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The dictionary approach for spherical deconvolution

Thanh Mai Pham Ngoc∗ and Vincent Rivoirard†
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Abstract

We consider the problem of estimating a density of probability from indirect data in the
spherical convolution model. We aim at building an estimate of the unknown density as
a linear combination of functions of an overcomplete dictionary. The procedure is devised
through a well-calibrated `1-penalized criterion. The spherical deconvolution setting has
been barely studied so far, and the two main approches to this problem, namely the SVD
and the hard thresholding ones considered only one basis at a time. The dictionary approach
allows to combine various bases and thus enhances estimates sparsity. We provide an oracle
inequality under global coherence assumptions. Moreover, the calibrated procedure that we
put forward gives very satisfying results in the numerical study when compared with other
procedures.

Keywords : Density deconvolution, Dictionary, Lasso estimate, Oracle inequalities, Calibra-
tion, Sparsity, Second generation wavelets.

AMS subject classification : 62G07, 62G05, 62G20.

1 Introduction
We consider the spherical deconvolution problem. We observe:

Zi = εiXi, i = 1, . . . , N (1)

where the εi are i.i.d. random variables of SO(3) the rotation group in R3 and the Xi’s are i.i.d.
random variables of S2, the unit sphere of R3. We suppose that Xi and εi are independent.
We also assume that the distributions of Zi and Xi are absolutely continuous with respect to
the uniform measure on S2 and we set fZ and f the densities of Zi and Xi respectively. The
distribution of εi is absolutely continuous with respect to the Haar measure on SO(3) and we
will denote it fε. In this paper, we consider that fε is known.
Then we have

fZ = fε ∗ f,

where ∗ denotes the convolution product which is defined below in (10).
The aim of the present paper is to recover the unknown density f from the noisy observations Zi
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thanks to a well-calibrated `1-penalised least squares criterion. Roughly speaking, each genuine
observation Xi is contaminated by a small random rotation. Although the problem of decon-
volution has been extensively addressed in the case of the real line, it has been barely the case
on the sphere. The spherical geometry has its own characteristics and includes more complex
analytical tools.

The model of spherical convolution, as expressed in (1), has applications in medical imaging
and in astrophysics. In medical imaging, people are interested in estimating a fiber orientation
density from high angular resolution diffusion MRI data (MRI stands for Magnetic Resonance
Imaging) see the work of Tournier, Calamante, Gadian and Connelly [31]. In their paper, the
spherical convolution (1) models the situation where the density of the MRI data is viewed
as a convolution of a response function and the density of interest. In astrophysics, the so-
called UHECR (Ultra High Energy Cosmic Rays) are at the core of astrophysics concerns. In
order to understand the mechanisms of the UHECR, a crucial challenge is the estimation of the
density probability of the incidence directions with which the UHECR arrive on the earth. The
convolution model takes into account a natural noise which corrupts the genuine observations
Xi.

The first authors who actually solved this problem were Healy, Hendriks and Kim in their
pioneering work, see [18]. They introduced an orthogonal series method based on the Fourier
basis of L2(S2) namely the spherical harmonics and assessed its theoretical performances by
presenting convergence rates for Sobolev type regularities. Moreover, the spherical harmonics
constitute the SVD (Singular Value Decomposition) basis in the spherical deconvolution setting
and hence allow to invert the convolution operator fε in a stable way. Subsequently, Kim and Koo
[20] proved that those rates of convergence were optimal and refined those results by enhancing
sharp minimaxity under a super-smooth condition on the error distribution, see [21]. The SVD
procedure is of course appealing for its simplicity and its ability to invert quickly the operator
fε but it has poor local performances. Indeed, the spherical harmonics which are spread all over
the sphere might be a drawback if one is interested in highlighting some local features of the
density of interest. It is the case whenever one concentrates on the infinity norm or on adapting
to inhomogeneous smoothness. To circumvent these problems, Kerkyacharian, Pham Ngoc and
Picard [19] considered a thresholding procedure on needlets. The needlets due to Narcowich,
Petrushev and Ward [27] is a tight frame constructed on the spherical harmonics. They enjoy
very good localization properties. This procedure turned out to be profitable both in theory with
consideration of Lp loss with 1 ≤ p ≤ ∞ and in practice.

Nonetheless as one may have noticed, each approach mentioned above leans on only one basis,
the spherical harmonics or the needlet one. Consequently, instead of sticking to only one basis,
it may be relevant to consider an overcomplete dictionary. Moreover, K can be larger than the
number of observations N contrary to thresholding techniques where K ≤ N .

With this aim in view, we would like to build an estimate of f as a linear combination of
functions of a dictionary (ϕ1, . . . , ϕK) with ϕk ∈ L2(S2). Denote by fλ the linear combination

fλ(x) =

K∑
k=1

λkϕk(x), x ∈ S2, λ = (λ1, . . . , λK) ∈ CK . (2)

By considering an overcomplete dictionary which cardinality K can be larger than the sample
size N , we tacitly believe that the estimates of f is sparse, namely that very few coordinates of
λ̂ is non zero. To the best of our knowledge, the dictionary approach has not been used to face
the spherical convolution model (1) or its analogous on the real line expressed as Y = X + ε .

A question immediately comes into sight. Because we precisely treat a convolution problem
which provides a relevant setup where observations may come from one source observed through
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some noise, is there some hope to keep a sparse structure of the estimates of λ? In other words,
is the dictionary approach capable to retrieve sparsity despite the action of the convolution
operator? The answer seems to be affirmative at least in the present numerical study that we
conducted with a `1-penalized criterion.

Indeed, we suggest a data-driven choice of λ̂ that will be obtained by a well-calibrated `1-
penalized criterion. The so-called popular Lasso first introduced by Tibshirani [30] has been
widely used since then in the statistical literature. In a fairly general Gaussian framework we may
cite the recent work of Massart and Meynet [25], in the linear model regression, see [11, 13, 26, 30]
and for nonparametric regression with general fixed or random design, see [2, 7, 6, 4]. The
Lasso performances were also studied in the density estimation framework by Bunea, Tsybakov
and Wegkamp [5, 8], van de Geer [32] and Bertin, Le Pennec and Rivoirard [1]. In addition,
many efforts have also been provided to prove model selection consistency of the Lasso, see
[2, 23, 26, 34, 35, 36].

`1 penalty methods have also been investigated to solve inverse problems. We may cite
among others the work of Loubes (see [22]) who tackled the classical inverse regression model
with independent errors by minimizing an empirical contrast built upon the SVD basis of the
operator with an `1 penalty term. But we stress that it was by no means a dictionary approach.
In addition, we point out that the model of interest in [22] and papers devoted to inverse problems
in general are much more linked to regression problem whereas our convolution model expressed
in (1) is to be more connected to a density estimation problem.

In this paper, we aim at showing that the dictionary approach conducted thanks to the Lasso
minimization algorithm can be used successfully to face the spherical deconvolution problem
in theory but especially in practice. Indeed, in the simulation study, we compare it with the
hard thresholding procedure on needlets of Kerkyacharian, Pham Ngoc and Picard [19], showing
that the dictionary approach does pretty well both in graphics reconstructions and in terms of
quadratic and sup-norm losses. The Lasso estimates actually enhance the sparsity of the rep-
resentation of the signal. Moreover, the choice of tuning parameters turns out to be easy to
calibrate and match what the theory states contrary to thresholding techniques where theorems
are too conservative about the allowed values of tuning parameters. This constitutes an undeni-
able advantage of the present Lasso procedure especially when simulations are time consuming
which is the case on the sphere.

Here is the outline of the present paper. In section 2 we give some basic tools of Fourier
analysis on L2(SO(3)) and L2(S2) and the construction of the Lasso estimates. In section 3 we
obtain oracle inequalities under mild assumptions on the dictionaries. In section 4 we present
our simulation results. Section 5 is devoted to the proofs of our results.

2 Lasso-type estimates of the density f

2.1 Preliminaries about harmonic analysis on S2 and SO(3)

Let us begin with some notations and some elements of harmonic analysis on S2 and SO(3) which
will be useful throughout the paper.

For two functions g and h we denote < g, h > the L2-hermitian product between g and h:

< g, h >=

∫
x∈S2

g(x)h(x)dx,

and ||.||2 is the associated norm.
|.| will denote the modulus, < and = the real and the imaginary part of a complex number
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respectively.
For any vector λ ∈ CK and any set of indices J , we denote λJ ∈ CK the vector which has the
same coordinates as λ on J and 0 elsewhere. We set for any 1 ≤ q <∞,

||λ||`q =

(
K∑
k=1

|λk|q
) 1
q

.

We shall now recall some elements of harmonic analysis on SO(3) and S2. We shall refer the
reader to Healy, Hendriks and Kim [18] and Kim and Koo [20] for more precisions. Consider the
functions, known as the rotational harmonics,

Dl
mn(φ, θ, ψ) = e−i(mφ+nψ)P lmn(cos θ), (m,n) ∈ I2

l l = 0, 1, . . . (3)

where θ ∈ [0, π), φ ∈ [0, 2π), ψ ∈ [0, 2π) and Il = [−l,−l + 1, . . . , l − 1, l]. The generalized
Legendre associated functions P lmn are fully described in Vilenkin [33]. The

√
2l + 1Dl

mn form a
complete orthonormal basis of L2(SO(3)) with respect to the Haar probability measure.
For f ∈ L2(SO(3)), we define the rotational Fourier transform on SO(3) by

(f∗l)mn =

∫
SO(3)

f(g)Dl
mn(g)dg. (4)

Then (f∗l) is a matrix of size (2l+ 1)× (2l+ 1) which entrance is given by the element (f∗l)mn
with m ∈ Il and n ∈ Il. The rotational inversion can be obtained by

f(g) =
∑
l

∑
−l≤m, n≤l

(f∗l)mnDl
mn(g)

=
∑
l

∑
−l≤m, n≤l

(f∗l)mnD
l
mn(g−1), (5)

Equation (5) is to be understood in L2-sense although with additional smoothness conditions, it
can hold pointwise.

A parallel spherical Fourier analysis is available on S2. Any point on S2 can be represented
by

ω = (cosφ sin θ, sinφ sin θ, cos θ)t,

with , φ ∈ [0, 2π), θ ∈ [0, π). We also define the functions:

Y lm(ω) = Y lm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
P lm(cos θ)eimϕ, m ∈ Il, l = 0, 1, . . . , (6)

with φ ∈ [0, 2π), θ ∈ [0, π) and P lm(cos θ) are the associated Legendre functions.
The functions Y lm obey

Y l−m(θ, φ) = (−1)
m
Y lm(θ, φ). (7)

The set {Y lm, m ∈ Il, l = 0, 1, . . .} is forming an orthonormal basis of L2(S2), generally referred
to as the spherical harmonic basis.

Again, as above for f ∈ L2(S2), we define the spherical Fourier transform on S2 by

(f∗l)m =

∫
S2
f(x)Y lm(x)dx, (8)
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where dx is the uniform probability measure on the sphere S2.
Then (f∗l) is a vector of size 2l + 1 which entrance is given by the element (f∗l)m with m ∈ Il.
The spherical inversion can be obtained by

f(x) =
∑
l

∑
m∈Il

(f∗l)mY
l
m(x). (9)

The bases detailed above are important because they realize a singular value decomposition of the
convolution operator created by our model. In effect, we define for fε ∈ L2(SO(3)), f ∈ L2(S2)
the convolution by the following formula:

fε ∗ f(x) =

∫
SO(3)

fε(u)f(u−1x)du, (10)

and we have for all m ∈ Il, l = 0, 1, . . .,

(fε ∗ f)∗lm =
∑
n∈Il

(f∗lε )mn(f∗l)n. (11)

2.2 The lasso estimator of the density f .
In the sequel, the estimate of f will be a linear combination of functions of the dictionary
Υ = (ϕk)k=1,...,K . For any λ ∈ CK we set:

fλ =

K∑
k=1

λkϕk, λ = (λk)k=1...K .

We assume that for any k, ||ϕk||2 = 1. We set for any k,

βk =

∫
S2
ϕk(x)f(x)dx.

If we denote for any function ϕk, (ϕ∗lk )m the (l,m)-Fourier coefficient of ϕk:

(ϕ∗lk )m =< ϕk, Y
l
m >=

∫
S2
ϕk(x)Y lm(x)dx,

the Parseval equality yields

βk =

∞∑
l=0

∑
m∈Il

(ϕ∗k)lm(f∗)lm.

The SVD method yields the following unbiased estimate of (f∗)lm (see Healy, Hendriks and
Kim [18], Kim and Koo [20] and Kerkyacharian, Pham Ngoc and Picard [19]).

(f̂∗l)m =
1

N

N∑
i=1

∑
n∈Il

(f∗lε )−1
mnY

l
n(Zi),

where (f∗lε )−1
mn denotes the inverse of the rotational Fourier transform of fε. Precisely, one

considers the matrix f∗lε of size (2l+1)× (2l+1) which entrance at lign m and column n is given
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by the Fourier transform (f∗lε )mn, then one inverts this matrix and take the entrance at lign m
and column n given by (f∗lε )−1

mn. Consequently,

β̂k =
1

N

N∑
i=1

∞∑
l=0

∑
m∈Il

∑
n∈Il

(ϕ∗lk )m(f∗lε )−1
mnY

l
n(Zi),

is an unbiased estimate of βk. In particular, if we set for any x ∈ S2,

φk(x) =

∞∑
l=0

∑
m∈Il

∑
n∈Il

(ϕ∗lk )m(f∗lε )−1
mnY

l
n(x),

then

β̂k =
1

N

N∑
i=1

φk(Zi).

We now introduce the Lasso estimator f̂L of the density f .

Definition 1. The lasso estimate is f̂L = max
{

(<(fλ̂L), 0
}

where λ̂L is the solution of the
following minimization problem

λ̂L = argminλ∈CK

{
C(λ) + 2

K∑
k=1

η1,k|<(λk)|+ η2,k|=(λk)|

}
, (12)

where

C(λ) = ||fλ||22 − 2<

(
K∑
k=1

λkβ̂k

)
.

and (η1,k)k∈{1,...,K} and (η2,k)k∈{1,...,K} are two sequences of positive real numbers chosen in (21)
and (22) subsequently.

The next proposition shows that λ̂L is obtained by minimizing a `1-penalized empirical con-
trast.

Proposition 1. For any λ ∈ CK ,

E[C(λ)] = ||fλ − f ||22 − ‖f‖22,

which yields
argminλ∈CKE[C(λ)] = argminλ∈CK ||fλ − f ||22.

Let G the Gram matrix associated to the dictionary Υ given for any 1 ≤ k, k′ ≤ K by

Gkk′ =

∫
S2
ϕk(x)ϕk′ (x)dx. (13)

We have for any k and k′, Gkk′ = Gk′k which entails that the matrix G is hermitian. Now, the
key point for establishing oracle properties of f̂L is the following result.

Proposition 2. A necessary condition for λ to be a solution of (12) is

|<((Gλ)k − β̂k)| ≤ η1,k and |=((Gλ)k − β̂k)| ≤ η2,k ∀k ∈ {1, . . . ,K}. (14)

In particular, for any k, ∣∣∣(Gλ)k − β̂k)
∣∣∣ ≤ |ηk|.

where
ηk = η1,k + iη2,k. (15)
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Now, we are ready to propose values for the parameters (η1,k)k and (η2,k)k. We rely on
following heuristic arguments. Let us denote ΠΥ(f) the projection of f on the linear space
spanned by the functions of the dictionary Υ. There exists λ(f) ∈ Ck such that

ΠΥ(f) =

K∑
k=1

λ(f)kϕk. (16)

Our goal is to choose η1,k and η2,k as small as possible such that λ(f) satisfies (14). If, as
expected, our wealthy dictionary Υ provides a sparse linear combination of the functions of Υ
that approximates f accurately, we can hope that the well calibrated Lasso procedure does a
good job for estimating f . Let us justify these points. On the one hand, for fixed k, we have:

(Gλ(f))k =

∫
ϕk(x)

K∑
k′=1

λ(f)k′ϕk′(x)dx =

∫
ϕk(x)ΠΥ(f)(x)dx =

∫
ϕk(x)f(x)dx = βk.

On the other hand, when N goes to infinity,∣∣∣β̂k − βk∣∣∣ = OP(1).

More precisely, we have the following result providing the values of the Lasso parameters (η1,k)k
and (η2,k)k.

Theorem 1. We set

σ̂2
1,k =

1

2N(N − 1)

∑
i6=j

(<(φk(Zi))−<(φk(Zj)))
2 (17)

and
σ̂2

2,k =
1

2N(N − 1)

∑
i6=j

(=(φk(Zi))−=(φk(Zj)))
2 (18)

the unbiased estimates of

σ2
1,k = Var(<(φk(Z1))) and σ2

2,k = Var(=(φk(Z1))).

Then we introduce

σ̃2
1,k = σ̂2

1,k + 2‖<(φk)‖∞

√
2σ̂2

1,kγ logK

N
+

8‖<(φk)‖2∞γ logK

N
, (19)

σ̃2
2,k = σ̂2

2,k + 2‖=(φk)‖∞

√
2σ̂2

2,kγ logK

N
+

8‖=(φk)‖2∞γ logK

N
(20)

η1,k =

√
2σ̃2

1,kγ logK

N
+

2‖<(φk)‖∞γ logK

3N
(21)

and

η2,k =

√
2σ̃2

2,kγ logK

N
+

2‖=(φk)‖∞γ logK

3N
. (22)
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Let us assume that K satisfies
N ≤ K ≤ exp(Nδ)

for δ < 1. Let γ > 1. Then, for any ε > 0, there exists a constant C1(ε, δ, γ) depending on ε, δ
and γ such that if Ω is the random set such that for any k ∈ {1, . . . ,K}

|<(βk − β̂k)| ≤ η1,k and |=(βk − β̂k)| ≤ η2,k,

then
P (Ωc) ≤ C1(ε, δ, γ)K1− γ

1+ε .

The probability bounds of Theorem 1 were established under the condition γ > 1. It is a
well-known fact that the conditions on tuning parameters provided by the theory proved to be
very often too conservative in practice. For instance, in thresholding techniques, one is often lead
to consider smaller tuning parameter values than what the theory allows to. Here, we set in the
sequel γ = 1.01 the smallest value authorized by the theory which conducts to a full calibrated
Lasso procedure.

3 Oracle and minimax properties satisfied by lasso-type es-
timates

3.1 Oracle inequalities under coherence assumptions for general dic-
tionaries

In the sequel, we establish oracle inequalities under classical assumptions on the dictionary. We
first introduce the minimal “restricted” eigenvalue of the Gram matrix G: for 1 ≤ l ≤ K, we
denote

ξmin(l) = min
|J|≤l

min
λ∈CK
λJ 6=0

||fλJ ||22
||λJ ||2`2

.

Since the functions of the dictionary satisfy ||ϕk||2 = 1 for any k, we have ξmin(l) ∈ [0, 1] for
any l. When the dictionary constitutes an orthonormal system, we have ξmin(l) = 1 for any
1 ≤ l ≤ K. By contrast, if two functions of the dictionary are proportional, then ξmin(l) = 0 for
any 2 ≤ l ≤ K. So, assuming that ξmin(l) is close to 1 means that every set of columns of G
with cardinality less than l behaves like an orthonormal system. We also consider the restricted
correlations: for 1 ≤ l, l′ ≤ K, we denote

θl,l′ = max
|J|≤l
|J′|≤l′
J∩J′=∅

max
λ,λ′∈CK

λJ 6=0,λ′
J′ 6=0

〈fλJ , fλ′J′ 〉
||λJ ||`2 ||λ′J′ ||`2

.

Small values of θl,l′ mean that two disjoint sets of columns of G with cardinality less than l and
l′ span nearly orthogonal spaces. We shall use the following assumption:

Assumption 1. For s an integer such that 1 ≤ s ≤ K/2 and c0 a positive real number, we have

ξmin(2s) > c0θs,2s.
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Oracle inequalities for the Dantzig selector were established under Assumption 1 with c0 = 1
in the parametric linear model by Candès and Tao in [10]. It was also considered by Bickel, Ritov
and Tsybakov [2] for non-parametric regression and for the Lasso estimate for larger values of
c0.

For any J ∈ {1, . . . ,K}, let us set JC = {1, . . . ,K}\J and define λJ the vector which has
the same coordinates as λ on J and zero coordinates on JC .

We now have:

Theorem 2. Let us assume that Assumption 1 is true for some positive integer s and with
c0 = 1. On Ω, the random set introduced in Theorem 1, we have for any α > 0, any λ that
satisfies the Lasso constraint (14)

||f̂L − f ||22 ≤ inf
λ∈CK

‖λ̂‖`1≤‖λ‖`1

inf
J⊂{1,...,K}
|J|=s

{
||fλ − f ||22 + α

(
1 +

2µs

κs

)2 ‖λJC ‖2`1
s

+ 16s

(
1

α
+

1

κ2s

)
||η||2`∞

}
(23)

with, using (15),
||η||`∞ = max

k∈{1,...,K}
|ηk|,

and κs and µs are defined as follows:

µs =
θs,2s√
ξmin(2s)

, κs =
√
ξmin(2s)− θs,2s√

ξmin(2s)
.

Let us give an interpretation of the right hand side of Inequality (23). The value of the
infimum depends on three terms. The first two terms are approximation terms that naturally
appear since our procedure is based on minimization of an `1-penalized L2-criterion and the third
one can be viewed as a variance term.

Concerning the behaviour of this variance term ||η||2`∞ our result can be closely connected
to the one recently obtained by Dalalyan and Salmon [12] (see in their technical report the
Theorem 1, the Remark 4 and the section 3 devoted to ill-posed inverse problems and group
weigthing). Indeed, their paper deals with non-parametric regression model with heteroscedastic
Gaussian noise which is known to well describe ill-posed inverse problems and they obtain the
same behaviour for their remaining term.

4 Numerical results
In this section, we present some numerical experiments which make a comparison in practice
between the Lasso procedure described in this paper and the thresholding algorithm on needlets
of Kerkyacharian, Pham Ngoc and Picard [19]. We aim at reconstructing a density defined on
S2 from noisy data. This density presents one principal mode and minor fluctuations at the
basis which means that the observations are mainly concentrated in one direction and otherwise
a little bit spread all over the sphere. In directional statistics, the unimodal density is of general
interest as a common density to model spherical data is given by the well-known von Mises-Fisher
distribution caractherized by a mean direction and a concentration parameter.

For each method, we consider a data set of 800 observations generated from our target density.
Then we contaminate each data by some noise which consists in a rotation about the 0z axis
by a random angle. For each observation, the random angle is of course different and follows a
uniform law on a certain interval U [0, α], α > 0. Of course the larger the interval of the uniform
law is, the larger the amount of noise is.
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The dictionary combines spherical harmonics and needlets which are so far the two approxi-
mations basis which have been put forward in the spherical deconvolution issue. The dictionary
is actually composed of 81 spherical harmonics and 1020 needlets, hence the cardinality of the
dictionary is K = 1101. The number of spherical harmonics used corresponds to a maximal
degree L = 8 and the needlets to a maximal resolution J = 3. Our dictionary thus mixes an
orthonormal family the spherical harmonics and a semi-orthogonal family the needlets, namely,
every two needlets which are from levels at least two levels apart are orthogonal. Hence the
needlets are close to an orthonormal basis. The ensueing overcomplete dictionary ensures a
property of mutual incoherence following the terminology of [13].

The construction of the needlets has been conducted using the spherical pixelization HEALPix
software package. HEALPix provides an approximate quadrature of the sphere with a number
of data points of order 12.22J and a number of quadrature weights of order 1

12.22J . This approx-
imation is considered as reliable enough and commonly used in astrophysics.

More precisely, let us describe the scheme for the Lasso procedure.

1. Compute the β̂k for all k = 1 . . .K

2. Compute σ̂2
1,k, σ̂

2
2,k, σ̃

2
1,k and σ̃2

2,k given by (17)-(20).

3. Compute the η1,k and η2,k defined in (21) and (22) with γ = 1.01.

4. Compute the coefficients λ̂L by the Lasso minimization described in (12).

5. Select the support ĴL of the estimate λ̂L. ĴL defines a subset of the dictionary on which
the density is regressed: (

λ̂L
′)
ĴL

= G−1

ĴL
(β̂k)ĴL ,

where GĴL is the submatrix of the Gram matrix G corresponding to the subset ĴL. The
values of λ̂L

′
outside ĴL are set to 0.

6. Compute the final estimate f̂L
′

= <(fλ̂L′ ) = <(
∑K
k=1 λ̂

L′

k ϕk).

We shall give some comments about this scheme. The Gram matrix have been pre-computed,
the scalar products between the dictionary functions being computed thanks to the spherical
quadrature formula see [27]. Step 5 is a least squares step as advocated in Candes and Tao [10]
which is intended to decrease the bias introduced by the Lasso. As already pointed out in the
comments of Theorem 1, the tuning paramater γ in the expression of η1,k and η2,k is set to 1.01.

Let us describe now briefly the needlet thresholding algorithm, all details for this procedure
can be found in Kerkyacharian, Pham Ngoc and Picard [19]. A needlet is denoted ψjη, β̂jη is the
estimate of the scalar product between f and ψjη, j is the resolution level and η is the quadrature
point around which the corresponding needlet is almost exponentially localized. Each η belongs
to a quadrature set Zj provides by HEALPix and which cardinality is equal to 12.22j . We have
set J = 3. The estimator of f is given by:

f̂T = <
( J∑
j=0

∑
η∈Zj

β̂jη1{|β̂jη| ≥ κtN |σj |}ψjη
)
,

10



with

tN =

√
logN

N
,

σ2
j = A

2j+1∑
l=2j−1

∑
n∈Il

|
∑
m∈Il

ψ∗ljη,m(f∗lε )−1
mn|2,

with A ≥ ‖fZ‖∞. The quantity σ2
j constitutes an upper bound for the variance of the estimated

coefficients β̂jη. Here, we have decided to estimate directly the variance of β̂jη and plug it in the
expression of f̂T , like in [19].

As for the tuning parameter κ, we set it to κ = 1 which gives the best results in terms of L2

loss.
Let us give some comments to highlight the choice of tuning parameters in both methods.

This latter value of κ = 1 was not easy to find and relies on the data at stake and the type
of noise, in other words it is an ad hoc choice. Moreover, κ = 1 does not correspond to what
the theory says. Theorems in Kerkyacharian Pham Ngoc and Picard [19] states that for the L2

loss for instance, κ should be taken greater than 16√
3π‖f‖∞

which is equal to 17 with our target
density, not to mention that for real data ‖f‖∞ is unknown. This ad hoc choice of κ constitutes
a real drawback especially when simulations are time consuming which is the case on the sphere.
On the other hand, for the Lasso, once one has set γ = 1.01 which is the smallest value allowed
by theoretical arguments, the Lasso offers a full-calibrated procedure and gives good results.

Now, we present the graphics reconstructions, L2 and L∞ losses. The estimated losses are
computed over 15 runs. The sup-norm loss is computed on an almost uniform grid of S2 of 192
points provided by the software HEALPix.
The analytic expression of our target density in spherical coordinates is:

f(θ, φ) = c1

[
0.2(cos(1.7× θ))2 sin(1.2× φ)

+ exp
[
− 4(((sin(θ)× cos(φ) + 0.7071)2 + (sin(θ)× sin(φ) + 0.7071)2 + cos2(θ)))) + 0.2

]]
,

with c1 a normalization constant and θ ∈ [0, π] and φ ∈ [0, 2π].

Concerning the graphics reconstructions, we present the target density, the Lasso estimate and
the needlet thresholding one for various amounts of noise.

L2loss

Estimator φ = π
8 φ = 3π

16

Thresholding estimator 0.0014 0.0015
Calibrated lasso 0.0008 0.0027

11
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Figure 1: The exact density, the Lasso, the needlet thresholding, φ ∼ U [0, π16 ].
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Figure 2: The exact density, the Lasso, the needlet thresholding, φ ∼ U [0, 3π
16 ].

L∞loss

Estimator φ = π
8 φ = 3π

16

Thresholding estimator 0.1801 0.2056
Calibrated lasso 0.1226 0.1968

Analyzing the graphic reconstructions, it appears that for the first case of noise with φ ∼ U [0, π8 ],
the Lasso selects only four coefficients whereas the needlet thresholding procedure keeps 31
coefficients. Consequently, the Lasso enhances much better the sparsity of the signal. As we
increase the noise, with φ ∼ U [0, 3π

16 ], the Lasso keeps only one coefficient, whereas the needlet
thresholding algorithm keeps 27 ones. Once again, the Lasso highlights the very sparse feature
of the signal. Of course, for both methods, the intensity of the peaks decreases as the random
rotations scatter the observations. We precise that on the graphics, the left extremity of the
estimated density is the continuation of the right one because of the spherical symmetry.

At closer inspection, both methods manage to recover the principal mode even if the small

12



fluctuations for the Lasso are slightly flattened on the top. Although the graphic reconstructions
seem a bit better for the thresholding method, both procedures are capable to localize the main
peak which constitutes the most important fact in directional problems. That said, as the Lasso
only keeps very few coefficients, it is pretty normal that the reconstructions are visually a bit
more distorted but on the other hand we stress that we gain sparsity and clearer interpretation
of our signal.

Considering the L2 loss and the sup-norm loss, the Lasso performs better in three of four
cases and always better for the sup-norm which is a nice result.

5 Appendix

5.1 Proof of Proposition 1
Straightforward computations establish Proposition 1. We have:

E[C(λ)] =

∫
S2

∣∣∣∣∣
K∑
k=1

λkϕk(x)

∣∣∣∣∣
2

dx−
K∑
k=1

λkβk −
K∑
k=1

λkβk

=

∫
S2

∣∣∣∣∣
K∑
k=1

λkϕk(x)

∣∣∣∣∣
2

dx−
K∑
k=1

λk

∫
S2
f(x)ϕk(x)dx−

K∑
k=1

λk

∫
S2
f(x)ϕk(x)dx

=

∫
S2

∣∣∣∣∣
K∑
k=1

λkϕk(x)

∣∣∣∣∣
2

dx−
K∑
k=1

λk

∫
S2
f(x)ϕk(x)dx−

K∑
k=1

λk

∫
S2
f(x)ϕk(x)dx

=

∫
S2

∣∣∣∣∣
K∑
k=1

λkϕk(x)

∣∣∣∣∣
2

dx−
∫
S2
f(x)

(
K∑
k=1

λkϕk(x) + λkϕk(x)

)
dx.

But,∥∥∥∥∥
K∑
k=1

λkϕk − f

∥∥∥∥∥
2

2

=

∫
S2

(
K∑
k=1

λkϕk(x)− f(x)

)(
K∑
k=1

λkϕk(x)− f(x)

)
dx

=

∫
S2

∣∣∣∣∣
K∑
k=1

λkϕk(x)

∣∣∣∣∣
2

+ f2(x)− f(x)

K∑
k=1

λkϕk(x)− f(x)

K∑
k=1

λkϕk(x)

 dx

= E[C(λ)] + ‖f‖22,

which proves the result.

5.2 Proof of Proposition 2
We set for any k,

λ
(1)
k = <(λk), λ

(2)
k = =(λk),

ϕ
(1)
k = <(ϕk), ϕ

(2)
k = =(ϕk)

and
β̂

(1)
k = <(β̂k), β̂

(2)
k = =(β̂k).
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We now show that for any k,
∂C(λ)

∂λ
(1)
k

= 2<((Gλ)k − β̂k), (24)

and
∂C(λ)

∂λ
(2)
k

= 2=(β̂k − (Gλ)k). (25)

We have:

‖fλ‖22 =

∫ [ K∑
k=1

λ
(1)
k ϕ

(1)
k (x)− λ(2)

k ϕ
(2)
k (x) + i(λ

(2)
k ϕ

(1)
k (x) + λ

(1)
k ϕ

(2)
k (x))

]

×

[
K∑
k=1

λ
(1)
k ϕ

(1)
k (x)− λ(2)

k ϕ
(2)
k (x)− i(λ(2)

k ϕ
(1)
k (x) + λ

(1)
k ϕ

(2)
k (x))

]
dx

Let us compute partial derivatives:

∂‖fλ‖22
λ

(1)
1

=

∫
(ϕ

(1)
1 (x) + iϕ

(2)
1 (x))fλ(x) + fλ(x)(ϕ

(1)
1 (x)− iϕ(2)

1 (x))dx

=

∫
2<

ϕ1(x)

K∑
k=1

λkϕk(x)

 dx

= 2<

(
K∑
k=1

λk

∫
ϕ1(x)ϕk(x)dx

)

= 2<

(
K∑
k=1

λkG1k

)
= 2<((Gλ)1).

Besides, we have

∂‖fλ‖22
λ

(2)
1

=

∫ (
(−ϕ(2)

1 (x) + iϕ
(1)
1 (x))fλ(x) + fλ(x)(−ϕ(2)

1 (x)− iϕ(1)
1 (x))

)
dx

=

∫ (
iϕ1(x)fλ(x) + fλ(x)(−iϕ1(x))

)
dx

= 2<
∫ iϕ1(x)

K∑
k=1

λkϕk(x)

 dx

= 2<

(
i

K∑
k=1

λk

∫
ϕ1(x)ϕk(x)dx

)
= 2<(i(Gλ)1) = −2=((Gλ)1).

Finally, if we set A = 2<(
∑K
k=1 λkβ̂k),

A = 2<

(
K∑
k=1

(λ
(1)
k + iλ

(2)
k )(β̂

(1)
k + iβ̂

(2)
k )

)

= 2

K∑
k=1

(λ
(1)
k β̂

(1)
k − λ

(2)
k β̂

(2)
k )
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hence we have
∂A

λ
(1)
1

= 2<(β̂1)
∂A

λ
(2)
1

= −2=(β̂1),

which completes the proofs of (24) and (25). KKT first-order conditions end the proof of Propo-
sition 2.

5.3 Proof of Theorem 1
We only make the proof for the real part. Identical arguments hold for the imaginary part.
First of all, let us establish that σ̂2

1,k is an unbiased estimator of the variance σ2
1,k. We have

σ̂2
1,k =

1

2N(N − 1)

∑
i6=j

(<2(φk(Zi)) + <2(φk(Zj))− 2<(φk(Zi))<(φk(Zj))).

So,

E(σ̂2
1,k) =

N(N − 1)

N(N − 1)
E(<2(φk(Z1)))− 1

N(N − 1)

∑
i 6=j

E(<(φk(Zi)))E(<(φk(Zj)))

= E(<2(φk(Z1)))− (E(<(φk(Z1))))2

= σ2
1,k.

Now, we set

Wi = <(
1

N
(φk(Zi)− βk)).

As
Wi = <

(
1

N

(
φk(Zi)−

∫
S2
φk(x)fZ(x)dx

))
then the Wi satisfy almost surely

|Wi| ≤
2‖<(φk)‖∞

N
.

Then, we apply Bernstein’s Inequality (see [24] on pages 24 and 26) with the variables Wi and
−Wi: for any u > 0,

P

|<(β̂k − βk)| ≥

√
2σ2

1,ku

N
+

2u||φk||∞
3N

 ≤ 2e−u. (26)

Now, let us decompose σ̂2
1,k in two terms:

σ̂2
1,k =

1

2N(N − 1)

∑
i6=j

(<(φk(Zi)− φk(Zj)))
2

=
1

2N

N∑
i=1

(<(φk(Zi)− βk))2 +
1

2N

N∑
j=1

(<(φk(Zj)− βk))2

− 2

N(N − 1)

N∑
i=2

i−1∑
j=1

(<(φk(Xi)− βk))(<(φk(Zj)− βk))

= sN −
2

N(N − 1)
uN
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with

sN =
1

N

N∑
i=1

(<(φk(Zi)− βk))2 and uN =

N∑
i=2

i−1∑
j=1

(<(φk(Zi)− βk))(<(φk(Zj)− βk)). (27)

Let us first focus on sN that is the main term of σ̂2
1,k by applying again Bernstein’s Inequality

with

Yi =
σ2

1,k − (<(φk(Zi)− βk))2

N

which satisfies

Yi ≤
σ2

1,k

N
.

One has that for any u > 0

P

(
σ2

1,k ≥ sN +
√

2vku+
σ2

1,ku

3N

)
≤ e−u

with
vk =

1

N
E
([
σ2

1,k − (<(φk(Zi)− βk))2
]2)

.

But we have

vk =
1

N

(
σ4

1,k + E
[
<(φk(Zi)− βk)4

]
− 2σ2

1,kE
[
<(φk(Zi)− βk)2

])
=

1

N

(
E
[
<(φk(Zi)− βk)4

]
− σ4

1,k

)
≤
σ2

1,k

N
(||<(φk)||∞ + |<(βk)|)2

≤
4σ2

1,k

N
||<(φk)||2∞.

Finally, with for any u > 0

S(u) = 2
√

2σ1,k||<(φk)||∞
√
u

N
+
σ2

1,ku

3N
,

we have
P(σ2

1,k ≥ sN + S(u)) ≤ e−u. (28)

The term uN is a degenerate U-statistics that satisfies for any u > 0

P(|uN | ≥ U(u)) ≤ 6e−u, (29)

with for any u > 0

U(u) =
4

3
Au2 +

(
4
√

2 +
2

3

)
Bu

3
2 +

(
2D +

2

3
F

)
u+ 2

√
2C
√
u,
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where A, B, C, D and F are constants not depending on u that satisfy

A ≤ 4||<(φk)||2∞,
B ≤ 2

√
N − 1||<(φk)||2∞,

C ≤
√
N(N − 1)

2
σ2

1,k,

D ≤
√
N(N − 1)

2
σ2

1,k,

and

F ≤ 2
√

2||<(φk)||2∞
√

(N − 1) log(2N)

(see [29]). Then, we have for any u > 0,

2

N(N − 1)
U(u) ≤ 32

3

||<(φk)||2∞
N(N − 1)

u2 +

(
16
√

2 +
8

3

)
||<(φk)||2∞
N
√
N − 1

u
3
2

+

(
2
√

2
σ2

1,k√
N(N − 1)

+
8
√

2

3

√
log(2N)||<(φk)||2∞
N
√
N − 1

)
u+

4σ2
1,k√

N(N − 1)

√
u.

Now, we take u that satisfies
u = o(N) (30)

and √
log(2N) ≤

√
2u. (31)

Therefore, for any ε1 > 0, we have for N large enough,

2

N(N − 1)
U(u) ≤ ε1σ

2
1,k +

(
16
√

2 + 8
) ||<(φk)||2∞
N
√
N − 1

u
3
2 +

32

3

||<(φk)||2∞
N(N − 1)

u2.

So, for N large enough,

2

N(N − 1)
U(u) ≤ ε1σ

2
1,k + C1||<(φk)||2∞

( u
N

) 3
2

, (32)

where C1 = 16
√

2 + 19. Using Inequalities (28) and (29), we obtain

P
(
σ2

1,k ≥ σ̂2
1,k + S(u) +

2

N(N − 1)
U(u)

)
= P

(
σ2

1,k ≥ sN −
2

N(N − 1)
uN + S(u) +

2

N(N − 1)
U(u)

)
≤ P

(
σ2

1,k ≥ sN + S(u)
)

+ P (uN ≥ U(u))

≤ 7e−u.

Now, using (32), for any 0 < ε2 < 1, we have for n large enough,

σ̂2
1,k + S(u) +

2

N(N − 1)
U(u) = σ̂2

1,k + 2
√

2σ0,m||<(φk)||∞
√
u

N
+
σ2

1,ku

3N
+

2

N(N − 1)
U(u)

≤ σ̂2
1,k + 2

√
2σ1,k||<(φk)||∞

√
u

N
+
σ2

1,ku

3N
+ ε1σ

2
1,k + C1||<(φk)||2∞

( u
N

) 3
2

≤ σ̂2
1,k + 2

√
2σ1,k||<(φk)||∞

√
u

N
+ ε2σ

2
1,k + C1||<(φk)||2∞

( u
N

) 3
2

.
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Therefore,

P
(

(1− ε2)σ2
1,k ≥ σ̂2

1,k + 2
√

2σ1,k||<(φk)||∞
√
u

N
+ C1||<(φk)||2∞

( u
N

) 3
2

)
≤ 7e−u. (33)

Now, let us set

a = 1− ε2, b =
√

2||<(φk)||∞
√
u

N
, c = σ̂2

1,k + C1||<(φk)||2∞
( u
N

) 3
2

and consider the polynomial
P (x) = ax2 − 2bx− c,

with roots b±
√
b2+ac
a . So, we have

P (σ1,k) ≥ 0⇐⇒ σ1,k ≥
b+
√
b2 + ac

a

⇐⇒ σ2
1,k ≥

c

a
+

2b2

a2
+

2b
√
b2 + ac

a2
.

It yields

P

(
σ2

1,k ≥
c

a
+

2b2

a2
+

2b
√
b2 + ac

a2

)
≤ 7e−u,

so,

P
(
σ2

1,k ≥
c

a
+

4b2

a2
+

2b
√
c

a
√
a

)
≤ 7e−u,

which means that for any 0 < ε3 < 1, we have for N large enough,

P

(
σ2
1,k ≥ (1 + ε3)

(
σ̂2
1,k + C1||<(φk)||2∞

( u
N

) 3
2
+ 8||<(φk)||2∞

u

N
+ 2
√
2||<(φk||)∞

√
u

N

√
σ̂2
1,k + C1||<(φk)||2∞

( u
N

) 3
2

))
≤ 7e−u.

Finally, we can claim that for any 0 < ε4 < 1, we have for N large enough,

P
(
σ2

1,k ≥ (1 + ε4)

(
σ̂2

1,k + 8||<(φk)||2∞
u

N
+ 2(||<(φk)||∞

√
2σ̂2

1,k

u

N

))
≤ 7e−u.

Now, we take u = γ logK. Under Assumptions of Theorem 1, Conditions (30) and (31) are
satisfied. The previous concentration inequality means that

P
(
σ2

1,k ≥ (1 + ε4)σ̃2
1,k

)
≤ 7K−γ .

Now, using (26), we have for N large enough,

P
(
|<(βk − β̂k)| ≥ η1,k

)
= P

|<(βk − β̂k)| ≥

√
2σ̃2

1,kγ logK

N
+

2||<(φk)||∞γ logK

3N
, σ2

1,k < (1 + ε4)σ̃2
1,k


+ P

(
|<(βk − β̂k)| ≥ η1,k, σ

2
1,k ≥ (1 + ε4)σ̃2

1,k

)
≤ P

|βk − β̂k| ≥
√

2σ2
1,kγ(1 + ε4)−1 logK

N
+

2||<(φk)||∞γ(1 + ε4)−1 logK

3N


+ P

(
σ2

1,k ≥ (1 + ε4)σ̃2
1,k

)
≤ 2K−γ(1+ε4)−1

+ 7K−γ .
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Then, the first part of Theorem 1 is proved: for any ε > 0,

P
(
|<(βk − β̂k)| ≥ η1,k

)
≤ C1(ε, δ, γ)K−

γ
1+ε ,

where C1(ε, δ, γ) is a constant that depends on ε, δ and γ.

5.4 Proof of Theorem 2
We first state the following lemma.

Lemma 1. Let J0 ⊂ {1, . . . ,K} with cardinality |J0| = s and ∆ ∈ CK . We have:

||f∆||2 ≥
√
ξmin(2s)||∆J0 ||`2 −

µs√
s
||∆Jc0

||`1 ,

with
µs =

θs,2s√
ξmin(2s)

.

Proof. We denote by J1 the subset of {1, . . . ,K} corresponding to the s largest coordinates of
∆ (in modulus) outside J0 and we set J01 = J0 ∪ J1. We denote by PJ01 the projector on the
linear space spanned by (ϕk)k∈J01 . For k > 1, we denote by Jk the indices corresponding to
the coordinates of ∆ outside J0 whose absolute values are between the ((k − 1)× s+ 1)–th and
the (k × s)–th largest ones (in absolute value). Note that this definition is consistent with the
definition of J1. Using this notation, we have

||PJ01f∆||2 ≥ ||PJ01f∆J01
||2 − ||

∑
k≥2

PJ01f∆Jk
||2

≥ ||f∆J01
||2 −

∑
k≥2

||PJ01f∆Jk
||2.

Since J01 has 2s elements, we have

||f∆J01
||2 ≥

√
ξmin(2s)||∆J01 ||`2 .

Note that PJ01f∆Jk
= fCJ01 for some vector C ∈ CK . Since,

〈PJ01f∆Jk
− f∆Jk

, PJ01f∆Jk
〉 = 0,

one obtains that

||PJ01f∆Jk
||22 = 〈f∆Jk

, fCJ01 〉

and thus

||PJ01f∆Jk
||22 ≤ θs,2s||∆Jk ||`2 ||CJ01 ||`2 ≤ θs,2s||∆Jk ||`2

||fCJ01 ||2√
ξmin(2s)

≤ θs,2s√
ξmin(2s)

||∆Jk ||`2 ||PJ01f∆Jk
||2.

This implies that

||PJ01f∆Jk
||2 ≤

θs,2s√
ξmin(2s)

||∆Jk ||`2 = µs||∆Jk ||`2 .
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Now using that ||∆Jk+1
||`2 ≤ ||∆Jk ||`1/

√
s, we obtain∑

k≥2

||PJ01f∆Jk
||2 ≤

µs√
s
||∆Jc0

||`1

and
||PJ01f∆||2 ≥

√
ξmin(2s)||∆J01 ||`2 −

µs√
s
||∆Jc0

||`1 ,

which finally leads to
||f∆||2 ≥

√
ξmin(2s)||∆J0 ||`2 −

µs√
s
||∆Jc0

||`1 .

�

Now, let λ ∈ CK and J ⊂ {1, . . . ,K} such that |J | = s. We set ∆ = λ − λ̂ where λ̂ stands
for λ̂L. The `1-norm of ∆ satisfies the inequality stated in the following lemma.

Lemma 2. Using assumptions of Theorem 2, we have:

||∆||`1 ≤
2
√
|J |
κs
||f∆||2 + 2‖λJc‖`1

(
1 +

2µs
κs

)
.

Proof. Since
||λ̂||`1 ≤ ||λ||`1 ,

we have
||∆J − λJ ||`1 + ||∆Jc − λJc ||`1 ≤ ||λJ ||`1 + ||λJc ||`1 ,

and thus
||λJ ||`1 − ||∆J ||`1 + ||∆Jc ||`1 − ||λJc ||`1 ≤ ||λJ ||`1 + ||λJc ||`1 .

So, we have
||∆Jc ||`1 − ||∆J ||`1 ≤ 2||λJc ||`1 . (34)

Using Lemma 1 with J0 = J , we obtain that

||f∆||2 ≥
√
ξmin(2s)||∆J ||`2 −

µs√
|J |

(||∆J ||`1 + 2‖λJc‖`1).

Using ||∆J ||`1 ≤
√
|J |||∆J ||`2 , we deduce that

||f∆||2 ≥
(√

ξmin(2s)− µs
)
||∆J ||`2 −

2µs√
|J |
‖λJc‖`1

≥ κs||∆J ||`2 −
2µs√
|J |
‖λJc‖`1 ,

and thus

||∆J ||`2 ≤
1

κs
||f∆||2 + 2

µs√
|J |κs

‖λJc‖`1 .

By using again (34), we deduce then

||∆||`1 ≤ 2||∆J ||`1 + 2‖λJc‖`1 .

≤ 2
√
|J |||∆J ||`2 + 2‖λJc‖`1

≤
2
√
|J |
κs
||f∆||2 + 2‖λJc‖`1

(
1 +

2µs
κs

)
,
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which ends the proof of the lemma. �

Now, let us focus on the proof of Theorem 2. We have:

||fλ − f ||22 =

∫
(fλ(x)− f(x))

(
fλ(x)− f(x)

)
dx

= ||fλ − fλ̂||
2
2 + ||f − fλ̂||

2
2 + 2<

[∫ (
fλ(x)− fλ̂(x)

) (
fλ̂(x)− f(x)

)
dx

]
= ||f∆||22 + ||f − fλ̂||

2
2 + 2<

[∫ K∑
k=1

∆kϕk(x)×

(
K∑
k′=1

λ̂k′ϕk′(x)− f(x)

)
dx

]
.

So, using Proposition 2, on Ω,

||fλ̂ − f ||
2
2 = ||fλ − f ||22 − ||f∆||22 − 2<

[
K∑
k=1

∆k

(
(Gλ̂)k − β̂k + β̂k − βk

)]

≤ ||fλ − f ||22 − ||f∆||22 + 2

K∑
k=1

|∆k| ×
(

2
√
η2

1,k + η2
2,k

)
≤ ||fλ − f ||22 − ||f∆||22 + 4||η||`∞ ||∆||`1 . (35)

Now, we use Lemma 2 to obtain

4||η||`∞ ||∆||`1 ≤
8
√
|J |
κs
||η||`∞ ||f∆||2 + 8‖λJc‖`1

(
1 +

2µs
κs

)
||η||`∞

≤ 16|J |
κ2
s

||η||2`∞ + ||f∆||22 + 8‖λJc‖`1
(

1 +
2µs
κs

)
||η||`∞ ,

so, we have for any α > 0,

4||η||`∞ ||∆||`1 − ||f∆||22 ≤ 16|J |
(

1

α
+

1

κ2
s

)
||η||2`∞ + α

‖λJc‖2`1
|J |

(
1 +

2µs
κs

)2

. (36)

Since ||f̂L − f ||2 ≤ ||fλ̂L − f ||2, (35) and (36) yield the result.
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