MOSCFRA: A Multi-objective Genetic Approach for Simultaneous Clustering and Gene Ranking

Abstract : Microarray experiments generate a large amount of data which is used to discover the genetic background of diseases and to know the gene characteristics. Clustering the tissue samples is an important tool for partitioning the dataset according to co-expression patterns. This clustering task is even more difficult when we try to find the rank of each gene (Gene Ranking) according to their abilities to distinguish different classes of samples. Finding clusters for samples and rank of each gene for a specific gene expression data in a single process is always better. In the literature many algorithms are available for finding the clusters and gene ranking or selection separately. A few algorithms for simultaneous clustering and feature selection are also available. In this article, we propose a new approach to cluster the samples and rank the genes, simultaneously. A novel encoding technique is proposed here for the problem of simultaneous clustering and ranking. Results have been demonstrated for both artificial and real-life gene expression data sets.
Type de document :
Chapitre d'ouvrage
Computational Intelligence Methods for Bioinformatics and Biostatistics, LNCS 6685, pp.174-187, 2011, Lecture Notes in Bioinformatics, <10.1007/978-3-642-21946-7_14>. <http://www.springer.com/us/book/9783642219450>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00616714
Contributeur : Nicolas Pasquier <>
Soumis le : mercredi 24 août 2011 - 09:16:35
Dernière modification le : dimanche 10 juillet 2016 - 15:58:25
Document(s) archivé(s) le : vendredi 25 novembre 2011 - 12:15:18

Fichier

Mondal_et_al._-_2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Kartick Chandra Mondal, Anirban Mukhopadhyay, Ujjwal Maulik, Sanghamitra Bandhyapadhyay, Nicolas Pasquier. MOSCFRA: A Multi-objective Genetic Approach for Simultaneous Clustering and Gene Ranking. Computational Intelligence Methods for Bioinformatics and Biostatistics, LNCS 6685, pp.174-187, 2011, Lecture Notes in Bioinformatics, <10.1007/978-3-642-21946-7_14>. <http://www.springer.com/us/book/9783642219450>. <hal-00616714>

Partager

Métriques

Consultations de
la notice

188

Téléchargements du document

87