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Soft Session Types

Ugo Dal Lago∗ Paolo Di Giamberardino†

June 24, 2011

Abstract

We show how systems of sessions types can enforce interaction to be bounded for all typable
processes. The type system we propose is based on Lafont’s soft linear logic and is strongly
inspired by recent works about session types as intuitionistic linear logic formulas. Our main
result is the existence, for every typable process, of a polynomial bound on the length of any
reduction sequence starting from it and on the size of any of its reducts.

1 Introduction

Session types are one of the most successful paradigms around which communication can be
disciplined in a concurrent or object-based environment. They can come in many different flavors,
depending on the underlying programming language and on the degree of flexibility they allow
when defining the structure of sessions. As an example, systems of session types for multi-party
interaction have been recently introduced [5], while a form of higher-order session has been shown
to be definable [11]. Recursive types, on the other hand, have been part of the standard toolset
of session type theories since their inception [4].

The key property induced by systems of session types is the following: if two (or more) processes
can be typed with “dual” session types, then they can interact with each other without “going
wrong”, i.e. avoiding situations where one party needs some data with a certain type and the
other(s) offer something of a different, incompatible type. Sometimes, one would like to go beyond
that and design a type system which guarantees stronger properties, including quantitative ones.
An example of a property that we find particularly interesting is the following: suppose that two
processes P and Q interact by creating a session having type A through which they communicate.
Is this interaction guaranteed to be finite? How much would it last? Moreover, P and Q could
be forced to interact with other processes in order to be able to offer A. The question could
then become: can the global amount of interaction be kept under control? In other words, one
could be interested in proving the interaction induced by sessions to be bounded. This problem
has been almost neglected by the research community in the area of session types, although it is
the manifesto of the so-called implicit computational complexity (ICC), where one aims at giving
machine-free characterizations of complexity classes based on programming languages and logical
systems.

Linear logic (LL in the following) has been introduced twenty-five years ago by Jean-Yves
Girard [3]. One of its greatest merits has been to allow a finer analysis of the computational content
of both intuitionistic and classical logic. In turn, this is possible by distinguishing multiplicative
as well as additive connectives, by an involutive notion of negation, and by giving a new status
to structural rules allowing them to be applicable only to modal formulas. One of the many
consequences of this new, refined way of looking at proof theory has been the introduction of
natural characterizations of complexity classes by fragments of linear logic. This is possible because
linear logic somehow “isolates” complexity in the modal fragment of the logic (which is solely
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responsible for the hyperexponential complexity of cut elimination in, say intuitionistic logic),
which can then be restricted so as to get exactly the expressive power needed to capture small
complexity classes. One of the simplest and most elegant of such systems is Lafont’s soft linear
logic (SLL in the following), which has been shown to correspond to polynomial time in the realm
of classical [6], quantum [8] and higher-order concurrent computation [9].

Recently, Caires and Pfenning [1] have shown how a system of session types can be built around
intuitionistic linear logic, by introducing πDILL, a type system for the π-calculus where types
and rules are derived from the ones of intuitionistic linear logic. In their system, multiplicative
connectives like ⊗ and⊸ allow to model sequentiality in sessions, while the additive connectives
& and ⊕ model external and internal choice, respectively. The modal connective !, on the other
hand, allows to model a server of type !A which can offer the functionality expressed by A multiple
times.

In this paper, we study a restriction of πDILL, called πDSLL, which can be thought as being
derived from πDILL in the same way as SLL is obtained from LL. In other words, the operator !
behaves in πDSLL in the same way as in SLL. The main result we prove about πDSLL is precisely
about bounded interaction: whenever P can be typed in πDSLL and P →n Q, then both n and
|Q| (the size of the process Q, to be defined later) are polynomially related to |P |. This ensures
an abstract but quite strong form of bounded interaction. Another, perhaps more “interactive”
formulation of the same result is the following: if P and Q interact via a channel of type A, then
the “complexity” of this interaction is bounded by a polynomial on |P |+ |Q|, whose degree only
depends on A.

We see this paper as the first successful attempt to bring techniques from implicit computa-
tional complexity into the realm of session types. Although proving bounded interaction has been
technically nontrivial, due to the peculiarities of the π-calculus, we think the main contribution
of this work lies in showing that bounded termination can be enforced by a natural adaptation of
known systems of session types.

2 πDILL, an Informal Account

In this section, we will outline the main properties of πDILL, a session type system recently
introduced by Caires and Pfenning [1, 2]. For more information, please consult the two cited
papers.

In πDILL, session types are nothing more than formulas of (propositional) intuitionistic linear
logic without atoms but with (multiplicative) constants:

A ::= 1 | A⊗A | A⊸ A | A⊕A | A&A | !A.

These types are assigned to channels (names) by a formal system deriving judgments in the form

Γ;∆ ⊢ P :: x : A,

where Γ and ∆ are contexts assigning types to channels, and P is a process of the name-passing
π calculus. The judgment above can be read as follows: the process P acts on the channel x
according to the session type A whenever composed with processes behaving according to Γ and
∆ (each on a specific channel). Informally, the various constructions on session types can be
explained as follows:
• 1 is the type of an empty session channel. A process offering to communicate via a session

channel typed this way simply synchronizes with another process through it without exchanging
anything. This is meant to be an abstraction for all ground session types, e.g. natural numbers,
lists, etc. In linear logic, this is the unit for ⊗.

• A ⊗ B is the type of a session channel x through which a message carrying another channel
with type A is sent. After performing this action, the underlying process behaves according to
B on the same channel x.
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• A⊸ B is the adjoint to A ⊗ B: on a channel with this type, a process communicate by first
performing an input and receiving a channel with type A, then acting according to B, again
on x.

• A ⊕ B is the type of a channel on which a process either sends a special message inl and
performs according to A or sends a special message inr and performs according to B.

• The type A&B can be assigned to a channel x on which the underlying process offers the
possibility of choosing between proceeding according to A or to B, both on x. So, in a sense,
& models external choice.

• Finally, the type !A is attributed to a channel x only if a process can be replicated by receiving
a channel y through x, then behaving on y according to A.

The assignments in Γ and ∆ are of two different natures:
• An assignment of a type A to a channel x in ∆ signals the need by P of a process offering a

session of type A on the channel x; for this reason, Γ is called the linear context ;
• An assignment of a type A to a channel x in Γ, on the other hand, represents the need by P
of a process offering a session of type !A on the channel x; thus, ∆ is the exponential context.

Typing rules πDILL are very similar to the ones of DILL, itself one of the many possible formulations
of linear logic as a sequent calculus. In particular, there are two cut rules, each corresponding to
a different portion of the context:

Γ;∆1 ⊢ P :: x : A Γ;∆2, x : A ⊢ Q :: T

Γ;∆1,∆2 ⊢ (νx)(P ||Q) :: T

Γ; ∅ ⊢ P :: y : A Γ, x : A; ∆ ⊢ Q :: T

Γ;∆ ⊢ (νx)(!x(y).P ||Q) :: T

Please observe how cutting a process P against an assumption in the exponential context requires
to “wrap” P inside a replicated input: this allows to turn P into a server.

In order to illustrate the intuitions above, we now give an example. Suppose that a process P
models a service which acts on x as follows: it receives two natural numbers, to be interpreted as
the number and secret code of a credit card and, if they correspond to a valid account, returns an
MP3 file and a receipt code to the client. Otherwise, the session terminates. To do so, P needs to
interact with another service (e.g. a banking service) Q through another channel y. The banking
service, among others, provides a way to verify whether a given number and code correspond to
a valid credit card. In πDILL, the process P would receive the type

∅; y : (N⊸ 1⊕ 1)&A ⊢ P :: x : N⊸ N⊸ (S⊗N)⊕ 1,

where N and S are pseudo-types for natural numbers and MP3s, respectively. A is the type of all
the other functionalities Q provides. As an example, P could be the following process:

x(nm1).x(cd1).y.inl;

(νnm2)y〈nm2〉.(νcd2)y〈cd2〉.

y.case(x.inl; (νmp)x〈mp〉.(νrp)x〈rp〉, x.inr; 0)

Observe how the credit card number and secret code forwarded to Q are not the ones sent by the
client: the flow of information happening inside a process is abstracted away in πDILL. Similarly,
one can write a process Q and assign it a type as follows: ∅; ∅ ⊢ Q :: y : (N⊸ 1⊕ 1)&A. Putting
the two derivations together, we obtain ∅; ∅ ⊢ (νx)(P ||Q) :: x : N⊸ N⊸ (S⊗N)⊕ 1.

Let us now make an observation which will probably be appreciated by the reader familiar with
linear logic. The processes P and Q can be typed in πDILL without the use of any exponential
rule, nor of cut. What allows to type the parallel composition (νx)(P ||Q), on the other hand, is
precisely the cut rule. The interaction between P and Q corresponds to the elimination of that
cut. Since there isn’t any exponential around, this process must be finite, since the size of the
underlying process shrinks at every single reduction step. From a process-algebraic point of view,
on the other hand, the finiteness of the interaction is an immediate consequence of the absence of
any replication in P and Q.

The banking service Q can only serve one single session and would vanish at the end of it. To
make it into a persistent server offering the same kind of session to possibly many different clients,
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Q must be wrapped into a replication, obtaining R =!z(y).Q. In R, the channel z can be given
type !((N⊸ 1⊕ 1)&A) in the empty context. The process P should be somehow adapted to be
able to interact with R: before performing the two outputs on y, it’s necessary to “spawn” R by
performing an output on z and passing y to it. This way we obtain a process S such that

∅; z :!((N⊸ 1⊕ 1)&A) ⊢ S :: x : N⊸ N⊸ (S⊗N)⊕ 1,

and the composition (νz)(S||R) can be given the same type as (νx)(P ||Q). Of course, S could
have used the channel z more than once, initiating different sessions. This is meant to model
a situation in which the same client interacts with the same server by creating more than one
session with the same type, itself done by performing more than one output on the same channel.
Of course, servers can themselves depend on other servers. And these dependencies are naturally
modeled by the exponential modality of linear logic.

3 On Bounded Interaction

In πDILL, the possibility of modeling persistent servers which in turn depend on other servers makes
it possible to type processes which exhibit a very complex and combinatorially heavy interactive
behavior.

Consider the following processes, the first one parameterized on any i ∈ N:

dupser i
.
= !xi(y).(νz)xi+1〈z〉.(νw)xi+1〈w〉.;

dupclient
.
= (νy)x0〈y〉.

In πDILL, these processes can be typed as follows:

∅;xi+1 :!1 ⊢dupser i :: xi :!1;

∅;x0 :!1 ⊢dupclient :: z : 1.

Then, for every n ∈ N one can type the parallel composition

mulsern
.
= (νx1 . . . xn)(dupsern|| . . . ||dupser0)

as follows
∅;xn :!1 ⊢ mulsern :: x0 :!1.

Informally, mulsern is a persistent server which offers a session type 1 on a channel x0, provided
a server with the same functionality is available on xn. The process mulsern is the parallel
composition of n servers in the form dupser i, each spawning two different sessions provided by
dupser i+1 on the same channel xi+1.

The process mulsern cannot be further reduced. But notice that, once mulsern and dupclient
are composed, the following exponential blowup happens:

(νx0)(mulsern||dupclient) ≡ (νx0 . . . xn)(dupsern|| . . . ||dupser0||dupclient)

→ (νx0 . . . xn)(dupsern|| . . . ||dupser1||P1)

→2 (νx1 . . . xn)(dupsern|| . . . ||dupser2||P2||P2)

→4 (νx2 . . . xn)(dupsern|| . . . ||dupser3||P3|| . . . ||P3
︸ ︷︷ ︸
4 times

)

→∗ (νxn)(dupsern||Pn|| . . . ||Pn
︸ ︷︷ ︸
2n times

)

→2n 0

where, for every i ∈ N, the process Pi is simply (νy)xi〈y〉.(νz)xi〈z〉. Notice that both the number
or reduction steps and the size of intermediate processes are exponential in n, while the size of the
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initial process is linear in n. This is a perfectly legal process in πDILL. Moreover the type !1 of the
channel x0 through which dupclient and mulsern communicate do not contain any information
about the “complexity” of the interaction: it is the same for every n.

The deep reasons why this phenomenon can happen are in the very general (and “generous”)
rules governing the behavior of the exponential modality ! in linear logic. It is this generality that
allows the embedding of propositional intuitionistic logic into linear logic. Since the complexity of
normalization for the former [12, 10] is nonelementary, the exponential blowup described above is
not a surprise.

It would be desirable, on the other hand, to be sure that the interaction caused by any process
P is bounded: whenever P →n Q, then there’s a reasonably low upper bound to both n and |Q|.
This is precisely what we achieve by restricting πDILL into πDSLL.

4 πDSLL: Syntax and Main Properties

In this section, the syntax of πDSLL will be introduced. Moreover, some basic operational properties
will be given.

4.1 The Process Algbera

πDSLL is a type system for a fairly standard π-calculus, exactly the one on top of which πDILL is
defined:

Definition 1 (Processes) Given an infinite set of names or channels x, y, z, . . ., the set of pro-
cesses is defined as follows:

P ::= 0 | P ||Q | (νx)P | x(y).P | x〈y〉.P |!x(y).P | x.inl;P | x.inr;P | x.case(P,Q)

The only non-standard constructs are the last three, which allow to define a choice mechanism:
the process x.case(P,Q) can evolve as P or as Q after having received a signal in the form inl

o inr through x. Processes sending such a signal through the channel x, then continuing like P
are, respectively, x.inl;P and x.inr;P . The set of names occurring free in the process P (hereby
denoted fn(P )) is defined as usual. The same holds for the capture avoiding substitution of a
name x for y in a process P (denoted P{x/y}), and for α-equivalence between processes (denoted
≡α).

Structural congruence is an equivalence relation identifying those processes which are syntac-
tically different but can be considered equal for very simple structural reasons:

Definition 2 (Structural Congruence) The relation ≡, called structural congruence, is the
least congruence on processes satisfying the following seven axioms:

P ≡ Q whenever P ≡α Q (νx)0 ≡ 0

P ||0 ≡ P (νx)(νy)P ≡ (νy)(νx)P

P ||Q ≡ Q||P ((νx)P )||Q ≡ (νx)(P ||Q) whenever x /∈ fn(Q)

P ||(Q||R) ≡ (P ||Q)||R

Formal systems for reduction and labelled semantics can be defined in a standard way. We refer
the reader to [1] for more details.

A quantitative attribute of processes which is delicate to model in process algebras is their
size: how can we measure the size of a process? In particular, it is not straightforward to define
a measure which both reflects the “number of symbols” in the process and is invariant under
structural congruence (this way facilitating all proofs). A good compromise is the following:
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Definition 3 (Process Size) The size |P | of a process P is defined by induction on the structure
of P as follows:

|0| = 0; |x(y).P | = |P |+ 1; |x.inl;P | = |P |+ 1;

|P ||Q| = |P |+ |Q|; |x〈y〉.P | = |P |+ 1; |x.inr;P | = |P |+ 1;

|(νx)P | = |P |; |!x(y).P | = |P |+ 1; |x.case(P,Q)| = |P |+ |Q|+ 1.

According to the definition above, the empty process 0 has null size, while restriction does not
increase the size of the underlying process. This allows for a definition of size which remains
invariant under structural congruence. The price to pay is the following: the “number of symbols”
of a process P can be arbitrarily bigger than |P | (e.g. for every n ∈ N, |(νx)nP | = |P |). However,
we have the following:

Lemma 1 For every P,Q, |P | = |Q| whenever P ≡ Q. Moreover, there is a polynomial p such
that for every P , there is Q with P ≡ Q and the number of symbols in Q is at most p(|Q|).

4.2 The Type System

The language of types of πDSLL is exactly the same as the one of πDILL, and the interpretation of
type constructs does not change (see Section 2 for some informal details). Typing judgments and
typing rules, however, are significantly different, in particular, in the treatment of the exponential
connective !.

Typing judgments become syntactical expressions in the form

Γ;∆;Θ ⊢ P :: x : A.

First of all, observe how the context is divided into three chunks now: Γ and ∆ have to be
interpreted as exponential contexts, while Θ is the usual linear context from πDILL. The necessity
of having two exponential contexts depends on the finer, less canonical exponential discipline of
SLL compared to the one of LL. We use the following terminology: Γ is said to be the auxiliary
context, while ∆ is the multiplexor context.

Typing rules are in Figure 1. The rules governing the typing constant 1, the multiplicatives
(⊗ and ⊸) and the additives (⊕ and &) are exact analogues of the ones from πDILL. The only
differences come from the presence of two exponential contexts: in binary rules (⊗R, ⊸ L, &R

and ⊕L) the auxiliary context is treated multiplicatively, while the multiplexor context is treated
additively, as in πDILL1. Now, consider the rules governing the exponential connective !, which
are ♭!, ♭#, !L!, !L# and !R:
• The rules ♭! and ♭# both allow to spawn a server. This corresponds to turning an assumption
x : A in the linear context into one y : A in one of the exponential contexts;

• The rules !L! and !L# lift an assumption in the exponential contexts to the linear context; this
requires changing its type from A to !A;

• The rule !R allows to turn an ordinary process into a server, by packaging it into a replicated
input and modifying its type.

Finally there are three cut rules in the system, namely cut, cut! and cut#:
• cut is the usual linear cut rule, i.e. the natural generalization of the one from πDILL.
• cut! and cut# allow to eliminate an assumption in the exponential contexts. In both cases, the

process which allows to do that must be typable with empty linear and multiplexor contexts.
We state the following two lemmas, concerning structural properties of the type system, which

we need for technical reasons.

1The reader familiar with linear logic and proof nets will recognize in the different treatment of the auxiliary and

multiplexor contexts, one of the basic principle of SLL: contraction is forbidden on the auxiliary doors of exponential

boxes. The channel names contained in the auxiliary context correspond to the auxiliary doors of exponential boxes,

so we treat them multiplicatively. The contraction effect induced by the additive treatment of the channel names

in the multiplexor context corresponds to the multiplexing rule of SLL.
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Γ;∆;Θ ⊢ P :: T

Γ;∆;Θ, x : 1 ⊢ P :: T
1L

Γ;∆; ∅ ⊢ 0 :: x : 1
1R

Γ;∆;Θ, y : A, x : B ⊢ P :: T

Γ;∆;Θ, x : A⊗B ⊢ x(y).P :: T
⊗L

Γ1; ∆;Θ1 ⊢ P :: y : A Γ2; ∆;Θ2 ⊢ Q :: x : B

Γ1,Γ2; ∆;Θ1,Θ2 ⊢ (νy)x〈y〉.(P ||Q) :: x : A⊗B
⊗R

Γ1; ∆;Θ1, y : A ⊢ P :: T Γ1; ∆;Θ2, x : B ⊢ Q :: T

Γ1,Γ2; ∆;Θ1,Θ2, x : A⊸ B ⊢ (νy)x〈y〉.(P ||Q) :: T
⊸ L

Γ;∆;Θ, y : A ⊢ P :: x : B

Γ;∆;Θ ⊢ x(y).P :: x : A⊸ B
⊸ R

Γ;∆;Θ, x : A ⊢ P :: T Γ;∆;Θ, x : B ⊢ P :: T

Γ;∆;x : A⊕B,Θ ⊢ y.case(P,Q) :: T
⊕L

Γ;∆;Θ ⊢ P :: x : A

Γ;∆;Θ ⊢ x.inl;P :: x : A⊕B
⊕R1

Γ;∆;Θ ⊢ P :: x : B

Γ;∆;Θ ⊢ x.inr;P :: x : A⊕B
⊕R2

Γ;∆;Θ, x : A ⊢ P :: T

Γ;∆;Θ, x : A&B ⊢ x.inl;P :: T
&L1

Γ;∆;Θ, x : B ⊢ P :: T

Γ;∆;Θ, x : A&B ⊢ x.inr;P :: T
&L2

Γ;∆;Θ ⊢ P :: x : A Γ;∆;Θ ⊢ P :: x : B

Γ;∆;Θ ⊢ y.case(P,Q) :: x : A&B
&R

Γ;∆;Θ, y : A ⊢ P :: T

Γ;∆, x : A; Θ ⊢ (νy)x〈y〉.P :: T
♭#

Γ;∆;Θ, y : A ⊢ P :: T

Γ, x : A; ∆;Θ ⊢ (νy)x〈y〉.P :: T
♭!

Γ;∆, x : A; Θ ⊢ P :: T

Γ;∆;Θ, x :!A ⊢ P :: T
!L#

Γ, x : A; ∆;Θ ⊢ P :: T

Γ;∆;Θ, x :!A ⊢ P :: T
!L!

Γ; ∅; ∅ ⊢ ∅ :: Qy : A

∅; ∆; !Γ ⊢!x(y).Q :: x :!A
!R

Γ1; ∆;Θ1 ⊢ P :: x : A Γ2; ∆;Θ2, x : A ⊢ Q :: T

Γ1,Γ2; ∆;Θ1,Θ2 ⊢ (νx)(P ||Q) :: T
cut

∆; ∅; ∅ ⊢ ∅ :: Py : A Γ;∆, x : A; Θ ⊢ Q :: T

Γ;∆;Θ ⊢ (νx)(!x(y).P ||Q) :: T
cut#

Γ1; ∅; ∅ ⊢ ∅ :: Py : A Γ2, x : A; ∆;Θ ⊢ Q :: T

Γ1,Γ2; ∆;Θ ⊢ (νx)(!x(y).P ||Q) :: T
cut!

Figure 1: Typing rules for πDSLL.
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Lemma 2 (Weakening lemma) For any proof π of Γ;∆;Θ ⊢ D :: T , there exists a proof π′ of
Γ′; ∆′; Θ ⊢ D :: T , where Γ ⊆ Γ′,∆ ⊆ ∆′.

Proof. By a simple induction on the height of π. ✷

Lemma 3 (Lifting lemma) If Γ;∆;Θ ⊢ D, then there exists an E such that ∅; Γ,∆;Θ ⊢ E,

where Ê = D̂. We denote E by D⇓

Proof. By a simple induction on the height of the proof. ✷

4.3 Back to Our Example

Let us now reconsider the example processes introduced in Section 3. The basic building block
over which everything is built was the process dupser i. It is still a typable process in πDSLL but,
as can be easily checked, it cannot receive the same types it has in πDILL. Indeed, it can be typed
as follows:

∅; ∅;xi+1 :!i+11 ⊢ dupser i :: xi :!
i1;

The parallel composition mulsern
.
= (νx1 . . . xn)(dupsern|| . . . ||dupser0) can still be typed, but it

receives a different type itself:

∅; ∅;xn :!n1 ⊢ mulsern :: x0 : 1

As a consequence, the exponential behavior caused by allowing mulsern to interact with a client
can still take place. However, and this is what makes πDSLL different from πDILL, the type !n1
assigned to xn in the typing judgment for mulsern somehow reflects the exponent of a polynomial
governing the interaction complexity of mulsern. Please notice how in πDILL, every process in the
form mulsern received exactly the same type.

4.4 Subject Reduction

A basic property most type systems for functional languages satisfy is subject reduction: typing
is preserved along reduction. For processes, this is often true for internal reduction: if P → Q
and ⊢ P : A, then ⊢ Q : A. In this section, a subject reduction result for πDSLL will be given and
some ideas on the underlying proof will be described. Some concepts outlined here will become
necessary ingredients in the proof of bounded interaction, to be done in Section 5 below. In doing
this, we will closely follow the path traced by Caires and Pfenning and proceed quite quickly,
concentrating our attention on the differences with their proof.

When proving subject reduction, one constantly work with type derivations. This is partic-
ularly true here, where (internal) reduction corresponds to the cut-elimination process. A linear
notation for proofs in the form of proof terms can be easily defined, allowing for more compact
descriptions. As an example, a proof in the form

π : Γ1; ∆;Θ1 ⊢ P :: x : A ρ : Γ2; ∆;Θ2, x : A ⊢ Q :: T

Γ1,Γ2; ∆;Θ1,Θ2 ⊢ (νx)(P ||Q) :: T
cut

corresponds to the proof term cut(D, x.E), where D is the proof term for π and E is the proof term

for ρ. If D is a proof term corresponding to a type derivation for the process P , we write D̂ = P .
From now on, proof terms will often take the place of processes: Γ;∆;Θ ⊢ D :: T stands for the
existence of a type derivation D with conclusion Γ;∆;Θ ⊢ D̂ :: T . A proof term D is said to be
normal if it does not contain any instances of cut rules.

In Fig 2 we show in detail how processes are associated with proof terms.
Subject reduction will be proved by showing that if P is typable by a type derivation D and

P → Q, then a type derivation E for Q exists. Actually, E can be obtained by manipulating
D using techniques derived from cut-elimination. Noticeably, not every cut-elimination rule is

8



1L(x,D)  D̂
z

1R  0

⊗L(x, y.z.E)  x(y).Êz

⊗R(D,E)  (νy)x〈y〉.(D̂y||Êx)

⊸ L(x,D, y.E) (νy)x〈y〉.(D̂y||Êz)

⊸ R(x.D)  x(y).Êx

cut(D, x.E)  (νx)(D̂x||Êz)

cut!(D, x.E)  (νx)(!x(y).D̂y||Êz)

cut#(D, x.E)  (νx)(!x(y).D̂y||Êz)

♭!(x, y.E)  (νy)x〈y〉.Êz

♭#(x, y.E)  (νy)x〈y〉.Êz

!R(D, x1, . . . , xn)  !x(y).D̂y

!L!(x.D)  D̂
z

!L#(x.D)  D̂
z

⊕L(x, y.D, z.E)  y.case(D̂x, Êz)

⊕R1(D)  x.inl; D̂x

⊕R2(D)  y.inr; D̂y

&L1(x, y.E)  x.inl; D̂z

&L2(x, y.D)  y.inr; D̂z

&R(D,E)  z.case(D̂z, Êz)

Figure 2: Extraction of processes from proof terms.

necessary to prove subject reduction. In other words, we are in presence of a weak correspondence
between proof terms and processes, and remain far from a genuine Curry-Howard correspondence.

Those manipulations of proof-terms which are necessary to prove subject reduction can be
classified as follows:
• First of all, a binary relation =⇒ on proof terms called computational reduction can be defined.
At the logical level, this corresponds to proper cut-elimination steps, i.e. those cut-elimination
steps in which two rules introducing the same connective interact. At the process level, com-
putational reduction correspond to internal reduction. =⇒ is not symmetric. Computational
reduction rules are given in Figure 3.

• A binary relation 7−→ on proof terms called shift reduction, distinct from =⇒ must be intro-
duced. At the process level, it corresponds to structural congruence. As =⇒, 7−→ is not a
symmetric relation. Shift reduction rules are given in Figure 4.

• Finally, an equivalence relation ≡ on proof terms called proof equivalence is necessary. At
the logical level, this corresponds to the so-called commuting conversions, while at the process
level, the induced processes are either structurally congruent or strongly bisimilar.Equivalence
rules are given in Figure 5.
The reflexive and transitive closure of 7−→ ∪ ≡ is denoted with →֒, i.e. →֒= ( 7−→ ∪ ≡)∗.

To help the reader understand the rules defining =⇒, 7−→ and ≡, let us give some relevant
examples:
• Let us consider the proof term D = cut((⊗R(D1,D2)), x.⊗ L(x, y.x.D3)) which corresponds to
the⊗-case of cut elimination. By a computational reduction rule, D =⇒ E = cut(D1, y.cut(D2, x.D3)).

From the process side, D̂ = (νx)(((νy)x〈y〉.(D̂1||D̂2))||x(y).D̂3) and Ê = (νx)(νy)((D̂1||D̂2)||D̂3),

where Ê is the process obtained from D̂ by internal passing the channel y through the channel
x.

• Let D = cut(!R(D1, x1, . . . , xn), x.!L!(x.D2)) be the proof obtained by composing a proof D1

(whose last rule is !R) with a proof D2 (whose last rule is !L!) through a cut rule. A shift
reduction rule tells us that D 7−→ E = !L!(x1.!L!(x2. . . . !L!(xn.cut!(D1, y.D2)) . . .)), which corre-
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(cut/⊗ R/⊗ L) : cut((⊗R(D,E)), x.⊗ L(x, y.x.F)) =⇒ cut(D, y.cut(E, x.F))
(cut/⊸ L/⊸ R) : cut(⊸ R(y.D), x.⊸ L(x,E, x.F)) =⇒ cut(cut(E, y.D), x.F)
(cut/&R/&L1) : cut(&R(D,E), x.&L1(x, y.F)) =⇒ cut(D, x.F)
(cut/&R/&L2) : cut(&R(D,E), x.&L2(x, y.F)) =⇒ cut(E, x.F)
(cut/⊕ R1/⊕ L) : cut(⊕R1(D), x.⊕ L(x, y.E, z.F)) =⇒ cut(D, x.E)
(cut/⊕ R2/⊕ L) : cut(⊕R2(D), x.⊕ L(x, y.E, z.F)) =⇒ cut(D, x.F)

(cut!/− /♭!) : cut!(D, x.♭!(x, y.E)) =⇒ cut(D⇓, y.cut#(D, x.E⇓)) where x /∈ FV (Ê)
(cut#/− /♭#) : cut#(D, x.♭#(x, y.E)) =⇒ cut(D⇓, y.cut#(D, x.E))

Figure 3: Computational reduction rules

(cut/!R/!L!) : cut(!R(D, x1, . . . , xn), x.!L!(x.E)) 7−→ !L!(x1.!L!(x2. . . . !L!(xn.cut#(D, y.E)) . . .))
(cut/!R/!L#) : cut(!R(D, x1, . . . , xn), x.!L#(x.E)) 7−→ !L!(x1.!L!(x2. . . . !L!(xn.cut#(D, y.E)) . . .))

Figure 4: Shift reduction rules

sponds to the “soft promotion/dereliction” reduction step of SLL. The shift reduction does not

have a corresponding reduction step at process level, since D̂ ≡ Ê; nevertheless, it is defined as
an asymmetric relation, for technical reasons connected to the proof of bounded interaction.

• Let D = cut#(D1, x.cut(D2, y.D3)). A defining rule for proof equivalence ≡, states that in
D the cut# rule can be permuted over the cut rule, by duplicating D1; namely D ≡ E =
cut(cut#(D1, x.D2), y.cut#(D1, x.D3)). This is possible because the channel x belongs to the
multiplexor contexts of both D2,D3, such contexts being treated additively. At the process

level, D̂ = (νx)((!x(y).D̂1)||(νy)(D̂2||D̂3)) , while Ê = (νy)(((νx)(!x(y).D̂1)||D̂2))||((νx)(!x(y).D̂1)||D̂3))),

D̂ and Ê being strongly bisimilar.
The following propositions state the correspondences between the proof terms manipulation

rules described above and relations over processes: we omit the proofs, leaving to the reader the
verification of each case.

Proposition 1 Let Γ;∆;Θ ⊢ D :: T and Γ′; ∆′; Θ′ ⊢ E :: T ′. If D =⇒ E, then D̂ → Ê.

Proposition 2 Let Γ;∆;Θ ⊢ D :: T and Γ′; ∆′; Θ′ ⊢ E :: T ′. If D 7−→ E, then D̂ is equivalent to
Ê modulo structural congruence.

Proposition 3 Let Γ;∆;Θ ⊢ D :: T and Γ′; ∆′; Θ′ ⊢ E :: T ′. If D ≡ E, then D̂ is equivalent to Ê

modulo structural congruence or strong bisimilarity.

Subject reduction takes the following form:

Theorem 1 Let Γ;∆;Θ ⊢ D :: T . Suppose that D̂ = P → Q. Then there is E such that Ê = Q,
D →֒=⇒→֒ E and Φ;Ψ;Θ ⊢ E :: T , where Γ,∆ = Φ,Ψ.

In order to prove Theorem 1 we need the followings auxiliary results:

Lemma 4 Let Γ;∆;Θ ⊢ D P :: x : T .

1. If P
α
−→ Q and T = 1 then s(α) 6= x.

2. If P
α
−→ Q and y : 1 ∈ Θ then s(α) 6= y.

3. If P
α
−→ Q and s(α) = x and T = A⊗B then α = (νy)x〈y〉.

4. If P
α
−→ Q and s(α) = y and y : A⊗B ∈ Θ then α = y(z).
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• Structural conversions

(cut/− /cut1) : cut(D, x.cut(Ex, y.Fy)) ≡ cut(cut(D, x.Ex), y.Fy)
(cut/− /cut2) : cut(D, x.cut(E, y.Fxy)) ≡ cut(E, x.cut(D, y.Fxy))
(cut/− /cut!) : cut(D, x.cut!(E, y.Fxy)) ≡ cut!(E, y.cut(D, x.Fxy))
(cut/cut!/−) : cut(cut!(D, y.Ey), x.Fx) ≡ cut!(D, y.cut(Ey, x.Fx))
(cut/− /cut#) : cut(D, x.cut#(E, y.Fxy)) ≡ cut#(E, y.cut(D, x.Fxy))
(cut/cut#/−) : cut(cut#(D, y.Ey), x.Fx) ≡ cut#(D, y.cut(Ey, x.Fx))
(cut/1R/1L) : cut(1R, x.1L(x,D)) ≡ D

• Strong bisimilarities

(cut#/− /cut) : cut#(D, x.cut(Ex, y.Fxy)) ≡ cut(cut#(D, x.Ex), y.cut#(D, x.Fxy))
(cut#/− /cut#) : cut#(D, x.cut#(Ex, y.Fxy)) ≡ cut#(D, x.cut#(Ex, y.cut#(D, x.Fxy)))
(cut#/− /cut!) : cut#(D, x.cut!(Ex, y.Fxy)) ≡ cut!(Ex, y.cut#(D, x.Fxy))
(cut!/− /cut1) : cut!(D, x.cut(Ex, y.Fy)) ≡ cut(cut!(D, x.Ex), y.Fy)
(cut!/− /cut2) : cut!(D, x.cut(E, y.Fxy)) ≡ cut(E, y.cut!(D, x.Fxy))
(cut!/− /cut!)1 : cut!(D, x.cut!(Ex, y.Fy)) ≡ cut!(cut!(D, x.Ex), y.Fy)
(cut!/− /cut!)2 : cut!(D, x.cut!(E, y.Fxy)) ≡ cut!(E, x.cut!(D, y.Fxy))
(cut!/− /cut#) : cut!(D, x.cut#(Ex, y.Fxy)) ≡ cut#(Ex, y.cut!(D, x.Fxy))

(cut#/− /cut#)0 : cut#(D, x.cut#(Ex, y.Fxy)) ≡ cut#(Ex, y.cut#(D, x.Fxy)) if y /∈ FV (F̂)

(cut#/− /−0) : cut#(D, x.E) ≡ E for x /∈ FN(Ê)

• Commuting conversions

(cut/− /1L) : cut(D, x.1L(y,Ex)) ≡ 1L(y, cut(D, x.Ex))
(cut/− /!L!) : cut(D, x.!L!(y.Exz)) ≡ !L!(y.cut(D, x.Exz))
(cut/− /!L#) : cut(D, x.!L#(y.Exz)) ≡ !L#(y.cut(D, x.Exz))
(cut/1L/−) : cut(1L(y,D), x.Ex) ≡ 1L(y, cut(D, x.Ex))
(cut/!L!/−) : cut(!L!(y.Dz), x.Ex) ≡ !L!(y.cut(Dz, x.Exz))
(cut/!L#/−) : cut(!L#(y.Dz), x.Ex) ≡ !L#(y.cut(Dz, x.Exz))
(cut!/− /1L) : cut!(D, x.1L(y,Ex)) ≡ 1L(y, cut!(D, x.Ex))
(cut!/− /!L!) : cut!(D, x.!L!(y.Exz)) ≡ !L!(y.cut!(D, x.Exz))
(cut!/− /!L#) : cut!(D, x.!L#(y.Exz)) ≡ !L#(y.cut!(D, x.Exz))
(cut#/− /1L) : cut#(D, x.1L(y,Ex)) ≡ 1L(y, cut#(D, x.Ex))
(cut#/− /!L!) : cut#(D, x.!L!(y.Exz)) ≡ !L!(y.cut#(D, x.Exz))
(cut#/− /!L#) : cut#(D, x.!L#(y.Exz)) ≡ !L#(y.cut#(D, x.Exz))

Figure 5: Equivalence rules
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5. If P
α
−→ Q and s(α) = x and T = A⊸ B then α = x(y).

6. If P
α
−→ Q and s(α) = y and y : A⊸ B ∈ Θ then α = (νz)y〈z〉.

7. If P
α
−→ Q and s(α) = x and T = A&B then α = x.inl; or α = x.inr;.

8. If P
α
−→ Q and s(α) = y and y : A&B ∈ Θ then α = y.inl; or α = y.inr;.

9. If P
α
−→ Q and s(α) = x and T = A⊕B then α = x.inl; or α = x.inr;.

10. If P
α
−→ Q and s(α) = y and y : A⊕B ∈ Θ then α = y.inl; or α = y.inr;

11. If P
α
−→ Q and s(α) = x and T =!A then α = x(y).

12. If P
α
−→ Q and s(α) = y and y :!A or y ∈ Γ or y ∈ ∆ or y ∈ Φ then α = (νz)y〈z〉.

Proof. Trivial from definitions. ✷

Lemma 5 Assume that:

1. Γ1; ∆;Θ1 ⊢ D :: x : A⊗B with D̂ = P
(νy)x〈y〉
−−−−−→ Q;

2. Γ2; ∆;Θ2, x : A⊗B ⊢ E :: z : C with Ê = R
x(y)
−−−→ S.

Then:
1. cut(D, x.E) →֒=⇒→֒ F for some F;

2. Γ1,Γ2; ∆;Θ1,Θ2 ⊢ F :: z : C, where F̂ ≡ (νx)(Q||S).

Proof. By simultaneous induction on D1,D2. The property stated in the lemma holds also for
the system πDILL (see [1]); since the proof technique is essentialy the same modulo some minor
details, we omit the proof. ✷

Lemma 6 Assume

1. Γ1; ∆;Θ1 ⊢ D1  P1 :: x : A⊸ B with P1
x(y)
−−−→ P ′

1

2. Γ2; ∆;Θ2, x : A⊸ B ⊢ D2  Q1 :: z : C with Q1
(νy)x〈y〉
−−−−−→ Q′

1

Then

1. cut(D1, x.D2) →֒=⇒→֒ D for some D;

2. Γ1,Γ2; ∆;Θ1,Θ2 ⊢ D Q2 :: z : C for some Q2 ≡ (νx)(νy)(P ′
1||Q

′
1).

Proof. See the proof of Lemma 5. ✷

Lemma 7 Assume

1. Γ1; ∆;Θ1 ⊢ D1  P1 :: x :!A with P1
x(y)
−−−→ P ′

1

2. Γ2; ∆;Θ2, x :!A ⊢ D2  Q1 :: z : C with Q1
(νy)x〈y〉
−−−−−→ Q′

1

Then

1. cut(D1, x.D2) →֒=⇒→֒ D for some D;

2. Γ1,Γ2; ∆;Θ1,Θ2 ⊢ D Q2 :: z : C for some Q2 ≡ (νx)(νy)(P ′
1||Q

′
1).

Proof. See the proof of Lemma 5. ✷

Lemma 8 Assume
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1. Γ1; ∆;Θ1 ⊢ D1  P1 :: x : A&B with P1
x.inl;
−−−→ P ′

1

2. Γ2; ∆;Θ2, x : A&B ⊢ D2  Q1 :: z : C with Q1
x.inl;
−−−→ Q′

1

Then

1. cut(D1, x.D2) →֒=⇒→֒ D for some D;

2. Γ1,Γ2; ∆;Θ1,Θ2 ⊢ D Q2 :: z : C for some Q2 ≡ (νx)(P ′
1||Q

′
1).

Proof. See the proof of Lemma 5. ✷

Lemma 9 Assume

1. Γ1; ∆;Θ1 ⊢ D1  P1 :: x : A⊕B with P1
x.inl;
−−−→ P ′

1

2. Γ2; ∆;Θ2, x : A⊕B ⊢ D2  Q1 :: z : C with Q1
x.inl;
−−−→ Q′

1

Then

1. cut(D1, x.D2) →֒=⇒→֒ D for some D;

2. Γ1,Γ2; ∆;Θ1,Θ2 ⊢ D Q2 :: z : C for some Q2 ≡ (νx)(P ′
1||Q

′
1).

Proof. See the proof of Lemma 5. ✷

Lemma 10 Assume

1. Γ1; ∅; ∅ ⊢ D1  P1 :: x : A

2. Γ2, x : A; ∆;Θ ⊢ D2  Q1 :: z : C with Q1
(νy)x〈y〉
−−−−−→ Q′

1

Then

1. cut!(D1, x.D2) →֒=⇒→֒ cut#(D1, x.D) for some D where x /∈ FV (D̂);

2. Γ;Φ;Θ ⊢ D Q2 :: z : C for some Q2 ≡ (νy)(P1||Q
′
1), where Γ,Φ = Γ1,Γ2, x : A,∆.

Proof. By induction on D2. We have different cases, depending from the last rules of D2. Let us
just write down some relevant case:

• Suppose D2 = ♭!(x, y.D
′
2); then Q1 ≡ (νy)x〈y〉.Q′

1 and Γ2, x : A; ∆;Θ ⊢ D
′
2  Q′

1 :: z : C
by inversion. Now cut!(D1, x.♭!(x, y.D

′
2)) =⇒ cut(D1⇓, y.cut#(D1, x.D

′
2⇓)) by (cut!/ − /♭!) ≡

cut#(D1, x.cut(D1⇓, y.D
′
2⇓)) by (cut/− /cut#). We pick D = cut(D1⇓, y.D

′
2⇓); then Γ;Φ;Θ ⊢

D Q2 :: z : C for some Q2 ≡ (νy)(P1||Q
′
1), where Γ,Φ = Γ1,Γ2, x : A,∆ q.e.d.

• Suppose D2 = cut#(D
′
1, y.D

′
2); then ∆; ∅; ∅ ⊢ D

′
1  R1 :: w : C and Γ2, x : A; ∆;Θ ⊢

D
′
2  R′

2 :: z : B with Q1
(νy)x〈y〉
−−−−−→ R1||R

′
2, by inversion. Now by induction hypothe-

sis, cut!(D1, x.D
′
2) →֒=⇒→֒ cut#(D1, x.D

∗) for some D
∗ (where x /∈ FV (D̂∗), and Γ;Φ;Θ2 ⊢

D
∗
 S :: z : B for some S = (νy)(P1||R

′
2). cut!(D1, x.cut#(D

′
1, y.D

′
2)) ≡ cut#(D

′
1, y.cut!(D1, x.D

′
2))

by (cut!/−/cut#), →֒=⇒→֒ cut#(D
′
1, y.cut#(D1, x.D

∗)) by congruence, ≡ cut#(D1, x.cut#(D
′
1, y.D

∗))
by (cut#/ − /cut#)0. Pick D = cut#(D

′
1, y.D

∗). Then Q2 = (νy)R1||S by cut, and
Γ;Φ;Θ ⊢ D Q2 :: z : C for some Q2 ≡ (νy)(P1||Q

′
1). q.e.d.

✷

Corollary 1 Assume

1. Γ1; ∅; ∅ ⊢ D1  P1 :: x : A
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2. Γ2, x : A; ∆;Θ ⊢ D2  Q1 :: z : C with Q1
(νy)x〈y〉
−−−−−→ Q′

1

Then

1. cut!(D1, x.D2) →֒=⇒→֒ D for some D;

2. Γ;Φ;Θ ⊢ D  Q2 :: z : C for some Q2 ≡ (νx)(!x(y).P1||(νy)(P1||Q
′
1)), where Γ,Φ =

Γ1,Γ2,∆

Proof. Follows from Lemma 10. ✷

Lemma 11 Assume

1. ∆; ∅; ∅ ⊢ D1  P1 :: x : A

2. Γ;∆, x : A; Θ ⊢ D2  Q1 :: z : C with Q1
(νy)x〈y〉
−−−−−→ Q′

1

Then :

1. cut#(D1, x.D2) →֒=⇒→֒ cut#(D1, x.D) for some D;

2. Φ;Ψ, x : A; Θ ⊢ D Q2 :: z : C for some Q2 ≡ (νx)(νy)(P1||Q
′
1), where Φ,Ψ = Γ,∆.

Proof. By induction on D2. We have different cases, depending from the last rules of D2. Let us
just write down some relevant case:

• D2 = cut(D′
1, y.D

′
2). Assume Γ = Γ1,Γ2 and Θ = Θ1,Θ2. Now Γ1; ∆, x : A; Θ1 ⊢ D

′
1  R1 ::

w : B and Γ2; ∆, x : A; Θ, w : B ⊢ D
′
2  R2 :: z : C by inversion. We have two cases:either

Q1
(νy)x〈y〉
−−−−−→ R1||R

′
2, or Q1

(νy)x〈y〉
−−−−−→ R′

1||R2.

First case:

cut#(D1, x.D
′
1) →֒=⇒→֒ cut#(D1, x.D

∗) for some D
∗; then Γ1; ∆, x : A; Θ1 ⊢ D

∗
 S ::

w : B for some S = (νy)(P1||R
′
1) by induction hypothesis; cut#(D1, x.cut(D

′
1, y.D

′
2)) ≡

cut(cut#(D1, x.D
′
1), y.cut#(D1, x.D

′
2)) by (cut#/−/cut), →֒=⇒→֒ cut(cut#(D1, x.D

∗), y.cut#(D1, x.D
′
2))

by congruence ≡ cut#(D1, x.cut(D
∗, y.D′

2)) by (cut#/− /cut). Pick D = cut(D∗, y.D′
2); then

Q2 = (νy)S||R2 by cut. Then Γ;∆, x : A; Θ ⊢ D Q2 :: z : C for some Q2 ≡ (νy)(P1||Q
′
1).

Second case:

cut#(D1, x.D
′
2) →֒=⇒→֒ cut#(D1, x.D

∗) for some D
∗; then Γ2; ∆, x : A; Θ2 ⊢ D

∗
 S ::

w : B for some S = (νy)(P1||R
′
2) by induction hypothesis; cut#(D1, x.cut(D

′
1, y.D

′
2)) ≡

cut(cut#(D1, x.D
′
1), y.cut#(D1, x.D

′
2)) by (cut#/−/cut), →֒=⇒→֒ cut(cut#(D1, x.D

′
1), y.cut#(D1, x.D

∗))
by congruence, ≡ cut#(D1, x.cut#(D

′
1, y.D

∗)) by (cut#/ − /cut). Pick D = cut#(D
′
1, y.D

∗);
then Q2 = (νy)R1||S by cut. Then Γ;∆, x : A; Θ ⊢ D  Q2 :: z : C for some Q2 ≡
(νy)(P1||Q

′
1).

• D2 = cut#(D
′
1, y.D

′
2). ∆; ∅; ∅ ⊢ D

′
1  R1 :: w : B Γ;∆, x : A,w : B; Θ ⊢ D

′
2  R2 :: z : C

by inversion. Now Q1
(νy)x〈y〉
−−−−−→ R1||R

′
2; cut#(D1, x.D

′
2) →֒=⇒→֒ cut#(D1, x.D

∗) for some D∗

and Γ;∆, x : A,w : B; Θ ⊢ D
∗
 S :: w : B for some S = (νy)(P1||R

′
2) by induction hypothe-

sis. cut#(D1, x.cut#(D
′
1, y.D

′
2)) ≡ cut#(D1, x.cut#(D

′
1, y.cut#(D1, x.D

′
2))) by (cut#/−/cut#)

→֒=⇒→֒ cut#(D1, x.cut#(D
′
1, y.cut#(D1, x.D

∗))) by congruence, ≡ cut#(D1, x.cut#(D
′
1, y.D

∗))
by (cut#/ − /cut#). Pick D = cut#(D

′
1, y.D

∗); then Q2 = (νy)R1||S by cut. Then Γ;∆, x :
A; Θ ⊢ D Q2 :: z : C for some Q2 ≡ (νy)(P1||Q

′
1).

✷

Corollary 2 Assume

14



1. ∆; ∅; ∅ ⊢ D1  P1 :: x : A

2. Γ;x : A,∆;Θ ⊢ D2  Q1 :: z : C with Q1
(νy)x〈y〉
−−−−−→ Q′

1

Then

1. cut#(D1, x.D2) →֒=⇒→֒ D for some D;

2. Φ;Ψ;Θ ⊢ D Q2 :: z : C for some Q2 ≡ (νx)(!x(y).P1||(νy)(P1||Q
′
1)), where Φ,Ψ = Γ,∆.

Proof. Follows from Lemma 11. ✷

Proof of Theorem 1

Proof. We reason by induction on the structure of D. Since D̂ = P → Q the only possible last
rules of D can be: 1L, !L!, !L#,, a linear cut (cut) or an exponential cut (cut! or cut#). In all the
other cases, the underlying process can only perform a visible action, as can be easily verified by
inspecting the rules from Figure 1. With this observation in mind, let us inspect the operational
semantics derivation proving that P → Q. At some point we will find two subprocesses of P ,
call them R and S, which communicate, causing an internal reduction. We here claim that this
can only happen in presence of a cut, and only the communication between R and S must occur
along the channel involved in the cut. Now, it’s only a matter of showing that the just described
situation can be “resolved” preserving types, and this can be done using the previous lemmas.
Some relevant case:

• D = cut!(D1, x.D2); assume Γ = Γ1,Γ2 and P ≡ (νx)!x(w).P1||P2. Now Γ1; ∅; ∅ ⊢ ∅ :: D1  

P1x : C and Γ2, x : A; ∆;Θ ⊢ D2  P2 :: z : A , by inversion; from P → Q either P2 → Q2

and Q = (νx)!x(w).P1||Q2 or Q2
(νy)x〈y〉
−−−−−→ Q2 and (νx)!x(w).P1||(νy)P1||Q2.

First case:

Γ2, x : A; ∆;Θ ⊢ E2  Q2 :: z : A for some E2 with D2 →֒=⇒→֒ E2 by i.h.; cut!(D1, x.D2) →֒=⇒→֒
cut!(D1, x.E2) by congruence. Pick E = cut!(D1, x.E2); then Γ;∆;Θ ⊢ E  Q :: z : A by
cut!.

Second case:

cut!(D1, x.D2) →֒=⇒→֒ E for some E; then Γ;∆;Θ ⊢ E  R :: z : A for some R ≡ Q by
Corollary 1.

• D = cut#(D1, x.D2). Now, P ≡ (νx)!x(w).P1||P2 and ∆; ∅; ∅ ⊢ ∅ :: D1  P1x : C,
Γ;∆, x : A; Θ ⊢ D2  P2 :: z : A , by inversion; from P → Q either P2 → Q2 and

Q = (νx)!x(w).P1||Q2 or Q2
(νy)x〈y〉
−−−−−→ Q2 and (νx)!x(w).P1||(νy)P1||Q2

First case:

Γ;∆, x : A; Θ ⊢ E2  Q2 :: z : A for some E2 with D2 →֒=⇒→֒ E2 by i.h. and
cut#(D1, x.D2) →֒=⇒→֒ cut#(D1, x.E2) by congruence. Pick E = cut#(D1, x.E2); then
Γ;∆;Θ ⊢ E Q :: z : A by cut#

Second case:

cut#(D1, x.D2) →֒=⇒→֒ E for some E; then Γ;∆;Θ ⊢ E  R :: z : A for some R ≡ Q by
Corollary 2.

✷
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5 Proving Polynomial Bounds

In this section, we prove the main result of this paper, namely some polynomial bounds on the
length of internal reduction sequences and on the size of intermediate results for processes typable
in πDILL. In other words, interaction will be shown to be bounded. The simplest formulation of
this result is the following:

Theorem 2 For every type A, there is a polynomial pA such that whenever ∅; ∅;x : A ⊢ D :: y : 1
and ∅; ∅; ∅ ⊢ E :: x : A where D and E are normal and (νx)(D̂||Ê) →n P , it holds that n, |P | ≤

pA(|D̂|+ |Ê|)

Intuitively, what Theorem 2 says is that the complexity of the interaction between two processes
typable without cuts and communicating through a channel with session type A is polynomial in
their sizes, where the specific polynomial involved only depends on A itself. In other words, the
complexity of the interaction is not only bounded, but can be somehow “read off” from the types
of the communicating parties.

How does the proof of Theorem 2 look like? Conceptually, it can be thought of as being
structured into four steps:

1. First of all, a natural number W(D) is attributed to any proof term D. W(D) is said to be
the weight of D.

2. Secondly, the weight of any proof term is shown to strictly decrease along computational
reduction, not to increase along shifting reduction and to stay the same for equivalent proof
terms.

3. Thirdly, W(D) is shown to be bounded by a polynomial on |D̂|, where the exponent only
depends on the nesting depth of boxes of D, denoted B(D).

4. Finally, the box depth B(D) of any proof term D is shown to be “readable” from its type
interface.

This is exactly what we are going to do in the rest of this section. Please observe how points 1–3
above allow to prove the following stronger result, from which Theorem 2 easily follows, given
point 4:

Proposition 4 For every n ∈ N, there is a polynomial pn such that for every process P with
Γ;∆;Θ ⊢ P :: T , if P →m Q, then m, |Q| ≤ pB(P )(|P |).

5.1 Preliminary Definitions

Some concepts have to be precisely defined before we can embark in the proof of Proposition 4.
First of all, we need to define what the box-depth of a process is. Simply, given a process P ,
its box-depth B(P ) is the nesting-level of replications2 in P . As an example, the box-depth of
!x(y).!z(w).0 is 2, while the one of (νx)y(z) is 0. Formally,

B(1L(x,D)) = B(D) B(⊕R1(D)) = B(D)

B(1R) = 0 B(⊕R2(D)) = B(D)

B(⊗L(x, y.z.D)) = B(D) B(♭!(x, y.D)) = B(D)

B(⊗R(D,E)) = max{B(D),B(E)} B(♭#(x, y.D)) = B(D)

B(⊸ L(x,D, y.E)) = max{B(D),B(E)} B(!L!(x.D)) = B(D)

B(⊸ R(x.D)) = B(D) B(!L#(x.D)) = B(D)

B(&L1(x, y.D)) = B(D) B(!R(x1, . . . , xn,D)) = 1 + B(D)

B(&L2(x, y.D)) = B(D) B(cut(D, x.E)) = max{B(D),B(E)}

B(&R(D,E)) = max{B(D),B(E)} B(cut!(D, x.E)) = max{B(D) + 1,B(E)}

B(⊕L(x, y.D, z.E)) = max{B(D),B(E)} B(cut#(D, x.E)) = max{B(D) + 1,B(E)}

2This terminology is derived from linear logic, where proofs obtained by the promotion rule are usually called

boxes
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Analogously, the box-depth of a proof term D is simply B(D̂).
Now, suppose that Γ;∆;Θ ⊢ D :: T and that x : A belongs to either Γ or ∆, i.e. that x is

an “exponential” channel in D. A key parameter is the virtual number of occurrences of x in D,
which is denoted as FO(x,D). This parameter, as its name suggests, is not simply the number of
literal occurrences of x in D, but takes into account possible duplications derived from cuts. So, for
example, FO(w, cut!(D, x.E)) = FO(x,E) · FO(w,D) + FO(w,E), while FO(w,⊗R(D,E)) is merely
FO(w,D) + FO(w,E). Obviously, FO(w, ♭!(x,w.D)) = 1 and FO(w, ♭#(x,w.D)) = 1. Formally:

FO(w,1L(x,D)) = FO(w,D)

FO(w,1R) = 0

FO(w,⊗L(x, y.z.D)) = FO(w,D)

FO(w,⊗R(D,E)) = FO(w,D) + FO(w,E)

FO(w,⊸ L(x,D, y.E)) = FO(w,D) + FO(w,E)

FO(w,⊸ R(x.D)) = FO(w,D)

FO(w, cut(D, x.E)) = FO(w,D) + FO(w,E)

FO(w, cut!(D, x.E)) = FO(x,E) · FO(w,D) + FO(w,E)

FO(w, cut#(D, x.E)) = FO(x,E) · FO(w,D) + FO(w,E)

FO(w, ♭!(x,w.D)) = 1

FO(w, ♭#(x,w.D)) = 1

FO(w, ♭!(x, y.D)) = 0

FO(w, ♭#(x, y.D)) = 0

FO(w, !L!(x.D)) = FO(w,D)

FO(w, !L#(x.D)) = FO(w,D)

FO(w, !R(x1, . . . , xn,D)) = 0

FO(w,⊕L(x, y.D, z.E)) = FO(w,D) + FO(w,E)

FO(w,⊕R1(D)) = FO(w,D)

FO(w,⊕R2(D)) = FO(w,D)

FO(w,&L1(x, y.D)) = FO(w,D)

FO(w,&L2(x, y.D)) = FO(w,D)

FO(w,&R(D,E)) = FO(w,D) + FO(w,E)

A channel in either the auxiliary or the exponential context can “float” to the linear context as
an effect of rules !L! or !L#. From that moment on, it can only be treated as a linear channel. As
a consequence, it makes sense to define the duplicability factor of a proof term D, written D(D),
simply as the maximum of FO(x,D) over all instances of the rules !L! or !L# in D, where x is
the involved channel. For example, D(!L!(x.D)) = max{D(D),FO(y,D)} and D(⊸ L(x,D, y.E)) =
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max{D(D),D(E)}. Formally, the duplicability factor D(D) of D is defined as follows

D(1L(x,D)) = D(D) D(⊕R1(D)) = D(D)

D(1R) = 0 D(⊕R2(D)) = D(D)

D(⊗L(x, y.z.D)) = D(D) D(♭!(x, y.D)) = D(D)

D(⊗R(D,E)) = max{D(D),D(E)} D(♭#(x, y.D)) = D(D)

D(⊸ L(x,D, y.E)) = max{D(D),D(E)} D(!L!(x.D)) = max{D(D),FO(y,D)}

D(⊸ R(x.D)) = D(D) D(!L#(x.D)) = max{D(D),FO(y,D)}

D(&L1(x, y.D)) = D(D) D(!R(x1, . . . , xn,D)) = D(D)

D(&L2(x, y.D)) = D(D) D(cut(D, x.E)) = max{D(D),D(E)}

D(&R(D,E)) = max{D(D),D(E)} D(cut!(D, x.E)) = max{D(D),D(E)}

D(⊕L(x, y.D, z.E)) = max{D(D),D(E)} D(cut#(D, x.E)) = max{D(D),D(E)}

It’s now possible to give the definition of W(D), namely the weight of the proof term D. Before
doing that, however, it is necessary to give a parameterized notion of weight, denoted Wn(D).

Intuitively, Wn(D) is defined similarly to |D̂|. However, every input and output action in D̂ can
possibly count more than one:
• Everything inside D in !R(x1, . . . , xn,D) counts for n;
• Everything inside D in either cut!(D, x.E) or cut#(D, x.E) counts for FO(x,E).

For example, Wn(cut#(D, x.E)) = FO(x,E)·Wn(D)+Wn(E), while Wn(&L2(x, y.D)) = 1+Wn(D).
Formally:

Wn(1L(x,D)) = Wn(D)

Wn(1R) = 0

Wn(⊗L(x, y.z.D)) = 1 +Wn(D)

Wn(⊗R(D,E)) = 1 +Wn(D) +Wn(E)

Wn(⊸ L(x,D, y.E)) = 1 +Wn(D) +Wn(E)

Wn(⊸ R(x.D)) = 1 +Wn(D)

Wn(cut(D, x.E)) = Wn(D) +Wn(E)

Wn(cut!(D, x.E)) = FO(x,E) ·Wn(D) +Wn(E)

Wn(cut#(D, x.E)) = FO(x,E) ·Wn(D) +Wn(E)

Wn(♭!(x, y.D)) = 1 +Wn(D)

Wn(♭#(x, y.D)) = 1 +Wn(D)

Wn(!L!(x.D)) = Wn(D)

Wn(!L#(x.D)) = Wn(D)

Wn(!R(x1, . . . , xn,D)) = n · (Wn(D) + 1)

Wn(⊕L(x, y.D, z.E)) = 1 +Wn(D) +Wn(E)

Wn(⊕R1(D)) = 1 +Wn(D)

Wn(⊕R2(D)) = 1 +Wn(D)

Wn(&L1(x, y.D)) = 1 +Wn(D)

Wn(&L2(x, y.D)) = 1 +Wn(D)

Wn(&R(D,E)) = 1 +Wn(D) +Wn(E)

Now, W(D) is simply WD(D)(D).
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5.2 Monotonicity Results

The crucial ingredient for proving polynomial bounds are a series of results about how the weight
D evolves when D is put in relation with another proof term E by way of either =⇒, 7−→ or ≡.

Lemma 12 For every D, D(D) = D(D⇓) and for every n, Wn(D) = Wn(D⇓).

Whenever a proof term D computationally reduces to E, the underlying weight is guaranteed to
strictly decrease:

Proposition 5 If Γ;∆;Θ ⊢ D :: T and D =⇒ E, then Φ;Ψ;Θ ⊢ E :: T (where Γ,∆ = Φ,Ψ),
D(E) ≤ D(D) and W(E) < W(D).

Proof. By induction on the proof that D =⇒ E. Some interesting cases:
• Suppose that D = cut(⊸ R(y.F), x.⊸ L(x,G, x.H)) =⇒ cut(cut(G, y.F), x.H) = E. Then

D(D) = max{D(F),D(G),D(H)} = D(E);

W(D) = WD(D)(D) = 3 +WD(D)(F) +WD(D)(G) +WD(D)(H)

> 2 +WD(E)(F) +WD(E)(G) +WD(E)(H) = WD(E)(E) = W(E).

• Suppose that D = cut(&R(F,G), x.&L1(x, y.H)) =⇒ cut(F, x.H) = E. Then

D(D) = max{D(F),D(G),D(H)} = D(E);

W(D) = WD(D)(D) = 3 +WD(D)(F) +WD(D)(G) +WD(D)(H)

> 2 +WD(E)(F) +WD(E)(G) +WD(E)(H) = WD(E)(E) = W(E).

• Suppose that D = cut!(F, x.♭!(x, y.G)) =⇒ cut(F⇓, y.cut#(F, x.G⇓)) = E. Then,

D(D) = max{D(F⇓),D(G⇓)} = max{D(F),D(F),D(G)} = D(E);

W(D) = WD(D)(D) = FO(x, ♭!(x, y.G)) ·WD(D)(F⇓) +WD(D)(♭!(x, y.G))

= WD(D)(F) +WD(D)(♭!(x, y.G)) = WD(D)(F) + 1 +WD(D)(G) ≥ WD(E)(F) + 1 +WD(E)(G)

> WD(E)(F) +WD(E)(G) = WD(E)(F) + 0 ·WD(E)(F) +WD(E)(G)

= WD(E)(F) + FO(x,G) ·WD(E)(F) +WD(E)(G)

= WD(E)(E) = W(E).

• Suppose that
D = cut#(F, x.♭#(x, y.G)) =⇒ cut(F⇓, y.cut#(F, x.G)) = E.

Then we can proceed exactly as in the previous case.
This concludes the proof. ✷

Shift reduction, on the other hand, is not guaranteed to induce a strict decrease on the underlying
weight which, however, cannot increase:

Proposition 6 If Γ;∆;Θ ⊢ D :: T and D 7−→ E, then Γ;∆;Θ ⊢ E :: T , D(E) ≤ D(D) and
W(E) ≤ W(D).

Proof. By induction on the proof that D 7−→ E. Some interesting cases:
• Suppose that

D = cut(!R(x1, . . . , xn,F), x.!L!(x.G)) 7−→ !L!(x1.!L!(x2. . . . !L!(xn.cut!(F, y.G)))) = E.

Then

D(D) = max{D(F),D(G)} = D(E)

W(D) = WD(D)(D) = D(D) ·WD(D)(F) +WD(D)(G)

≥ FO(y,G) ·WD(D)(F) +WD(D)(G) = FO(y,G) ·WD(E)(F) +WD(E)(G)

= WD(E)(E) = W(E).
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• Suppose that

D = cut(!R(x1, . . . , xn,F), x.!L#(x.G)) 7−→ !L#(x1.!L#(x2. . . . !L#(xn.cut#(F, y.G)))) = E.

Then we can proceed as in the previous case.
This concludes the proof. ✷

Finally, equivalence leaves the weight unchanged:

Proposition 7 If Γ;∆;Θ ⊢ D :: T and D ≡ E, then Γ;∆;Θ ⊢ E :: T , D(E) = D(D) and
W(E) = W(D).

Proof. By induction on the proof that D ≡ E. Some interesting cases:
• Suppose that

D = cut(F, x.cut(Gx, y.Hy)) ≡ cut(cut(F, x.Gx), y.Hy) = E.

Then:

D(D) = max{D(F),D(Gx),D(Hy)} = D(E)

W(D) = WD(D)(D) = WD(D)(F) +WD(D)(Gx) +WD(D)(Hy)

= WD(E)(F) +WD(E)(Gx) +WD(E)(Hy) = WD(E)(E) = W(E).

• Suppose that
D = cut(F, x.cut(G, y.Hxy)) ≡ cut(G, x.cut(F, y.Hxy)) = E.

Then we can proceed as in the previous case.
• Suppose that

D = cut(F, x.cut!(G, y.Hxy)) ≡ cut!(G, y.cut(F, x.Hxy)) = E.

Then, since FO(y,F) = 0

D(D) = max{D(F),D(G),D(Hxy)} = D(E)

W(D) = WD(D)(D) = WD(D)(F) + FO(y,Hxy) ·WD(D)(G) +WD(D)(Hxy)

= WD(D)(F) + FO(y, cut(F, x.Hxy)) ·WD(D)(G) +WD(D)(Hxy)

= WD(E)(F) + FO(y, cut(F, x.Hxy)) ·WD(E)(G) +WD(E)(Hxy)

= WD(E)(E) = W(E)

• Suppose that

D = cut#(F, x.cut(Gx, y.Hxy)) ≡ cut(cut#(F, x.Gx), y.cut#(F, x.Hxy)) = E.

Then:

D(D) = max{D(F),D(Gx),D(Hxy)} = D(E)

W(D) = FO(x, cut(Gx, y.Hxy)) ·WD(D)(F) +WD(D)(Gx) +WD(D)(Hxy)

= (FO(x,Gx) + FO(x,Hxy)) ·WD(D)(F) +WD(D)(Gx) +WD(D)(Hxy)

= (FO(x,Gx) ·WD(D)(F) + FO(x,Hxy)) ·WD(D)(F) +WD(D)(Gx) +WD(D)(Hxy)

= WD(D)(cut#(F, x.Gx)) +WD(D)(cut#(F, x.Hxy))

= WD(D)(E) = WD(E)(E) = W(E).

This concludes the proof. ✷

Now, consider again the subject reduction theorem (Theorem 1): what it guarantees is that

whenever P → Q and D̂ = P , there is E with Ê = Q and D →֒=⇒→֒ E. In view of the three
propositions we have just stated and proved, it’s clear that W(D) > E. Altogether, this implies

that W(D) is an upper bound on the number or internal reduction steps D̂ can perform. But is
W(D) itself bounded?
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5.3 Bounding the Weight

What kind of bounds can we expect to prove for W(D)? More specifically, how related are W(D)

and |D̂|?

Lemma 13 Suppose Γ;∆;Θ ⊢ D :: T . Then
1. If x ∈ Γ, then FO(x,D) ≤ 1;
2. If x ∈ ∆, then FO(x,D) ≤ |D|;
3. If x ∈ Θ, then FO(x,D) = 0;

Proof. By induction on the structure of a type derivation π for Γ;∆;Θ ⊢ D :: T . Some interesting
cases:
• If π is

ρ1 : Γ1; ∆;Θ1 ⊢ D1 :: z : A ρ2 : Γ2; ∆;Θ2 ⊢ D2 :: y : B

Γ1,Γ2; ∆;Θ1,Θ2 ⊢ ⊗R(D1,D2) :: y : A⊗B
⊗R

then

FO(x,⊗R(D1,D2)) = FO(x,D1) ≤ 1 if x ∈ Γ1

FO(x,⊗R(D1,D2)) = FO(x,D2) ≤ 1 if x ∈ Γ2

FO(x,⊗R(D1,D2)) = FO(x,D1) + FO(x,D1)

≤ |D1|+ |D2| ≤ | ⊗ R(D1,D2)| if x ∈ ∆

FO(x,⊗R(D1,D2)) = FO(x,D1) = 0 if x ∈ Θ1

FO(x,⊗R(D1,D2)) = FO(x,D2) = 0 if x ∈ Θ2

• If π is
Γ1; ∅; ∅ ⊢ ∅ :: D1z : A Γ2; Γ1, y : A; Θ ⊢ D2 :: T

Γ2; Γ1; Θ ⊢ cut#(D1, y.D2) :: T
cut#

then:

FO(x, cut#(D1, y.D2)) = FO(y,D2) · FO(x,D1) + FO(x,D2)

≤ |D2| · 1 + |D1| ≤ |cut#(D1, y.E2)| if x ∈ Γ1

FO(x, cut#(D1, y.D2)) = FO(y,D2) · FO(x,D1) + FO(x,D2)

≤ |D2| · 0 + 1 = 1 if x ∈ Γ2

FO(x, cut#(D1, y.E2)) = FO(y,D2) · FO(x,D1) + FO(x,D2)

≤ |D2| · 0 + 1 = 1 if x ∈ Θ

• If π is
Γ1; ∅; ∅ ⊢ ∅ :: D1z : A Γ2; ∆;Θ ⊢ D2 :: T

Γ2; ∆;Θ ⊢ cutw(D1, y.D2) :: T
cutw

then:

FO(x, cutw(D1, y.D2)) = FO(y,D2) · FO(x,D1) + FO(x,D2)

≤ 0 · 1 + 0 = 0 if x ∈ Γ1

FO(x, cutw(D1, y.D2)) = FO(y,D2) · FO(x,D1) + FO(x,D2)

≤ 0 · 0 + 1 = 1 if x ∈ Γ2

FO(x, cutw(D1, y.E2)) = FO(y,D2) · FO(x,D1) + FO(x,D2)

≤ 0 · 0 + |D2| ≤ |cut#(D1, y.E2)| if x ∈ ∆

FO(x, cutw(D1, y.E2)) = FO(y,D2) · FO(x,D1) + FO(x,D2)

≤ 0 · 0 + 1 = 1 if x ∈ Θ
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This concludes the proof. ✷

Lemma 14 Suppose Γ;∆;Θ ⊢ D :: T . Then D(D) ≤ |D|.

Proof. An easy induction on the structure of a type derivation π for Γ;∆;Θ ⊢ D :: T . Some
interesting cases:
• If π is

Γ1; ∅; ∅ ⊢ ∅ :: D1z : A Γ2; ∆, y : A; Θ ⊢ D2 :: T

Γ2; ∆,Γ1; Θ ⊢ cut#(D1, y.D2) :: T
cut#

then, by Lemma 13 and by induction hypothesis:

D(cut#(D1, y.D2)) = max{D(D1),D(D2)}

≤ max{|D1|, |D2|}

≤ |cut#(D1, y.D2)|

This concludes the proof. ✷

Lemma 15 If Γ;∆;Θ ⊢ D :: T , then for every n ≥ D(D), Wn(D) ≤ |D̂| · nB(D̂)+1.

Proof. By induction on the structure of D. Some interesting cases:
• If D = ⊗R(E,F), then:

Wn(⊗R(E,F)) = 1 +Wn(E) +Wn(F)

≤ 1 + |E| · nB(E)+1 + |F| · nB(F)+1

≤ 1 + (|E|+ |F|) · nmax{B(E)+1,B(F)+1}

≤ (1 + |E|+ |F|) · nmax{B(E)+1,B(F)+1}

≤ | ⊗ R(E,F)| · nB(⊗R(E,F))+1

• If D = cut!(D, x.E), then:

Wn(cut!(D, x.E)) = FO(x,E) · (Wn(D) + 1) +Wn(E)

≤ FO(x,E) · (|D| · nB(D)+1 + 1) + |E| · nB(E)+1

≤ n · |D| · nB(D)+1 + n+ |E| · nB(E)+1

≤ |D| · nB(D)+2 + nB(E)+1 + |E| · nB(E)+1

≤ (|D|+ |E|+ 1) · nmax{B(D)+2,B(E)+1}

= (|cut!(D, x.E)|) · n
B(cut!(D,x.E))

• If D = !R(x1, . . . , xn,E), then:

Wn(!R(x1, . . . , xn,E)) = n · (Wn(E) + 1)

≤ n · |E| · nB(E)+1 + n

≤ |E| · nB(E)+2 + nB(E)+2

= (1 + |E|) · nB(!R(x1,...,xn,E))+1

= |!R(x1, . . . , xn,E)| · n
B(!R(x1,...,xn,E))+1

This concludes the proof. ✷
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5.4 Putting Everything Together

We now have almost all the necessary ingredients to obtain a proof of Proposition 4: the only
missing tale are the bounds on the size of any reducts, since the polynomial bounds on the length
of internal reduction are exactly the ones from Lemma 15. Observe, however, that the latter
induces the former:

Lemma 16 Suppose that P →n Q. Then |Q| ≤ n · |P |.

Proof. By induction on n, enriching the statement as follows: whenever P →n Q, both |Q| ≤
n · |P | and |R| ≤ |P | for every subprocess R of Q in the form !x(y).S. ✷

Lemma 17 For every D, B(D) = B(D̂) and |D| = |D̂|.

Finally:

Proof. [Proposition 4] Let {qn}n∈N the polynomials coming from Lemma 15. The polynomials
we are looking for are defined as follows:

pn(x) = qn(x) + x · qn(x).

Now, suppose that P →m Q. By Theorem 1, there are proof terms D,E such that P = D̂, Q = Ê

and
D(→֒=⇒→֒)mE.

Now, from propositions 5, 6 and 7, it follows that

W(D) ≥ m+W(E) ≥ m.

As a consequence, by Lemma 15 and Lemma 17

m ≤ qB(D)(|D|) ≤ qB(P )(|P |) ≤ pB(P )(|P |).

By Lemma 16, it follows that

|Q| ≤ m · |P | ≤ qB(P )(|P |) · |P | ≤ pB(P )(|P |).

This concludes the proof. ✷

Let us now consider Theorem 2: how can we deduce it from Proposition 4? Everything boils down
to show that for normal processes, the box-depth can be read off from their type. In the following
lemma, B(A) and B(Γ) are the nesting depth of ! inside the type A and inside the types appearing
in Γ (for every type A and context Γ).

Lemma 18 Suppose that Γ;∆;Θ ⊢ D :: x : A and that D̂ is normal. Then B(D̂) = max{B(Γ),B(∆),B(Θ),B(A)}.

Proof. An easy induction on D. ✷

6 Conclusions

In this paper, we introduced a variation on Caires and Pfenning’s πDILL, called πDSLL, being
inspired by Lafont’s soft linear logic. The key feature of πDSLL is the fact that the amount
of interaction induced by allowing two processes to interact with each other is bounded by a
polynomial whose degree can be “read off” from the type of the session channel through which
they communicate.

What we consider the main achievement of this paper is definitely not the proof of these
polynomial bounds, which can be obtained by adapting the ones in [9] or in [8], although this
anyway presents some technical difficulties due to the low-level nature of the π-calculus compared
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to the lambda calculus or to higher-order π-calculus. Instead, what we found very interesting is
that the operational properties induced by typability in πDSLL, bounded interaction in primis,
are not only very interesting and useful in practice, but different from the ones one obtains in
soft lambda calculi: in the latter, it’s the normalization time which is bounded, while here it’s
the interaction time. Another aspect that we find interesting is the following: it seems that the
constraints on processes induced by the adoption of the more stringent typing discipline πDSLL,
as opposed to πDILL, are quite natural and do not rule out too many interesting examples. In
particular, the way sessions can be defined remains essentially untouched: what changes is the way
sessions can be offered, i.e. the discipline governing the offering of multiple sessions by servers.
All the examples in [1] and the one from Section 2 are indeed typable in πDSLL.

Topics for future work include the accommodation of recursive types into πDSLL. This could
be easier than expected, due to the robustness of light logics to the presence of recursive types [7]
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