_critical) if both A and B are declared as k-
pos_critical nodes (k-top_critical nodes,
respectively). The advantage of this definition
over other two is that the implementation of it
does not require two nodes to exchange their
neighbourhood information beyond already
exchanged one. Instead, they need to exchange
merely their decisions about being critical nodes.

Alternatively, each node may decide which
of its links are k-hop critical by using its (k+1)-
hop information, which involved more
communication overhead for collecting than the
suggested decision exchange method. The
communication overhead involved with detection
of critical links via critical nodes is the smallest
among the mentioned definitions and
corresponding implementations. However, as
already observed, this algorithm is not as accurate
for detection of critical links as k-
top/pos_critical_link algorithm. Two critical
nodes may be connected with more than one link.
From Figure 4 we see that nodes O and Q are
critical nodes and that they have a direct link
between them, yet they also have a common
neighbour P, which creates a path OPQ.
Therefore, the link OQ is in fact not critical,
which can be easily verified with 1-
top_critical_link algorithm. These cases are
present in our simulations; hence, due to the
inaccuracy of this algorithm, we did not perform
the experiments for it.

4. Performance evaluation

 We have measured the accuracy of
proposed localized critical nodes and links
detection algorithms by comparing them with the
corresponding globalized algorithm, that is, with
the correct conclusion. We will describe here the
experimental results obtained by experimenting
with connected random unit graphs. The master
thesis of the first author (in preparation) contains
also data for random unit graphs which are
allowed to be disconnected.

We generate connected random unit
graphs with n nodes and desired density (average
number of neighbors) d using the following
method. This method is selected since we wanted
to estimate the performance also for very sparse
networks. This was a time consuming process with
alternative methods (e.g. generating each node at
random, deciding proper transmission radius,
testing connectivity at end).

An approximate radius r is obtained from the
formula d=(n-1)*r*r*π/(a*a). The first node is
randomly generated (that is, its x- and y-
coordinates are chosen at random) in a given
square with edge length a. Each of following n-1
nodes is generated repeatedly, at random, and
tested whether it is within distance r to at least one
of previously generated and accepted nodes, until
the test is satisfied. Otherwise (when it is at
distance >r to all previously accepted nodes), the
node is rejected and another node generated and
tested instead.

After selecting n nodes with this procedure, a
connected random unit graph is generated.
However, its average degree q is not necessarily
the desired one, d. We now find the exact average
degree d of generated graph, by counting edges
and compare it with desired value d. If q<d, more
edges need to be added, and graph remains
connected. We sort all n*(n-1)/2 possible edges
and desired radius R is the n*d/2-th edge in sorted
list. Unit graph is then decided using this value of
R (that is, two nodes are neighbours if and only if
the distance between them is at most R). If q=d
then the graph remains unchanged. If q>d, this
obtained random unit graph is too dense, and some
edges need to be deleted by reducing transmission
radius. We sort all n*(n-1)/2 possible edges in
increasing order and find the n*d/2-th edge in the
sorted list. We use this edge as the transmission
radius R, and define the corresponding graph,
which may not be connected. Dijkstra’s shortest
path algorithm is used to check the connectivity of
this graph. If the graph is not connected, it is
ignored, and the procedure is repeated. If it is
connected, which should happen with high
probability with this procedure, the graph is
accepted.
 Our experiments are performed with
n=100 and n=500 nodes for several densities,
ranging from 3 to 15. In each case, the main
measure considered is the detection ratio, which is

the probability that a node or link declared as
critical by considered localized algorithm is
indeed critical when verified by global algorithm.
We also measured the average number of critical
nodes and links detected in the network. We
detection ratios for n=500, which are overall
somewhat better (by as much as 10%) than for
n=100, which was counterintuitive but
encouraging for the scalability of our approach.

4.1 Localized algorithms for detection of
critical nodes

Tables 1 and 2 show the detection ratios
for critical nodes, using k-node_top_critical and
k-node_pos_critical algorithms, for k=1, 2 and 3,
obtained after 20 simulations for different values
of d for random connected unit graphs with n=500
nodes.

Detection ratios are generally over 50%,
meaning that over half of locally estimated critical
nodes were indeed globally critical even for k=1
(the accuracy increases to over 70% for k=2 and
over 80% for k=3), for average number of
neighbours ranging from 3 to 15. As expected the
k-node_pos_critical algorithm performs better
than the k-node_top_critical algorithm.

Average degree
of neighbours

(d)

Detection Ratio
2-hop algorithms

(%)

Detection Ratio
3-hop algorithms

(%)
15 50.0 71.4
11

64.2 79.5
10 73.0 90.2
9 70.4 97.7
8 73.3 88.7
7 64.8 82.5
6 67.9 83.6
5 71.5 78.6
4 73.5 91.5
3 66.7 86.5

Table 1. Detection ratios for k-node_top_critical
algorithm on connected graphs with 500 nodes

Average
degree of

neighbours
(d)

Detection Ratio
1-hop algorithm

(%)

Detection Ratio
2-hop algorithms

(%)

Detection Ratio
3-hop algorithms

(%)

15 50.0 71.4 83.3
11 64.2 82.9 94.4
10 70.8 85.2 97.9
9 55.3 74.6 96.8
8 52.1 75.9 90.9
7 64.8 82.5 90.4
6 61.5 78.9 86.2
5 49.3 76.1 85.1
4 51.3 80.4 92.5
3 56.1 69.6 86.5

Table 2. Detection ratios for k-node_pos_critical
algorithm on connected graphs with 500 nodes.

Tables 3 and 4 present the average
numbers of detected critical nodes for each
algorithm. The third column shows the average
number of critical nodes detected by global
algorithms. The fourth and fifth columns show the
number of critical nodes detected by local
algorithms for k=2 and 3.

Average

number of
neighbours

(d)

Average
number of
critical nodes

(global alg)

Average
Number of

critical nodes
(2-hop alg)

Average Number
of critical nodes

(3-hop alg)

15 3.0 6.2 4.2
11 6.8 10.6 7.8
10 9.2 12.6 10.2
9 8.8 12.5 9.1
8 11.0 15.0 12.4
7 9.4 14.5 11.4
6 11.2 16.5 13.4
5 14.3 20.0 18.2
4 17.2 23.4 18.8
3 19.2 28.8 22.2

Table 3. Average numbers of detected critical
nodes by k-node_top_critical and global
algorithms

Average
number of
neighbours

(d)

Average
number of

critical
nodes

(global alg)

Average
Number of

critical
nodes

(1-hop alg)

Average
Number of

critical
nodes

(2-hop alg)

Average
Number of

critical nodes
(3-hop alg)

15 3.0 6.0 4.2 3.6
11 6.8 10.6 8.2 7.2
10 9.2 13.0 10.8 9.4
9 8.8 15.9 11.8 9.0
8 11.0 21.1 14.5 12.1
7 9.4 14.5 11.4 10.4
6 11.2 18.2 14.2 13.0
5 14.3 29.0 18.8 16.8
4 17.2 33.5 21.4 18.6
3 19.2 34.2 27.6 22.2

Table 4. Average numbers of detected critical
nodes by k-node_pos_critical and global
algorithms

It can be observed that there are not many

critical nodes in graphs, especially for graphs with
medium density and dense graphs. Localized
algorithms do not declare too many nodes as
critical that are in fact not globally critical.

4.2 Localized algorithms for detection of
critical links

Tables 5 and 6 show the detection ratios
obtained after 20 simulations on k-
link_top_critical and k-link_pos_critical
algorithms, for connected random unit graphs
with n=500 nodes.

Number
of Nodes

(n)

Average
degree of
neighbours

(d)

Detection
Ratio
1-hop

algorithm(%)

Detection
Ratio
2-hop

algorithms (%)

Detection Ratio
3-hop

algorithms (%)

100 15 31.3 50.0 71.4
100 11 39.1 64.2 79.5
100 10 50.5 73.0 90.2
100 9 43.8 71.2 100.
100 8 41.7 78.1 90.9
100 7 44.0 67.7 84.6
100 6 49.0 72.9 85.0
100 5 45.9 72.0 80.7
100 4 47.6 76.9 93.0
100 3 48.9 67.4 86.7

Table 5. Detection ratios for k-link_top_critical
algorithm on connected graphs with 500 nodes

Table 6. Detection ratios for k-link_pos_critical
algorithm on connected graphs with 500 nodes

From these tables we conclude that the
localized algorithms give excellent results. In
particular, 3-hops localized algorithms have the
accuracy greater than 80% for any d, while 2-hop
localized algorithms have accuracy greater than
70% in most cases. Even 1-hop localized
algorithms declare correctly more than 50% of
links.

The average number of critical links
detected by local k-link_top_critical/ k-
link_pos_critical algorithms and the number of
critical links detected by global algorithm are
recorded in Tables 7 and 8, respectively.

Average

number of
neighbours

(d)

Average
Number of

links

Average
number of

critical
links

(global alg)

Average
Number of

critical
links

(1-hop alg)

Average
Number of

critical
links

(2-hop alg)

Average
Number of

critical
links

(3-hop alg)
15 5420 1.5 4.8 3.0 2.1
11 4523 3.4 8.7 5.3 3.9
10 4306 4.6 9.1 6.3 5.1
9 4039 4.2 9.6 5.9 4.2
8 3785 5.0 12.0 6.4 5.5
7 3365 4.4 10.0 6.5 5.2
6 3015 5.1 10.4 7.0 6.1
5 2785 6.7 14.6 9.3 8.3
4 2555 8.0 16.8 10.4 8.6
3 2115 9.1 18.6 13.5 10.5

Table 7. Average number of detected critical links
by k-link_top_critical and global algorithms

 Average
degree of

neighbours (d)

Detection Ratio
1-hop algorithm

(%)

Detection Ratio
2-hop algorithms

(%)

Detection Ratio
3-hop algorithms

(%)
15 50.0 71.4 83.3
11 64.2 82.9 94.4
10 70.8 85.2 97.9
9 57.5 76.4 100.
8 55.6 76.9 92.6
7 67.7 84.6 93.6
6 64.6 81.0 86.4
5 52.8 77.9 89.3
4 56.3 83.3 97.6
3 57.2 71.7 86.7

Average
number of
neighbours

(d)

Average
Number of

links

Average
number of

critical
links

(global alg)

Average
Number of

critical
links

(1-hop alg)

Average
Number of

critical
links

(2-hop alg)

Average
Number of

critical
links

(3-hop alg)
15 5420 1.5 3.0 2.1 1.8
11 4523 3.4 5.3 4.1 3.6
10 4306 4.6 6.5 5.4 4.7
9 4039 4.2 7.3 5.5 4.2
8 3785 5.0 9.0 6.5 5.4
7 3365 4.4 6.5 5.2 4.7
6 3015 5.1 7.9 6.3 5.9
5 2785 6.7 12.7 8.6 7.5
4 2555 8.0 14.2 9.6 8.2
3 2115 9.1 15.9 12.7 10.5

Table 8. Average number of detected critical links
by k-link_pos_critical and global algorithms

From the tables we conclude that local

algorithms for detection of critical nodes have
approximately the same accuracy as the local
algorithms for detection of critical links. This
behavior is well expected because if a link is
declared as critical, then the two nodes making
this link are also declared critical. So, we can
expect to have at least two times more critical
nodes than links. Some critical nodes are not a
part of a critical link. The number of these nodes
is not high. For example, no critical nodes that are
not part of a critical link was found for d between
10 and 15.

We will now give some insight in order to
explain obtained result. Figure 5 shows one of
obtained random connected unit graphs with 500
nodes, using our described procedure. The
average density is high, d=15. The main problem
that lowers the detection ratio of localized
algorithms can be associated with creation of ring
structures shown in Figure 5. Ring structures
(those producing some critical nodes or links are
marked by ‘R’ in Fig. 5) are very common in
these graphs and they are the focal problem in
detection of critical links/nodes with local
algorithms. The critical links detected by 1-
top_critical_link algorithm are drown in black in
Fig. 5. Critical nodes detected by 1-
top_critical_node algorithm are drawn in green in

Fig. 5. Rings are often too wide to be detected by
3 hops and most of the nodes/links that are part of
a specific ring are then declared as critical. These
rings can be detected if we increase the hop count,
but then the nature of local algorithms is lost.

Figure 5. Ad-hoc network for d=15

4. Conclusion

We described several localized protocols
for fast and mostly accurate detection of critical
links and nodes in ad hoc networks. Existing
algorithms for detection of critical links and nodes
have a high complexity and require knowledge of
the topology of a network. This paper showed that
the localized criteria could successfully be used in
order to detect critical links/nodes. Our
experiments show that the localized algorithms are
reasonably accurate on strongly connected graphs.
Errors recorded for localized algorithms come
from the ring structures that are created in graph
generation. These rings are too wide and more
hops are needed in order to correctly detect if a
link or node is critical.

In an upcoming companion article, we

applied, with suitable modifications and additional
criteria, the proposed localized algorithms for
detection of critical links and nodes for service
replication. In this scenario, a particular route
between a client and a server node is monitored
for the presence of critical links or nodes. If such

node or link is detected, an alternate service in the
network is searched, or service is replicated.

The proposed localized partition detection
schemes may be applied in sensor network
scenarios. Sensors that detect their criticality or
existence of critical links may report to
monitoring center, asking for deployment of
additional sensors in the area, or wakening up
some nearby sleeping sensors. We intend to
consider this application of localized partition
detection for designing sensor activity scheduling
protocols.
 We have considered unit graph model in
our experiments. However, our protocols based on
topological knowledge are graph based protocols,
and can be applied for ad hoc networks with non-
uniform transmission radii. Protocols based on
positional information require to know also
transmission radii of nodes in local
neighbourhood in addition to their positions.

We originally expected to observe much
more significant impact of density on the
detection ratios. We expected that critical
densities for connectivity will also somehow
represent significant changes in detection ratios.
However, our experimental results did not
indicate any relation. This could be due in part to
performing experiments only for connected unit
graphs. It is certainly important to further study
the relation of connectivity probability and
detection ratios.

We are currently designing localized
algorithms for deciding, at each node, whether or
not graph is k-connected. Another interesting
problems is to assign, in localized manner (as
opposed to globalized solution [HIM]),
transmission radii to each node so that the
network is k-connected with high probability.

REFERENCES

[ABS] Duque Anton, M., Bruyaux, F., Semal, P.:

Measuring the survivability of a network:
connectivity and rest-connectivity; European
Transactions on Telecommunications, 2000.

[B] S. Baase, Computer Algorithms, Introduction to
Design and Analysis, Addison Wesley, 1988,
184-191.

[BHM] M. Bahramgiri, M. Hajiaghayi, V.S. Mirokni,
Fault-tolerant and 3-dimensional distributed
topology control algorithms in ad hoc
networks, IEEE ICCCN, 2002.

[CYD] G. Cao, L. Yin and C.R. Das, Cooperative
cache-based data access in ad hoc networks,
IEEE Computer Magazine, Febr. 2004, 32-39.

[DBS] M. Duque-Anton, F. Bruyaux, P. Semal,
Measuring the survivability of a network:
connectivity and rest-connectivity, European
Transaction of Telecomunications, 11, 2, 149-
159, 2000.

[GC] D. Goyal and J. Caffery, Partitioning avoidance in
mobile ad hoc networks using network
survivability concepts, Proc. IEEE Int. Symp.
Computers and Communications ISCC,
Taormina, Italy, July 2002, 553-558.

[H] T. Hara, Replica allocation methods in ad hoc
networks with data update, Mobile Networks
and Applications 8, 2003, 343-354.

[HIM] M. T. Hajiaghayi, N. Immorlica, V.S. Mirrokni,
Power optimization in fault-tolerant topology
control algorithms for wireless multi-hop
networks, Proc. ACM MOBICOM, Sept.
2003.

[HSC] M. Hauspie, D. Simplot, and J. Carle. Partition
detection in mobile ad-hoc networks. Proc.
2nd IFIP Mediterranean Ad Hoc Networking
Workshop (MED-HOC-NET 2003), (Mahdia,
Tunisia, 2003).

[JS] L. Jia and C. Scheideler, On local algorithms for
topology control and routing in ad hoc
networks, Proceedings of the 15th Annual
ACM Symposium on Parallel Algorithms and
Architectures, pages 220-229, June 2003.

[K] H. Koskinen, Statistical model describing
connectivity in ad hoc networks, Proc.
Modeling and optimization in mobile, ad hoc,
wireless networks WiOpt, INRIA, Sophia-
Antipolis, March 2003.

[KMP] G. Karumanchi, S. Muralidharan, R. Prakash,
Information dissemination in partitionable
mobile ad hoc networks, Proc. IEEE Symp.
Reliable Distributed Systems, October 1999.

[LR] Q. Li and D. Rus, Communication in disconnected
ad hoc networks using message relays, ACM
MOBICOM 2000; J. Parallel and Distributed
Computing, 63, 2003, 75-86.

[M] U. Manber, Introduction to Algorithms, A Creative
Approach, Addison Wesley, 1989, p. 217-225.

[PC] V.D. Park and M. S. Corson. A highly adaptive
distributed routing algorithm for mobile
wireless networks. IEEE INFOCOM ’97,
Kobe, Japan, April 1997.

[SCN] S.H. Shah, K. Chen, and K. Nahrstedt. Cross-
layer design for data accessibility in mobile ad
hocnetworks. In Proc. of 5th World
multiconference on systemics, cybernetics and
informatics (SCI 2001), Orlando, Florida, July
2001; Wireless Personal Communications, vol.
21, pp. 49-76, 2002.

[SRV] I. Stojmenovic, M. Russell, and B. Vukojevic,
Depth first search and location based localized
routing and QoS routing in wireless networks,
Computer Science, SITE, University of
Ottawa, TR-00-01, January 2000; Computers
and Informatics, 21, 2, 2002, 149-165.

[T] R. Tarjan, Depth first search and linear graph
algorithms, SIAM J. Computing, 1, 2, 146-
160, 1972.

[VB] A. Vahadat, D. Becker, Epidemic routing for
partially connected ad hoc networks,
Technical Report CS-200006, Duke
University, April 2000.

[WL1] K.H. Wang, B. Li, Efficient and guaranteed
service coverage in partitionable mobile ad
hoc networks, INFOCOM, 2002.

[WL2] K.H. Wang and B. Li, Group mobility and
partition prediction in wireless ad hoc
networks, IEEE ICC, April 2002.

	Michaël Hauspie, David Simplot-Ryl
	IRCICA/LIFL, Univ. Lille 1, INRIA futurs, France
	{Michael.Hauspie, David.Simplot}@lifl.fr
	Abstract
	1. Introduction
	3 Localized algorithms for partition detection

	Detection Ratio
	Detection Ratio
	Detection Ratio
	Detection Ratio

